Peripheral Blood DNA Methylation Changes in Response to Centella asiatica Treatment in Aged Mice
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. CAW
2.2. Mice
2.3. DNA Extraction and Quality Validation
2.4. Reduced Representation Bisulfite Sequencing (RRBS) Library Generation
2.5. Differential Methylation Analysis
2.6. Characterization of DMRs
3. Results
3.1. CAW Treatment Results in Variable Numbers of Differentially Methylated Regions in the Peripheral Blood of Aged Male and Female Mice
3.2. DMRs Are Enriched by CAW in Distinct Pathways in Male and Female Aged Mice
3.3. DMRs Are Enriched in Different Transcription Factor Binding Motifs in CAW-Treated Male vs. Female Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic Acid |
RNA | Ribonucleic Acid |
CAW | Centella asiatica water extract |
CpG | Cytosine followed by Guanine site |
RRBS | Reduced representation bisulfite sequencing |
DMR(s) | Differentially methylated region(s) |
GO | Gene Ontology |
PCR | Polymerase chain reaction |
EDTA | Ethylenediaminetetraacetic acid |
KCVI | Knight Cardiovascular Institute |
MSSPR | Massively Parallel Sequencing Shared Resource |
NEB | New England Biolabs |
HOMER | Hypergeometric Optimization of Motif Enrichment |
OHSU | Oregon Health & Science University |
NIH | National Institute of Health |
TSS | Transcription start site |
AT | Activating transcription factor |
bHLH | Basic helix loop helix |
BZR | Brassinazole-resistant |
C2H2 | C2H2 zinc-finger domain |
CAMTA | Calmodulin-binding transcription activator |
CTF | CCAAT box-binding transcription factor |
DPL | Doppel Protein(s) |
ETS | E-twenty-six |
IRF | Interferon Regulatory Family |
KLF | Kruppel-like Factors |
LBD | Lateral organs boundary domain |
MADS | Minichromosome maintenance 1, agamous, deficiens, serum Response factor |
MYB | Myeloblastosis |
SP | Specialty Protein |
Zf | Zinc-finger protein |
ZFHD | Zinc-finger homo domain |
References
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wu, L.; Wu, Y.; Zhang, C.; Qin, L.; Hayashi, M.; Kudo, M.; Gao, M.; Liu, T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front. Pharmacol. 2020, 11, 568032. [Google Scholar] [CrossRef]
- Wong, J.H.; Barron, A.M.; Abdullah, J.M. Mitoprotective Effects of Centella asiatica (L.) Urb.: Anti-Inflammatory and Neuroprotective Opportunities in Neurodegenerative Disease. Front. Pharmacol. 2021, 12, 687935. [Google Scholar] [CrossRef]
- Gray, N.E.; Hack, W.; Brandes, M.S.; Zweig, J.A.; Yang, L.; Marney, L.; Choi, J.; Magana, A.A.; Cerruti, N.; McFerrin, J.; et al. Amelioration of age-related cognitive decline and anxiety in mice by Centella asiatica extract varies by sex, dose and mode of administration. Front. Aging 2024, 5, 1357922. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.E.; Harris, C.J.; Quinn, J.F.; Soumyanath, A. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J. Ethnopharmacol. 2016, 180, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.E.; Zweig, J.A.; Caruso, M.; Martin, M.D.; Zhu, J.Y.; Quinn, J.F.; Soumyanath, A. Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice. Brain Behav. 2018, 8, e01024. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.G.; Lowe, R.; Adams, P.D.; Baccarelli, A.A.; Beck, S.; Bell, J.T.; Christensen, B.C.; Gladyshev, V.N.; Heijmans, B.T.; Horvath, S.; et al. DNA methylation aging clocks: Challenges and recommendations. Genome Biol. 2019, 20, 249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Vallerga, C.L.; Walker, R.M.; Lin, T.; Henders, A.K.; Montgomery, G.W.; He, J.; Fan, D.; Fowdar, J.; Kennedy, M.; et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 2019, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef] [PubMed]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef]
- Stubbs, T.M.; Bonder, M.J.; Stark, A.K.; Krueger, F.; von Meyenn, F.; Stegle, O.; Reik, W. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 2017, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Tay, J.; Yang, G.E.; Agrawal, S.; Gupta, S. Age-associated epigenetic modifications in human DNA increase its immunogenicity. Aging 2010, 2, 93–100. [Google Scholar] [CrossRef]
- Ni, C.; Qian, M.; Geng, J.; Qu, Y.; Tian, Y.; Yang, N.; Li, S.; Zheng, H. DNA Methylation Manipulation of Memory Genes Is Involved in Sevoflurane Induced Cognitive Impairments in Aged Rats. Front. Aging Neurosci. 2020, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.J.; Robertson, N.A.; Rather, M.I.; Thomson, J.P.; McBryan, T.; Sproul, D.; Wang, T.; Brock, C.; Clark, W.; Ideker, T.; et al. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol. 2017, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.J.; Chwiałkowska, K.; Rubbi, L.; Lusis, A.J.; Davis, R.C.; Srivastava, A.; Korstanje, R.; Churchill, G.A.; Horvath, S.; Pellegrini, M. A multi-tissue full lifespan epigenetic clock for mice. Aging 2018, 10, 2832–2854. [Google Scholar] [CrossRef]
- de Magalhães, J.P.; Curado, J.; Church, G.M. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 2009, 25, 875–881. [Google Scholar] [CrossRef]
- Harris, C.J.; Davis, B.A.; Zweig, J.A.; Nevonen, K.A.; Quinn, J.F.; Carbone, L.; Gray, N.E. Age-Associated DNA Methylation Patterns Are Shared Between the Hippocampus and Peripheral Blood Cells. Front. Genet. 2020, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Smith, Z.D.; Bock, C.; Boyle, P.; Gnirke, A.; Meissner, A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 2011, 6, 468–481. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Davis, B.A.; Fei, S.S.; White, A.; Nevonen, K.A.; Takahashi, D.; Vinson, A.; True, C.; Roberts, C.T., Jr.; Varlamov, O. Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates. Sci. Rep. 2019, 9, 19232. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 21 July 2023).
- Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef] [PubMed]
- Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012, 13, R87. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.-G.; He, Q.-Y. ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 2015, 31, 2382–2383. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’Ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef] [PubMed]
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.C.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef]
- Matthews, D.G.; Caruso, M.; Murchison, C.F.; Zhu, J.Y.; Wright, K.M.; Harris, C.J.; Gray, N.E.; Quinn, J.F.; Soumyanath, A. Centella asiatica Improves Memory and Promotes Antioxidative Signaling in 5XFAD Mice. Antioxidants 2019, 8, 630. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.E.; Zweig, J.A.; Matthews, D.G.; Caruso, M.; Quinn, J.F.; Soumyanath, A. Centella asiatica Attenuates Mitochondrial Dysfunction and Oxidative Stress in Aβ-Exposed Hippocampal Neurons. Oxid. Med. Cell. Longev. 2017, 2017, 7023091. [Google Scholar] [CrossRef] [PubMed]
- Arribas-López, E.; Zand, N.; Ojo, O.; Snowden, M.J.; Kochhar, T. A Systematic Review of the Effect of Centella asiatica on Wound Healing. Int. J. Environ. Res. Public Health 2022, 19, 3266. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Xin, Z.; Lv, Y.; Wang, Z.; Zuo, L.; Huang, X.; Li, Y.; Xin, H.-B. Asiatic acid suppresses neuroinflammation in BV2 microglia via modulation of the Sirt1/NF-κB signaling pathway. Food Funct. 2018, 9, 1048–1057. [Google Scholar] [CrossRef]
- Tewari, D.; Mukhopadhyay, M.; Nekkanti, M.S.; Vallabhaneni, S.; Sahu, G.; Jetti, S.K.; Preethidan, D.S.; Bera, A.K. Cytoprotective effect of Centella asiatica is mediated through the modulation of mitochondrial voltage-dependent anion channel (VDAC) and scavenging of free radicals. J. Funct. Foods 2016, 21, 301–311. [Google Scholar] [CrossRef]
- Kim, H.; Hong, J.T.; Park, M.H. Centella asiatica enhances neurogenesis and protects neuronal cells against H2O2-induced oxidative injury. J. Biomed. Res. 2015, 16, 121–128. [Google Scholar] [CrossRef]
- Sbrini, G.; Brivio, P.; Fumagalli, M.; Giavarini, F.; Caruso, D.; Racagni, G.; Dell’Agli, M.; Sangiovanni, E.; Calabrese, F. Centella asiatica L. Phytosome Improves Cognitive Performance by Promoting Bdnf Expression in Rat Prefrontal Cortex. Nutrients 2020, 12, 355. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-J.; Zheng, H.-M.; Kim, J.M.; Lee, K.W.; Park, Y.H.; Lee, D.H. Protective effects of Centella asiatica leaf extract on dimethylnitrosamine-induced liver injury in rats. Mol. Med. Rep. 2016, 14, 4521–4528. [Google Scholar] [CrossRef] [PubMed]
- Shinomol, G.K.; Muralidhara. Effect of Centella asiatica leaf powder on oxidative markers in brain regions of prepubertal mice in vivo and its in vitro efficacy to ameliorate 3-NPA-induced oxidative stress in mitochondria. Phytomedicine 2008, 15, 971–984. [Google Scholar] [CrossRef]
- Hambali, A.; Jusril, N.A.; Md Hashim, N.F.; Abd Manan, N.; Adam, S.K.; Mehat, M.Z.; Adenan, M.I.; Stanslas, J.; Abdul Hamid, H.; Mandal, P.K. The Standardized Extract of Centella asiatica and Its Fractions Exert Antioxidative and Anti-Neuroinflammatory Effects on Microglial Cells and Regulate the Nrf2/HO-1 Signaling Pathway. J. Alzheimer’s Dis. 2024, 99, S119–S138. [Google Scholar] [CrossRef]
- Hambali, A.; Kumar, J.; Hashim, N.F.M.; Maniam, S.; Mehat, M.Z.; Cheema, M.S.; Mustapha, M.; Adenan, M.I.; Stanslas, J.; Hamid, H.A. Hypoxia-Induced Neuroinflammation in Alzheimer’s Disease: Potential Neuroprotective Effects of Centella asiatica. Front. Physiol. 2021, 12, 712317. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, A.G.; Mingoti, M.E.D.; de Medeiros, J.; da Silva, G.B.; Capoani, G.T.; Lindemann, H.; Cassol, J.; Manica, D.; de Oliveira, T.; Garcez, M.L.; et al. Hydroalcoholic Extract of Centella asiatica and Madecassic Acid Reverse Depressive-Like Behaviors, Inflammation and Oxidative Stress in Adult Rats Submitted to Stress in Early Life. Mol. Neurobiol. 2024, 61, 10182–10197. [Google Scholar] [CrossRef]
- Suzuki, C.; Fukumitsu, S.; Oike, H. Modulation of cellular circadian clocks by triterpenoids. Phytochemistry 2021, 181, 112539. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Zhou, S.; Zhou, Y.; Zhong, W.; Su, Z.; Qin, Z. Protective role of madecassoside from Centella asiatica against protein L-isoaspartyl methyltransferase deficiency-induced neurodegeneration. Neuropharmacology 2024, 246, 109834. [Google Scholar] [CrossRef] [PubMed]
- Afif, Z.; Eddy Santoso, M.I.; Nurdiana; Khotimah, H.; Satriotomo, I.; Kurniawan, S.N.; Sujuti, H.; Iskandar, D.S.; Hakimah, A. Effect of Centella asiatica ethanol extract on zebrafish larvae (Danio rerio) insomnia model through inhibition of Orexin, ERK, Akt and p38. F1000Research 2024, 13, 107. [Google Scholar] [CrossRef]
- He, L.; Hong, G.; Zhou, L.; Zhang, J.; Fang, J.; He, W.; Tickner, J.; Han, X.; Zhao, L.; Xu, J. Asiaticoside, a component of Centella asiatica attenuates RANKL-induced osteoclastogenesis via NFATc1 and NF-κB signaling pathways. J. Cell. Physiol. 2019, 234, 4267–4276. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.S.; Power, B.E.; Molloy, P.L. DNA hypomethylation and human diseases. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2007, 1775, 138–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Tsai, W.-H.; Chen, C.-J.; Pan, T.-M. Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med. 2015, 3, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Blattler, A.; Farnham, P.J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 2013, 288, 34287–34294. [Google Scholar] [CrossRef]
- Dobson, A.J.; Boulton-McDonald, R.; Houchou, L.; Svermova, T.; Ren, Z.; Subrini, J.; Vazquez-Prada, M.; Hoti, M.; Rodriguez-Lopez, M.; Ibrahim, R.; et al. Longevity is determined by ETS transcription factors in multiple tissues and diverse species. PLoS Genet. 2019, 15, e1008212. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.H.; Yu, Q.; Deng, Z.L.; Yang, K.; Ye, Y.; Ge, M.X.; Yan, D.; Wang, H.T.; Chen, X.Q.; Yang, L.Q.; et al. ETS1 acts as a regulator of human healthy aging via decreasing ribosomal activity. Sci. Adv. 2022, 8, eabf2017. [Google Scholar] [CrossRef] [PubMed]
- Antonczyk, A.; Krist, B.; Sajek, M.; Michalska, A.; Piaszyk-Borychowska, A.; Plens-Galaska, M.; Wesoly, J.; Bluyssen, H.A.R. Direct Inhibition of IRF-Dependent Transcriptional Regulatory Mechanisms Associated with Disease. Front. Immunol. 2019, 10, 1176. [Google Scholar] [CrossRef] [PubMed]
- Speers, A.B.; García-Jaramillo, M.; Feryn, A.; Matthews, D.G.; Lichtenberg, T.; Caruso, M.; Wright, K.M.; Quinn, J.F.; Stevens, J.F.; Maier, C.S.; et al. Centella asiatica Alters Metabolic Pathways Associated with Alzheimer’s Disease in the 5xFAD Mouse Model of ß-Amyloid Accumulation. Front. Pharmacol. 2021, 12, 788312. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.G.; Caruso, M.; Alcazar Magana, A.; Wright, K.M.; Maier, C.S.; Stevens, J.F.; Gray, N.E.; Quinn, J.F.; Soumyanath, A. Caffeoylquinic Acids in Centella asiatica Reverse Cognitive Deficits in Male 5XFAD Alzheimer’s Disease Model Mice. Nutrients 2020, 12, 3488. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kang, H.T.; Han, J.A.; Park, S.C. The transcription factor Sp1 is responsible for aging-dependent altered nucleocytoplasmic trafficking. Aging Cell 2012, 11, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Mairuae, N.; Cheepsunthorn, P.; Buranrat, B. Anti-inflammatory and anti-oxidative effects of Centella asiatica extract in lipopolysaccharide-stimulated BV2 microglial cells. Pharmacogn. Mag. 2019, 15, 140–146. [Google Scholar] [CrossRef]
- Rotpenpian, N.; Wanasuntronwong, A.; Tapechum, S.; Vattarakorn, A.; Care, C.; Chindasri, W.; Tilokskulchai, K.; Tantisira, M.H.; Pakaprot, N. Standardized Centella asiatica (ECa 233) extract decreased pain hypersensitivity development in a male mouse model of chronic inflammatory temporomandibular disorder. Sci. Rep. 2023, 13, 6642. [Google Scholar] [CrossRef]
- Fontanet, P.; Irala, D.; Alsina, F.C.; Paratcha, G.; Ledda, F. Pea3 Transcription Factor Family Members Etv4 and Etv5 Mediate Retrograde Signaling and Axonal Growth of DRG Sensory Neurons in Response to NGF. J. Neurosci. 2013, 33, 15940–15951. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, B.; Blaszczak, A.G.; Chandler, K.J.; Watts, J.L.; Johnson, W.E.; Graves, B.J. ETS-4 is a transcriptional regulator of life span in Caenorhabditis elegans. PLoS Genet. 2010, 6, e1001125. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Brezani, V.; Mey, G.M.; Guixé-Muntet, S.; Ortega-Ribera, M.; Zhuang, Y.; Zivny, A.; Werneburg, S.; Gracia-Sancho, J.; Szabo, G. IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer’s disease. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.C.; Wang, C.; Xu, H.; Wu, W.Q.; Chu, Z.H.; Ma, L.S.; Zhang, Y.D.; Liu, F. Age-related differences in interferon regulatory factor-4 and -5 signaling in ischemic brains of mice. Acta Pharmacol. Sin. 2017, 38, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.N.; Sweet, D.R.; Fan, L.; Jain, M.K. Aging and the Krüppel-like factors. Trends Cell Mol. Biol. 2017, 12, 1–15. [Google Scholar]
- Bacos, K.; Gillberg, L.; Volkov, P.; Olsson, A.H.; Hansen, T.; Pedersen, O.; Gjesing, A.P.; Eiberg, H.; Tuomi, T.; Almgren, P.; et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun. 2016, 7, 11089. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Song, Q.; Wang, Y.; Liu, J.; Cui, Y.; Zhang, X.; Zhang, J.; Fu, J.; Cao, M.; Zhang, C.; et al. Downregulation of Krüppel-like factor 14 accelerated cellular senescence and aging. Aging Cell 2023, 22, e13950. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, W.; Zhang, H. The role of KLF14 in multiple disease processes. Biofactors 2020, 46, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Wezyk, M.; Spólnicka, M.; Pośpiech, E.; Pepłońska, B.; Zbieć-Piekarska, R.; Ilkowski, J.; Styczyńska, M.; Barczak, A.; Zboch, M.; Filipek-Gliszczynska, A.; et al. Hypermethylation of TRIM59 and KLF14 Influences Cell Death Signaling in Familial Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2018, 2018, 6918797. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.; Grigolon, G.; Benner, C.; Ristow, M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol. Rev. 2022, 102, 1449–1494. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.N.; Zhou, G.; Yuan, Y.; Zhang, R.; Prosdocimo, D.A.; Sangwung, P.; Borton, A.H.; Boriushkin, E.; Hamik, A.; Fujioka, H.; et al. A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nat. Commun. 2017, 8, 914. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, J.; Cook, T.; Urrutia, R. Sp1- and Krüppel-like transcription factors. Genome Biol. 2003, 4, 206. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-E.; Han, J.-A.; Hwang, E.S. Downregulation of transcription factor, Sp1, during cellular senescence. Biochem. Biophys. Res. Commun. 2007, 353, 86–91. [Google Scholar] [CrossRef] [PubMed]
Comparison (CAW vs. Control) | Total Number Significant DMRs | Number of Significant Hypomethylated DMRs | Number of Significant Hypermethylated DMRs |
---|---|---|---|
Old Male CAW vs. Control | 1500 | 1489 | 11 |
Old Female CAW vs. Control | 178 | 71 | 107 |
Male | Female | ||||
---|---|---|---|---|---|
Term | p-Value | Adjusted p-Value | Term | p-Value | Adjusted p-Value |
Regulation Of DNA-templated Transcription (GO:0006355) | <0.001 | 0.080 | Cellular Response To Oxygen-Containing Compound | <0.001 | 0.246 |
Regulation Of Transcription By RNA Polymerase II | <0.001 | 0.093 | Growth Hormone Receptor Signaling Pathway Via JAK-STAT | 0.002 | 0.246 |
Negative Regulation Of Nucleic Acid-Templated Transcription | <0.001 | 0.102 | Cortical Cytoskeleton Organization (GO:0030865) | 0.002 | 0.246 |
Positive Regulation Of DNA-templated Transcription | <0.001 | 0.117 | Regulation Of Protein Transport (GO:0051223) | 0.002 | 0.246 |
Regulation Of Dendritic Spine Development (GO:0060998) | <0.001 | 0.243 | Regulation Of Neuron Migration (GO:2001222) | 0.002 | 0.246 |
Cellular Response To Oxidative Stress (GO:0034599) | <0.001 | 0.243 | Positive Regulation Of Membrane Invagination (GO:1905155) | 0.002 | 0.246 |
Positive Regulation Of Transcription By RNA Polymerase II | <0.001 | 0.243 | Regulation Of Dendritic Cell Apoptotic Process (GO:2000668) | 0.003 | 0.246 |
mRNA Splice Site Recognition (GO:0006376) | <0.001 | 0.275 | Nerve Growth Factor Signaling Pathway (GO:0038180) | 0.003 | 0.246 |
Regulation Of Neuron Differentiation (GO:0045664) | <0.001 | 0.399 | cAMP Biosynthetic Process (GO:0006171) | 0.003 | 0.246 |
Calcium-Ion Regulated Exocytosis (GO:0017156) | 0.002 | 0.490 | Positive Regulation Of Leukocyte Apoptotic Process | 0.003 | 0.246 |
Calcium Ion-Regulated Exocytosis Of Neurotransmitter | 0.002 | 0.490 | Positive Regulation Of Phagocytosis, Engulfment | 0.003 | 0.246 |
Myeloid Cell Development (GO:0061515) | 0.002 | 0.490 | Rap Protein Signal Transduction (GO:0032486) | 0.003 | 0.246 |
Regulation Of Regulated Secretory Pathway (GO:1903305) | 0.002 | 0.490 | Regulation Of Phagocytosis, Engulfment (GO:0060099) | 0.003 | 0.246 |
Positive Regulation Of Dendritic Spine Development | 0.002 | 0.490 | Cellular Response To Forskolin (GO:1904322) | 0.003 | 0.246 |
Forebrain Neuron Differentiation (GO:0021879) | 0.003 | 0.490 | Response To Forskolin (GO:1904321) | 0.003 | 0.246 |
Meth Diff | p Value | q Value | Location | ||
---|---|---|---|---|---|
Pdgfra | −12.225 | <0.001 | 0.001 | Promoter (<=1kb) | |
Antioxidant | Gpx1 | −18.350 | <0.001 | 0.005 | Promoter (<=1kb) |
Gpx7 | −10.380 | 0.002 | 0.014 | Promoter (<=1kb) | |
Gsr | −12.527 | 0.001 | 0.011 | Exon | |
Pxn | −11.239 | 0.032 | 0.100 | Distal Intergenic | |
Dapk1 | −10.365 | <0.001 | 0.001 | Promoter (<=1kb) | |
Mitochondrial | Pycr2 | −13.480 | 0.007 | 0.036 | Distal Intergenic |
Pex10 | −13.653 | <0.001 | 0.002 | Promoter (<=1kb) | |
Pex5 | −13.208 | <0.001 | 0.003 | Promoter (<=1kb) | |
Energy metabolism, angiogenesis, vascularization | Hif1a | −14.968 | <0.001 | 0.006 | Promoter (<=1kb) |
Mmp9 | −10.890 | <0.001 | 0.003 | Promoter (1-2kb) | |
Zfp36l2 | −11.104 | 0.001 | 0.009 | Promoter (<=1kb) | |
Calcium signaling | Camkk2 | −16.105 | <0.001 | 0.003 | Intron |
Circadian rhythm | Setx | −14.958 | 0.002 | 0.015 | Promoter (<=1kb) |
Rad52 | −26.128 | <0.001 | <0.001 | Promoter (<=1kb) | |
Zc3h12a | −16.137 | 0.002 | 0.015 | Distal Intergenic | |
Mgat3 | −10.921 | 0.010 | 0.046 | Intron | |
Energy homeostasis | Sqstm1 | −19.144 | <0.001 | <0.001 | Promoter (<=1kb) |
Atf4 | −13.091 | <0.001 | 0.001 | Promoter (<=1kb) |
Meth Diff | p Value | q Value | Location | ||
---|---|---|---|---|---|
Anti-inflammatory | Il10 | −13.194 | 0.007 | 0.095 | Distal Intergenic |
Pro-inflammatory | Wnt5b | 10.588 | 0.001 | 0.051 | intron |
Cd80 | 10.874 | <0.001 | 0.028 | intron | |
Plcg2 | 10.858 | 0.002 | 0.060 | Distal Intergenic | |
Rapgef1 | −23.373 | 0.002 | 0.063 | intron | |
Rapgef2 | 10.176 | 0.003 | 0.065 | Promoter (<=1kb) | |
Vascular endothelial and smooth muscle interactions | Iqgap1 | −11.723 | 0.005 | 0.083 | Intron |
Lcp1 | −12.265 | 0.001 | 0.047 | Promoter (<=1kb) | |
Calcium signaling related | Adcy7 | 13.319 | <0.001 | 0.008 | intron |
Ryr3 | 10.314 | 0.001 | 0.052 | Promoter(<=1kb) | |
Camkk2 | 11.250 | 0.001 | 0.047 | intron |
Males | Females | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Transcription Factor Name | p Value | q Value | % of Target Sequences | % of Background Sequences | Fold Over Background | Transcription Factor Name | p Value | q Value | % of Target Sequences | % of Background Sequences | Fold Over Background | ||
Sp5 | Specialty Protein | <0.001 | <0.001 | 69.91% | 57.55% | 1.21 | Elk4(ETS) | E twenty six | <0.001 | < 0.001 | 42.86% | 24.00% | 1.79 |
Sp2 | Specialty Protein | <0.001 | <0.001 | 81.13% | 70.90% | 1.14 | NF1(CTF) | CCAAT box-binding transcription factor | <0.001 | < 0.001 | 33.33% | 17.25% | 1.93 |
Sp1 | Specialty Protein | <0.001 | <0.001 | 35.39% | 24.89% | 1.42 | ETV4(ETS) | E twenty six | <0.001 | < 0.001 | 64.29% | 46.45% | 1.38 |
KLF1 | Kruppel-like factors | <0.001 | <0.001 | 63.67% | 52.49% | 1.21 | Elk1(ETS) | E twenty six | <0.001 | < 0.001 | 41.07% | 25.01% | 1.64 |
DPL-1 | Doppel Protein(s) | <0.001 | <0.001 | 54.40% | 43.53% | 1.25 | AT5G05550(Trihelix) | activating transcription factor | <0.001 | 0.001 | 61.90% | 44.91% | 1.38 |
AT5G23930 | Activating transcription factor | <0.001 | <0.001 | 77.23% | 67.44% | 1.15 | Fli1(ETS) | E twenty six | <0.001 | 0.007 | 60.12% | 44.67% | 1.35 |
ATAF1 | Activating transcription factor | <0.001 | <0.001 | 78.51% | 69.32% | 1.13 | Unknown3 | Unknown | <0.001 | 0.007 | 14.29% | 5.82% | 2.46 |
AT2G15740 | Activating transcription factor | <0.001 | <0.001 | 30.36% | 21.69% | 1.40 | ERG(ETS) | E twenty six | 0.001 | 0.019 | 72.02% | 58.28% | 1.24 |
E2F4 | E2F Family | <0.001 | <0.001 | 37.34% | 28.25% | 1.32 | IRF8(IRF) | Interferon Regulatory Family | 0.001 | 0.036 | 22.62% | 12.82% | 1.76 |
Maz(Zf) | Zinc-finger protein | <0.001 | <0.001 | 77.10% | 68.28% | 1.13 | At4g18890(BZR) | Brassinazole-resistant | 0.001 | 0.056 | 14.29% | 6.89% | 2.07 |
KLF3 | Kruppel-like factors | <0.001 | <0.001 | 44.12% | 34.80% | 1.27 | IRF1(IRF) | Interferon Regulatory Family | 0.001 | 0.068 | 11.90% | 5.37% | 2.22 |
KLF14 | Kruppel-like factors | <0.001 | <0.001 | 84.82% | 77.15% | 1.10 | IRF2(IRF) | Interferon Regulatory Family | 0.01 | 0.12 | 9.52% | 4.05% | 2.35 |
CAMTA | Calmodulin binding transcription activator | <0.001 | <0.001 | 31.70% | 23.43% | 1.35 | Mef2c(MADS) | Minichromosome maintenance 1, agamous, deficiens, serum response factor | 0.01 | 0.131 | 22.62% | 13.99% | 1.62 |
MYB88 | Myeloblastosis | <0.001 | <0.001 | 81.26% | 73.31% | 1.11 | IRF3(IRF) | Interferon Regulatory Family | 0.01 | 0.131 | 20.83% | 12.54% | 1.66 |
LBD23 | Lateral organs boundary domain | <0.001 | <0.001 | 49.03% | 40.07% | 1.22 | MYB3R5(MYB) | Myeloblastosis | 0.01 | 0.131 | 5.95% | 1.96% | 3.04 |
ZNF519(Zf) | Zinc-finger protein | 0.01 | 0.6741 | 45.45% | 8.39% | 5.42 | Elk4(ETS) | E twenty six | 0.001 | 0.242 | 42.99% | 26.90% | 1.60 |
Mef2c(MADS) | Minichromosome maintenance 1, agamous, deficiens, serum response factor | 0.01 | 1 | 45.45% | 12.37% | 3.67 | ZBTB18(Zf) | Zinc-finger protein | 0.01 | 0.632 | 35.51% | 22.29% | 1.59 |
TF motif enrichment in hypermethylated genes TF motif enrichment in hypermethylated genes | EHF(ETS) | E twenty six | 0.01 | 0.632 | 63.55% | 48.63% | 1.31 | ||||||
ATHB33(ZFHD) | zinc finger homo domain | 0.01 | 0.632 | 47.66% | 33.29% | 1.43 | |||||||
OCT4-SOX2-TCF-NANOG | Stem cell pluripotency regulatory factors | 0.01 | 0.632 | 12.15% | 4.69% | 2.59 | |||||||
Tcf12(bHLH) | Basic helix loop helix | 0.01 | 0.632 | 56.07% | 42.13% | 1.33 | |||||||
AT2G15740(C2H2) | C2H2 zinc finger domain | 0.01 | 0.632 | 31.78% | 20.22% | 1.57 | |||||||
EWS:FLI1-fusion(ETS) | E twenty six | 0.01 | 0.632 | 36.45% | 24.42% | 1.49 | |||||||
IRF3(IRF) | Interferon Regulatory Family | 0.01 | 0.632 | 19.63% | 10.55% | 1.86 | |||||||
IRF1(IRF) | Interferon Regulatory Family | 0.01 | 0.632 | 11.21% | 4.59% | 2.44 | |||||||
ISRE(IRF) | Interferon Regulatory Family | 0.01 | 0.632 | 6.54% | 1.87% | 3.50 | |||||||
Mef2b(MADS) | Minichromosome maintenance 1, agamous, deficiens, serum response factor | 0.01 | 0.632 | 34.58% | 23.01% | 1.50 | |||||||
Ascl2(bHLH) | Basic helix loop helix | 0.01 | 0.632 | 63.55% | 50.63% | 1.26 | |||||||
ETS:RUNX (ETS, Runt) | E twenty six | 0.01 | 0.632 | 10.28% | 4.14% | 2.48 | |||||||
HEB(bHLH) | Basic helix loop helix | 0.01 | 0.632 | 82.24% | 70.92% | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monestime, O.; Davis, B.A.; Layman, C.; Wheeler, K.J.; Hack, W.; Zweig, J.A.; Soumyanath, A.; Carbone, L.; Gray, N.E. Peripheral Blood DNA Methylation Changes in Response to Centella asiatica Treatment in Aged Mice. Biology 2025, 14, 52. https://doi.org/10.3390/biology14010052
Monestime O, Davis BA, Layman C, Wheeler KJ, Hack W, Zweig JA, Soumyanath A, Carbone L, Gray NE. Peripheral Blood DNA Methylation Changes in Response to Centella asiatica Treatment in Aged Mice. Biology. 2025; 14(1):52. https://doi.org/10.3390/biology14010052
Chicago/Turabian StyleMonestime, Olivia, Brett A. Davis, Cora Layman, Kandace J. Wheeler, Wyatt Hack, Jonathan A. Zweig, Amala Soumyanath, Lucia Carbone, and Nora E. Gray. 2025. "Peripheral Blood DNA Methylation Changes in Response to Centella asiatica Treatment in Aged Mice" Biology 14, no. 1: 52. https://doi.org/10.3390/biology14010052
APA StyleMonestime, O., Davis, B. A., Layman, C., Wheeler, K. J., Hack, W., Zweig, J. A., Soumyanath, A., Carbone, L., & Gray, N. E. (2025). Peripheral Blood DNA Methylation Changes in Response to Centella asiatica Treatment in Aged Mice. Biology, 14(1), 52. https://doi.org/10.3390/biology14010052