Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Characterization of Physico-Chemical Properties
2.3. Environmental DNA Extraction
2.4. 16S rRNA Gene Amplification and Sequencing
2.5. Preprocessing and Taxonomical Classification
2.6. Diversity and Core Microbiome Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties of Lake Urmia
3.2. Microbiome Analysis
3.3. Coverage Analysis
3.4. Taxonomic Profiling Based on 16S rRNA Gene Sequences
3.5. Distribution of Bacterial Genera
3.6. Alpha Diversity
3.7. Dominance and Rarity Analysis
3.8. Beta Diversity Analysis
3.9. Principle Component Analysis of Physico-Chemical Properties and Bacterial Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, H.; Dong, H.; Ji, S.; Ye, Y.; Wu, N. Microbial diversity in the deep marine sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiol. J. 2007, 24, 505–517. [Google Scholar] [CrossRef]
- Makhdoumi-Kakhki, A.; Amoozegar, M.; Bagheri, M.; Ramezani, M.; Ventosa, A. Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. Int. J. Syst. Evol. Microbiol. 2012, 62, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Baati, H.; Amdouni, R.; Gharsallah, N.; Sghir, A.; Ammar, E. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr. Microbiol. 2010, 60, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Asem, A.; Eimanifar, A.; Djamali, M.; De los Rios, P.; Wink, M. Biodiversity of the hypersaline Urmia Lake national park (NW Iran). Diversity 2014, 6, 102–132. [Google Scholar] [CrossRef]
- Kashi, F.J.; Owlia, P.; Amoozegar, M.A.; Yakhchali, B.; Kazemi, B. Diversity of cultivable microorganisms in the eastern part of Urmia salt lake, Iran. J. Microbiol. Biotechnol. Food Sci. 2014, 1. [Google Scholar]
- Litchfield, C.; Gillevet, P. Microbial diversity and complexity in hypersaline environments: A preliminary assessment. J. Ind. Microbiol. Biotechnol. 2002, 28, 48–55. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 2001, 5, 73–83. [Google Scholar] [CrossRef]
- Zeglin, L.H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 2015, 6, 454. [Google Scholar] [CrossRef]
- Haghi, M.; Diznabi, S.H.; Karaboz, I.; Ersoy Omeroglu, E. Arsenic pollution and arsenic-resistant bacteria of drying Urmia Salt Lake. Front. Environ. Sci. 2023, 11, 1195643. [Google Scholar] [CrossRef]
- Hullar, M.A.; Kaplan, L.A.; Stahl, D.A. Recurring seasonal dynamics of microbial communities in stream habitats. Appl. Environ. Microbiol. 2006, 72, 713–722. [Google Scholar] [CrossRef]
- Bucci, J.P.; Szempruch, A.J.; Caldwell, J.M.; Ellis, J.C.; Levine, J.F. Seasonal changes in microbial community structure in freshwater stream sediment in a North Carolina river basin. Diversity 2014, 6, 18–32. [Google Scholar] [CrossRef]
- Korlević, M.; Markovski, M.; Zhao, Z.; Herndl, G.J.; Najdek, M. Seasonal dynamics of epiphytic microbial communities on marine macrophyte surfaces. Front. Microbiol. 2021, 12, 671342. [Google Scholar] [CrossRef] [PubMed]
- Vavourakis, C.D.; Ghai, R.; Rodriguez-Valera, F.; Sorokin, D.Y.; Tringe, S.G.; Hugenholtz, P.; Muyzer, G. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front. Microbiol. 2016, 7, 211. [Google Scholar] [CrossRef]
- Paruch, L.; Paruch, A.M.; Eiken, H.G.; Skogen, M.; Sørheim, R. Seasonal dynamics of lotic bacterial communities assessed by 16S rRNA gene amplicon deep sequencing. Sci. Rep. 2020, 10, 16399. [Google Scholar] [CrossRef]
- Naghoni, A.; Emtiazi, G.; Amoozegar, M.A.; Cretoiu, M.S.; Stal, L.J.; Etemadifar, Z.; Shahzadeh Fazeli, S.A.; Bolhuis, H. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci. Rep. 2017, 7, 11522. [Google Scholar] [CrossRef]
- Benlloch, S.; Acinas, S.; Antón, J.; López-López, A.; Luz, S.; Rodríguez-Valera, F. Archaeal biodiversity in crystallizer ponds from a solar saltern: Culture versus PCR. Microb. Ecol. 2001, 41, 12–19. [Google Scholar] [CrossRef]
- Mizrahi-Man, O.; Davenport, E.R.; Gilad, Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS ONE 2013, 8, e53608. [Google Scholar] [CrossRef]
- Liland, K.H.; Vinje, H.; Snipen, L. microclass: An R-package for 16S taxonomy classification. BMC Bioinform. 2017, 18, 172. [Google Scholar] [CrossRef]
- Love, M.; Anders, S.; Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014, 15, 10–1186. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Liu, L.; Yang, J.; Yu, X.; Chen, G.; Yu, Z. Patterns in the composition of microbial communities from a subtropical river: Effects of environmental, spatial and temporal factors. PLoS ONE 2013, 8, e81232. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Wu, X.; Wang, X.; Wei, Q.; Ma, S.; Sun, G.; Zhang, H.; Wang, L.; Dou, H.; Zhang, H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci. Total Environ. 2022, 805, 150294. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.A.; Leff, L.G. Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA). Microb. Ecol. 2007, 54, 374–383. [Google Scholar] [CrossRef]
- Mondal, I.; Bandyopadhyay, J.; Paul, A.K. Water quality modeling for seasonal fluctuation of Ichamati river, West Bengal, India. Model. Earth Syst. Environ. 2016, 2, 113. [Google Scholar] [CrossRef]
- Hopkins, G.R.; Brodie, E.D., Jr. Occurrence of amphibians in saline habitats: A review and evolutionary perspective. Herpetol. Monogr. 2015, 29, 1–27. [Google Scholar] [CrossRef]
- Hagens, M.; Slomp, C.P.; Meysman, F.; Seitaj, D.; Harlay, J.; Borges, A.V.; Middelburg, J.J. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences 2015, 12, 1561–1583. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Huang, Y.; Gao, X. Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors. Environ. Sci. Pollut. Res. 2017, 24, 6746–6756. [Google Scholar] [CrossRef]
- Tamot, S.; Sharma, P. Physico-chemical status of upper lake (Bhopal, India) water quality with special reference to phosphate and nitrate concentration and their impact on lake ecosystem. Asian J. Exp. Sci. 2006, 20, 151–158. [Google Scholar]
- Kheiri, R.; Mehrshad, M.; Pourbabaee, A.A.; Ventosa, A.; Amoozegar, M.A. Hypersaline Lake Urmia: A potential hotspot for microbial genomic variation. Sci. Rep. 2023, 13, 374. [Google Scholar] [CrossRef]
- Esmaeili Dahesht, L.; Negarestan, H.; Eimanifar, A.; Mohebbi, F.; Ahmadi, R. The fluctuations of physicochemical factors and phytoplankton populations of Urmia Lake, Iran. Iran. J. Fish. Sci. 2010, 9, 361–381. [Google Scholar]
- Kumar, P.S.; Thomas, J. Seasonal distribution and population dynamics of limnic microalgae and their association with physico-chemical parameters of river Noyyal through multivariate statistical analysis. Sci. Rep. 2019, 9, 15021. [Google Scholar] [CrossRef] [PubMed]
- Barrett, K.L. Microbialite Communities and Food Web Linkages in Great Salt Lake, Utah, USA; University of Notre Dame: Notre Dame, IN, USA, 2021. [Google Scholar]
- Sinclair, L.; Osman, O.A.; Bertilsson, S.; Eiler, A. Microbial community composition and diversity via 16S rRNA gene amplicons: Evaluating the illumina platform. PLoS ONE 2015, 10, e0116955. [Google Scholar] [CrossRef] [PubMed]
- Shilei, Z.; Yue, S.; Tinglin, H.; Ya, C.; Xiao, Y.; Zizhen, Z.; Yang, L.; Zaixing, L.; Jiansheng, C.; Xiao, L. Reservoir water stratification and mixing affects microbial community structure and functional community composition in a stratified drinking reservoir. J. Environ. Manag. 2020, 267, 110456. [Google Scholar] [CrossRef] [PubMed]
- Carré-Mlouka, A. Shaping Microbial Communities in Changing Environments: The Paradigm of Solar Salterns. In Extreme Environments; CRC Press: Boca Raton, FL, USA, 2021; pp. 198–216. [Google Scholar]
- Hellweger, F.L. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ. Microbiol. 2009, 11, 1386–1394. [Google Scholar] [CrossRef]
- Dyall-Smith, M.L.; Pfeiffer, F.; Klee, K.; Palm, P.; Gross, K.; Schuster, S.C.; Rampp, M.; Oesterhelt, D. Haloquadratum walsbyi: Limited diversity in a global pond. PLoS ONE 2011, 6, e20968. [Google Scholar] [CrossRef]
- Brickwedde, A.; van den Broek, M.; Geertman, J.-M.A.; Magalhães, F.; Kuijpers, N.G.; Gibson, B.; Pronk, J.T.; Daran, J.-M.G. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in Saccharomyces pastorianus lager brewing yeast. Front. Microbiol. 2017, 8, 1690. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Li, F.; Wang, S.; He, Q.; Zhang, W.; Guo, D.; Zhang, Y.; Hai, W.; Sun, Y.; Dong, H.; Hou, W. Minerals determined a special ecological niche and selectively enriched microbial species from bulk water communities in hot springs. Microorganisms 2021, 9, 1020. [Google Scholar] [CrossRef]
- Horner-Devine, M.C.; Lage, M.; Hughes, J.B.; Bohannan, B.J. A taxa–area relationship for bacteria. Nature 2004, 432, 750–753. [Google Scholar] [CrossRef]
- Nugent, A.; Allison, S.D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 2022, 13, e3968. [Google Scholar] [CrossRef]
- Vahed, S.Z.; Forouhandeh, H.; Hassanzadeh, S.; Klenk, H.-P.; Hejazi, M.A.; Hejazi, M.S. Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiology 2011, 80, 834–841. [Google Scholar] [CrossRef]
- Le Borgne, S.; Paniagua, D.; Vazquez-Duhalt, R. Biodegradation of organic pollutants by halophilic bacteria and archaea. J. Mol. Microbiol. Biotechnol. 2008, 15, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Johnston, E.L.; Roberts, D.A. Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environ. Pollut. 2009, 157, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdallah, M.; Chamkha, M.; Karray, F.; Sayadi, S. Microbial diversity in polyextreme salt flats and their potential applications. Environ. Sci. Pollut. Res. 2024, 31, 11371–11405. [Google Scholar] [CrossRef]
- Yin, S.; Wang, C.; Abalos, D.; Guo, Y.; Pang, X.; Tan, C.; Zhou, Z. Seasonal response of soil microbial community structure and life history strategies to winter snow cover change in a temperate forest. Sci. Total Environ. 2024, 949, 175066. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, W.; Wang, P.; Teuling, A.J.; Zhu, Y. Spatial-temporal variations and drivers of the compound dry-hot event in China. Atmos. Res. 2024, 299, 107160. [Google Scholar] [CrossRef]
- Yu, Z.; Liang, K.; Huang, G.; Wang, X.; Lin, M.; Chen, Y.; Zhou, Z. Soil bacterial community shifts are driven by soil nutrient availability along a teak plantation chronosequence in tropical forests in China. Biology 2021, 10, 1329. [Google Scholar] [CrossRef]
- Xia, F.; Zhao, Z.; Niu, X.; Liu, F.; Hu, B. Modelling of soil environmental quality and early warning of integrated ecological risk. Environ. Pollut. 2024, 342, 123103. [Google Scholar] [CrossRef]
- Ferrera, I.; Auladell, A.; Balagué, V.; Reñé, A.; Garcés, E.; Massana, R.; Gasol, J.M. Seasonal and interannual variability of the free-living and particle-associated bacteria of a coastal microbiome. Environ. Microbiol. Rep. 2024, 16, e13299. [Google Scholar] [CrossRef]
- Karlicki, M.; Bednarska, A.; Halakuc, P.; Maciszewski, K.; Karnkowska, A. Seasonal dynamics and drivers of microbial communities in a temperate dimictic lake: Insights from metabarcoding and machine learning. bioRxiv 2024. 2024.2001.2012.575328. [Google Scholar] [CrossRef]
- Ionescu, D.; Zoccarato, L.; Cabello-Yeves, P.J.; Tikochinski, Y. Extreme fluctuations in ambient salinity select for bacteria with a hybrid “salt-in”/“salt-out” osmoregulation strategy. Front. Microbiomes 2024, 2, 1329925. [Google Scholar] [CrossRef]
- Di Bella, J.M.; Bao, Y.; Gloor, G.B.; Burton, J.P.; Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 2013, 95, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Gregory Caporaso, J.; Handelsman, J.; Knight, R.; Fierer, N. A meta-analysis of changes in bacterial and archaeal communities with time. ISME J. 2013, 7, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, Y.; Zhu, D.; Xing, J.; Long, Q.; Shen, G. Prokaryotic microbial diversity analysis and metabolic function prediction of salt lakes on the Qinghai-Tibet Plateau. bioRxiv 2023. 2023.2008.2010.552822. [Google Scholar] [CrossRef]
- Litchman, E.; Edwards, K.F.; Klausmeier, C.A. Microbial resource utilization traits and trade-offs: Implications for community structure, functioning, and biogeochemical impacts at present and in the future. Front. Microbiol. 2015, 6, 254. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Zeng, Y.-H.; Zhu, J.-M.; Cai, Z.-H.; Zhou, J. The structure and assembly mechanisms of plastisphere microbial community in natural marine environment. J. Hazard. Mater. 2022, 421, 126780. [Google Scholar] [CrossRef]
- Şahin Doğan, S.; Kocabaş, A. Seasonal dynamics of eukaryotic microbial diversity in hypersaline Tuz Lake characterized by 18S rDNA sequencing. J. Eukaryot. Microbiol. 2023, 70, e12993. [Google Scholar]
- Bryanskaya, A.V.; Shipova, A.A.; Rozanov, A.S.; Kolpakova, O.A.; Lazareva, E.V.; Uvarova, Y.E.; Efimov, V.M.; Zhmodik, S.M.; Taran, O.P.; Goryachkovskaya, T.N. Diversity and metabolism of microbial communities in a hypersaline lake along a geochemical gradient. Biology 2022, 11, 605. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Nawaz, M.Z.; Mahboob, S.; Al-Ghanim, K.A.; Khan, I.A.; Lu, Z.; Chen, T. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu. Sci. Total Environ. 2019, 669, 29–40. [Google Scholar] [CrossRef]
- Ren, Z.; Qu, X.; Zhang, M.; Yu, Y.; Peng, W. Distinct bacterial communities in wet and dry seasons during a seasonal water level fluctuation in the largest freshwater lake (Poyang Lake) in China. Front. Microbiol. 2019, 10, 1167. [Google Scholar] [CrossRef]
- Shen, J.; Liu, H.; Zhou, H.; Chen, R. Specific characteristics of the microbial community in the groundwater fluctuation zone. Environ. Sci. Pollut. Res. 2022, 29, 76066–76077. [Google Scholar] [CrossRef]
- Lak, R.; Mohammadi, A.; Darvishi Khatooni, J. Lake Urmia brine evolution from 2007 to 2019. In Lake Urmia: A Hypersaline Waterbody in a Drying Climate; Springer: Cham, Switzerland, 2022; pp. 243–265. [Google Scholar]
Parameter | Autumn | Winter | Spring | Summer |
---|---|---|---|---|
EC (ms/cm) | 491.2 ± 10.2 a 1 | 226.5 ± 16.45 c | 215 ± 3 c | 348.2 ± 60.3 b |
PH (mg/L) | 7.08 ± 0.11 b | 7.73 ± 0.12 a | 7.6 ± 0.26 a | 7.14 ± 0.16 b |
TDS (mg/L) | 410.4 ± 17.1 a | 315.3 ± 4.8 b | 306.5 ± 6.06 b | 406.3 ± 90.3 a |
Sodium (Na+) (mg/L) | 58,918.9 ± 3710 c | 72,252.9 ± 1641.9 ab | 79,337.8 ± 1697.8 a | 70,417.7 ± 7298.3 b |
Calcium (Ca2+) (mg/L) | 137.7 ± 48.4 a | 179.03 ± 44.5 a | 271.1 ± 94.0 a | 185.5 ± 98.4 a |
Magnesium (Mg2+) (mg/L) | 34,717.7 ± 4166.1 a | 14,245.3 ± 79.7 c | 17,678.06 ± 1409.8 c | 24,570.5 ± 5407.6 b |
Potassium (K+) (mg/L) | 6950.6 ± 507.5 a | 3150.2 ± 180.4 c | 3435.9 ± 381.2 c | 5854.9 ± 836.7 b |
Chloride (Cl−) (mg/L) | 201,167.2 ± 5422.6 a | 195,508.3 ± 16,485.6 a | 214,775.2 ± 6400.1 a | 200,871.1 ± 22,104.2 a |
Sulfate (SO42−) (mg/L) | 42,179.4 ± 840.1 a | 21,229.7 ± 1733.7 c | 23,162.1 ± 1017.4 c | 36,727.8 ± 4931.1 b |
Phosphate (PO43−) (mg/L) | 0.26 ± 0.04 a | 0.163 ± 0.05 b | 0.193 ± 0.015 b | 0.27 ± 0.03 a |
Nitrate (NO3−) (mg/L) | 67.1 ± 5.7 a | 26.73 ± 3.5 b | 32.43 ± 5.03 b | 57.6 ± 13.9 a |
Season | Observed Species | Shannon | Simpson | InvSimpson |
---|---|---|---|---|
Autumn | 71 | 1.835828 | 0.7748228 | 4.440946 |
Winter | 72 | 1.516104 | 0.7320779 | 3.732428 |
Spring | 37 | 1.566810 | 0.7538326 | 4.062276 |
Summer | 26 | 1.664539 | 0.7877350 | 4.711091 |
dbp | dmn | Absolute | Relative | Simpson | Core_Abundance | Gini | |
---|---|---|---|---|---|---|---|
Autumn | 0.323 | 0.616 | 38652 | 0.323 | 0.225 | 0.908 | 0.957 |
Winter | 0.358 | 0.665 | 65596 | 0.358 | 0.268 | 0.989 | 0.968 |
Spring | 0.359 | 0.604 | 60179 | 0.359 | 0.246 | 0.995 | 0.967 |
Summer | 0.288 | 0.532 | 27542 | 0.288 | 0.212 | 0.994 | 0.963 |
Camargo | Pielou | Simpson | Evar | Bulla | |
---|---|---|---|---|---|
Autumn | 0.068966 | 0.430675 | 0.062549 | 0.085036 | 0.140339 |
Winter | 0.049963 | 0.354506 | 0.051839 | 0.091282 | 0.081367 |
Spring | 0.176623 | 0.433909 | 0.109791 | 0.051493 | 0.143565 |
Summer | 0.231554 | 0.510893 | 0.181196 | 0.04837 | 0.206026 |
Autumn | Winter | Spring | Summer | |
---|---|---|---|---|
Autumn | - | 0.28351291 | 0.24116225 | 0.24343426 |
Winter | 0.28351291 | - | 0.08281522 | 0.35045450 |
Spring | 0.24116225 | 0.08281522 | - | 0.29444537| |
Summer | 0.24343426 | 0.35045450 | 0.29444537| | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salami, R.; Saidi, A.; Hejazi, M.A.; Panahi, B.; Hamid, R. Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem. Biology 2025, 14, 75. https://doi.org/10.3390/biology14010075
Salami R, Saidi A, Hejazi MA, Panahi B, Hamid R. Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem. Biology. 2025; 14(1):75. https://doi.org/10.3390/biology14010075
Chicago/Turabian StyleSalami, Robab, Abbas Saidi, Mohammad Amin Hejazi, Bahman Panahi, and Rasmieh Hamid. 2025. "Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem" Biology 14, no. 1: 75. https://doi.org/10.3390/biology14010075
APA StyleSalami, R., Saidi, A., Hejazi, M. A., Panahi, B., & Hamid, R. (2025). Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem. Biology, 14(1), 75. https://doi.org/10.3390/biology14010075