Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review
Simple Summary
Abstract
1. Introduction
2. Oxidative Stress
2.1. Oxidative System
2.2. Antioxidative System
2.3. Effects of Oxidative Stress on Aquatic Organisms
2.3.1. Major Causes of Oxidative Stress in Aquatic Organisms
- (1)
- Environmental Pollution:
- (2)
- Climate Change:
- (3)
- Changes in Water Quality:
2.3.2. Harmful Effects of Oxidative Stress on Aquatic Organisms
- (1)
- Cellular and Tissue Damage:
- (2)
- Fluctuations in Antioxidant Enzyme Activity:
- (3)
- Impairment of Physiological Functions:
- (4)
- Negative Effects of Environmental Pollutants:
3. Natural Antioxidants
3.1. Carotenoids: Mechanisms, Applications, and Aquaculture Relevance
3.1.1. Sources and Extraction of Astaxanthin
3.1.2. Functions and Mechanisms of Astaxanthin
3.1.3. Applications of Astaxanthin in Aquaculture
3.1.4. Future Prospects of Astaxanthin in Aquaculture
3.2. Polysaccharides: Antioxidative Functions and Practical Applications
3.2.1. Functions and Extraction of Plant Polysaccharides
3.2.2. Antioxidative Activity and Mechanisms of Plant Polysaccharides
3.2.3. Applications of Plant Polysaccharides as Food Additives in Aquaculture
3.3. The Vitamin Family: Oxidative Stress Mitigation and Nutritional Applications
3.3.1. Vitamins and Their Critical Roles in Nutrients and Health
3.3.2. Mechanisms of Action of Different Vitamins
- Participation in Enzymatic Reactions as Coenzymes or Cofactors
- Antioxidant Effects
- Maintenance of Cellular Structure and Function
- Regulation of Gene Expression
- Immune Modulation
3.3.3. Application of Vitamin Antioxidative Properties in Aquaculture
3.4. Polyphenols: Molecular Mechanisms and Aquaculture Benefits
3.4.1. Introduction to Polyphenols
3.4.2. Extraction Methods of Resveratrol
3.4.3. Antioxidative Properties of Resveratrol
3.4.4. Application of Resveratrol as a Feed Additive
3.5. Flavonoids: Multifunctional Antioxidants in Health and Aquaculture
3.5.1. Extraction and Functions of Flavonoids
3.5.2. Antioxidative Activity and Mechanisms of Flavonoids
3.5.3. Specific Applications of Flavonoids
3.5.4. Future Prospects and Challenges of Flavonoids
3.6. Analytical Techniques for Antioxidants: Advanced Methods and Applications
- (1).
- High-Performance Liquid Chromatography (HPLC) and LC-MS/MS
- (2).
- Electron Paramagnetic Resonance (EPR) Spectroscopy
- (3).
- Enzymatic Antioxidant Activities
- (4).
- Non-Enzymatic Antioxidants
- (5).
- Oxidative Stress Biomarkers
4. Future Prospects of Natural Antioxidants in Aquatic-Product-Related Fields
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bal, A.; Panda, F.; Pati, S.G.; Das, K.; Agrawal, P.K.; Paital, B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 241, 108971. [Google Scholar] [CrossRef]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.R.; Crooks, K.R.; Fristrup, K.M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 2010, 25, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Lin, T.H.; Anraku, K.; Shao, Y.T. The Effects of Continuous Acoustic Stress on ROS Levels and Antioxidant-related Gene Expression in the Black Porgy (Acanthopagrus schlegelii). Zool. Stud. 2018, 57, e59. [Google Scholar] [PubMed]
- Guh, Y.-J.; Tseng, Y.-C.; Shao, Y.-T. To cope with a changing aquatic soundscape: Neuroendocrine and antioxidant responses to chronic noise stress in fish. Gen. Comp. Endocrinol. 2021, 314, 113918. [Google Scholar] [CrossRef] [PubMed]
- Filiciotto, F.; Cecchini, S.; Buscaino, G.; Maccarrone, V.; Piccione, G.; Fazio, F. Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream Sparus aurata (Linnaeus, 1758) juveniles. Aquac. Res. 2016, 48, 1895–1903. [Google Scholar] [CrossRef]
- Shar, F.; Arain, M.; Rajput, N.; Alagawany, M.; Soomro, J.; Chhalgari, M.U.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health benefits of carotenoids and potential application in poultry industry: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1809–1818. [Google Scholar]
- Elżbieta, S.; Cieslik, E.; Topolska, K. The sources of natural antioxidants. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–17. [Google Scholar]
- Toner, C. Consumer Perspectives about Antioxidants. J. Nutr. 2004, 134, 3192S–3193S. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P.; Stress, O. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Secci, G.; Parisi, G. From farm to fork: Lipid oxidation in fish products. A review. Ital. J. Anim. Sci. 2016, 15, 124–136. [Google Scholar] [CrossRef]
- Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 2011, 35, 1366–1375. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.; Rhie, S.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325. [Google Scholar] [CrossRef]
- Rivera-Madrid, R.; Carballo-Uicab, V.M.; Cárdenas-Conejo, Y.; Aguilar-Espinosa, M.; Siva, R. 1—Overview of carotenoids and beneficial effects on human health. In Carotenoids: Properties, Processing and Applications; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1–40. [Google Scholar]
- Brewer, M.S. Natural Antioxidants: Source, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Li, J.; Ran, X.; Zhou, M.; Wang, K.; Wang, H.; Wang, Y. Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: A review. Sci. Total Environ. 2022, 838, 156454. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, N.; Vetoshkina, D.; Merenkova, T.; Borisova-Mubarakshina, M. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants 2023, 12, 2014. [Google Scholar] [CrossRef]
- Livingstone, D.R. Contaminant-stimulated Reactive Oxygen Species Production and Oxidative Damage in Aquatic Organisms. Mar. Pollut. Bull. 2001, 42, 656–666. [Google Scholar] [CrossRef] [PubMed]
- Dey, K.K.; Kamila, S.; Das, T.; Chattopadhyay, A. Lead induced genotoxicity and hepatotoxicity in zebrafish (Danio rerio) at environmentally relevant concentration: Nrf2-Keap1 regulated stress response and expression of biomarker genes. Environ. Toxicol. Pharmacol. 2024, 107, 104396. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Kumar, S.; Mukherjee, M.; Chakraborty, S.B. Delineating involvement of MAPK/NF-κB pathway during mitigation of permethrin-induced oxidative damage in fish gills by melatonin. Environ. Toxicol. Pharmacol. 2023, 104, 104312. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yao, B.; Sun, J.; Bi, C.; Lu, Y.; Yan, Z.; Li, Y.; Lv, W. Bacillus subtilis and xylo-oligosaccharide ameliorates NaHCO3-induced intestinal barrier dysfunction and autophagy by regulating intestinal microflora and PI3K/Akt pathway of crucian carp (Carassius auratus). Aquac. Rep. 2024, 36, 102048. [Google Scholar] [CrossRef]
- Nakajima, H.; Nakajima-Takagi, Y.; Tsujita, T.; Akiyama, S.I.; Wakasa, T.; Mukaigasa, K.; Kaneko, H.; Tamaru, Y.; Yamamoto, M.; Kobayashi, M. Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles. PLoS ONE 2011, 6, e26884. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cha, Y.-N.; Surh, Y.-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2010, 690, 12–23. [Google Scholar] [CrossRef]
- Csukas, S.; Costarides, A.P.; Riley, M.V.; Green, K. Hydrogen peroxide in the rabbit anterior chamber: Effects on glutathione, and catalase effects on peroxide kinetics. Curr. Eye Res. 1987, 6, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, H.S.; Moosavi-Movahedi, A.A. Catalase and its mysteries. Prog. Biophys. Mol. Biol. 2018, 140, 5–12. [Google Scholar] [CrossRef]
- Li, Y.; Fu, R.; Duan, Z.; Zhu, C.; Fan, D. Artificial Nonenzymatic Antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a Mild Photothermal-Controlled Oxygen Release Platform for Diabetic Wound Healing. ACS Nano 2022, 16, 7486–7502. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhang, P.; Liu, J.; Wang, N.; Shang, X.; Zhang, Y.; Li, Y. Amelioration of Cd-Induced Oxidative Stress, MT Gene Expression, and Immune Damage by Vitamin C in Grass Carp Kidney Cells. Biol. Trace Elem. Res. 2020, 194, 552–559. [Google Scholar] [CrossRef]
- Livingstone, D.R. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev. De Med. Vet. 2003, 154, 427–430. [Google Scholar]
- Fabry, V.J.; Seibel, B.A.; Feely, R.A.; Orr, J.C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 2008, 65, 414–432. [Google Scholar] [CrossRef]
- Du, S.N.N.; Mahalingam, S.; Borowiec, B.G.; Scott, G.R. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus). J. Exp. Biol. 2016, 219, 1130–1138. [Google Scholar] [CrossRef]
- Tomasso, J.R. Toxicity of nitrogenous wastes to aquaculture animals. Rev. Fish. Sci. 1994, 2, 291–314. [Google Scholar] [CrossRef]
- Xu, Z.; Cao, J.; Qin, X.; Qiu, W.; Mei, J.; Xie, J. Toxic Effects on Bioaccumulation, Hematological Parameters, Oxidative Stress, Immune Responses and Tissue Structure in Fish Exposed to Ammonia Nitrogen: A Review. Animals 2021, 11, 3304. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Z.; Song, Z.; Xiao, P.; Liu, Y.; Zhang, P.; You, F. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus. Fish Shellfish Immunol. 2016, 58, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Mai, W.-J.; Yan, J.-L.; Wang, L.; Zheng, Y.; Xin, Y.; Wang, W.-N. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells. Aquat. Toxicol. 2010, 100, 271–281. [Google Scholar] [CrossRef]
- Sreejai, R.; Jaya, D.S. Studies on the changes in lipid peroxidation and antioxidants in fishes exposed to hydrogen sulfide. Toxicol. Int. 2010, 17, 71–77. [Google Scholar] [PubMed]
- Eyckmans, M.; Celis, N.; Horemans, N.; Blust, R.; De Boeck, G. Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat. Toxicol. 2011, 103, 112–120. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Yousefi, S.; Doan, H.; Ashouri, G.; Gioacchini, G.; Maradonna, F.; Carnevali, O. Oxidative Stress and Antioxidant Defense in Fish: The Implications of Probiotic, Prebiotic, and Synbiotics. Rev. Fish. Sci. Aquac. 2021, 29, 1–20. [Google Scholar] [CrossRef]
- Craig, P.M.; Wood, C.M.; McClelland, G.B. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1882–R1892. [Google Scholar] [CrossRef]
- Tramboo, S.M.; Yousuf, A.R.; Akbar, S.J.T.; Chemistry, E. Oxidative stress-inducing potential of butachlor in a freshwater fish, Cyprinus carpio (L). Toxicol. Environ. Chem. 2011, 93, 285–295. [Google Scholar] [CrossRef]
- Chowdhury, S.S.; Saikia, S.K. Oxidative Stress in Fish: A Review. J. Sci. Res. 2020, 12, 145–160. [Google Scholar] [CrossRef]
- Long, S.; You, Y.; Dong, X.; Tan, B.; Zhang, S.; Chi, S.; Yang, Q.; Liu, H.; Xie, S.; Yang, Y.; et al. Effect of dietary oxidized fish oil on growth performance, physiological homeostasis and intestinal microbiome in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus). Aquac. Rep. 2022, 24, 101130. [Google Scholar] [CrossRef]
- Kovacik, A. Oxidative Stress in Fish induced by Environmental Pollutants. Sci. Pap. Anim. Sci. Biotechnol. 2017, 50, 121–125. [Google Scholar]
- Chitra, K.C.; Sajitha, R. Effect of Bisphenol-A on the Antioxidant Defense System and Its Impact on the Activity of Succinate Dehydrogenase in the Gill of Freshwater Fish, Oreochromis Mossambicus. J. Cell Tissue Res. 2014, 14, 4219–4226. [Google Scholar]
- Kulawik, P.; Özogul, F.; Glew, R.; Özogul, Y. Significance of Antioxidants for Seafood Safety and Human Health. J. Agric. Food Chem. 2013, 61, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Britton, G.; Liaanen-Jensen, S.; Pfander, H. Carotenoids: Handbook; Birkhäuser Basel: Basel, Switzerland, 2004; pp. 433–460. [Google Scholar]
- Phillip, D.; Hobe, S.; Paulsen, H.; Molnar, P.; Hashimoto, H.; Young, A.J. The Binding of Xanthophylls to the Bulk Light-harvesting Complex of Photosystem II of Higher Plants: A Specific Requirement For Carotenoids With A 3-Hydroxy-Β-End Group*. J. Biol. Chem. 2002, 277, 25160–25169. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- Fujimori, E.; Livingston, R. Interactions of chlorophyll in its triplet state with oxygen, carotene, etc. Nature 1957, 180, 1036–1038. [Google Scholar] [CrossRef]
- Krinsky, N.I. Carotenoid Protection Against Oxidation. In Carotenoids °C5; Goodwin, T.W., Ed.; Pergamon: Bergama, Turkey, 1979; pp. 649–660. [Google Scholar]
- Ruth, E.; Truscott, T.J.A. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review. Antioxidants 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20. [Google Scholar] [CrossRef]
- Mularczyk, M.; Michalak, I.; Marycz, K. Astaxanthin and other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Mar. Drugs 2020, 18, 459. [Google Scholar] [CrossRef] [PubMed]
- Šimat, V.; Rathod, N.B.; Čagalj, M.; Hamed, I.; Mekinić, I.G. Astaxanthin from Crustaceans and Their Byproducts: A Bioactive Metabolite Candidate for Therapeutic Application. Mar. Drugs 2022, 20, 206. [Google Scholar] [CrossRef]
- Nakano, T.; Kanmuri, T.; Sato, M.; Takeuchi, M. Effect of astaxanthin rich red yeast (Phaffia rhodozyma) on oxidative stress in rainbow trout. Biochim. Biophys. Acta (BBA) Gen. Subj. 1999, 1426, 119–125. [Google Scholar] [CrossRef]
- Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources; Extraction; Stability, Biological Activities and Its Commercial Applications—A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, R.G. Vegetables; fruits, and carotenoids and the risk of cancer. Am. J. Clin. Nutr. 1991, 53, 251S–259S. [Google Scholar] [CrossRef]
- Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 1995, 9, 1551–1558. [Google Scholar] [CrossRef]
- Åke, L.; Johan, I. Agent for Increasing the Production of/in Breeding and Production Mammals, in Astacarotene Ab. WO1997035491A1, 2 October 1997. Available online: https://patents.google.com/patent/WO1997035491A1/en (accessed on 8 December 2024).
- March, B.E.; Hajen, W.E.; Deacon, G.; MacMillan, C.; Walsh, M.G. Intestinal absorption of astaxanthin, plasma astaxanthin concentration, body weight, and metabolic rate as determinants of flesh pigmentation in salmonid fish. Aquaculture 1990, 90, 313–322. [Google Scholar] [CrossRef]
- Jiang, J.; Nuez-Ortin, W.; Angell, A.; Zeng, C.; de Nys, R.; Vucko, M.J. Enhancing the colouration of the marine ornamental fish Pseudochromis fridmani using natural and synthetic sources of astaxanthin. Algal Res. 2019, 42, 101596. [Google Scholar] [CrossRef]
- Vassallo-Agius, R.; Watanabe, T.; Imaizumi, H.; Yamazaki, T.; Satoh, S.; Kiron, V.J. Effects of dry pellets containing astaxanthin and squid meal on the spawning performance of striped jack Pseudocaranx dentex. Fish. Sci. 2001, 67, 667–674. [Google Scholar] [CrossRef]
- Niu, J.; Tian, L.-X.; Liu, Y.-J.; Yang, H.-J.; Ye, C.-X.; Gao, W.; Mai, K.-S. Effect of Dietary Astaxanthin on Growth, Survival, and Stress Tolerance of Postlarval Shrimp, Litopenaeus vannamei, Journal of The World Aquaculture Society. J. World Aquacult. Soc. 2009, 40, 795–802. [Google Scholar] [CrossRef]
- Eldessouki, E.A.A.; Diab, A.M.; Selema, T.A.M.A.; Sabry, N.M.; Abotaleb, M.M.; Khalil, R.H.; El-Sabbagh, N.M.; Younis, N.A.; Abdel-Tawwab, M. Dietary astaxanthin modulated the performance, gastrointestinal histology, and antioxidant and immune responses and enhanced the resistance of Litopenaeus vannamei against Vibrio harveyi infection. Aquac. Int. 2022, 30, 1869–1887. [Google Scholar] [CrossRef]
- Lim, K.C.; Yusoff, F.M.; Shariff, M.; Kamarudin, M.S. Astaxanthin as feed supplement in aquatic animals. Rev. Aquac. 2018, 10, 738–773. [Google Scholar] [CrossRef]
- Li, M.; Wu, W.; Zhou, P.; Xie, F.; Zhou, Q.; Mai, K. Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea. Aquaculture 2014, 434, 227–232. [Google Scholar] [CrossRef]
- Nakano, T.; Wiegertjes, G. Properties of Carotenoids in Fish Fitness: A Review. Mar. Drugs 2020, 18, 568. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, D.; Niu, J.; Shen, S.; Wang, G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol. Adv. 2011, 29, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, X.; Yi, J.; Kang, Q.-Z.; Hao, L.; Lu, J. Cognition of polysaccharides from confusion to clarity: When the next “omic” will come? Crit. Rev. Food Sci. Nutr. 2021, 63, 4728–4743. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; He, Z.; Yang, J.; Feng, Y.; Xu, Y.; Wang, Y.; He, B.; Ma, K.; Zheng, Y.; et al. Effect of structural features on the antitumor activity of plant and microbial polysaccharides: A review. Food Biosci. 2024, 61, 104648. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Zhu, R.; Farag, M.A.; Capanoglu, E.; Zhao, C. Structural elucidation approaches in carbohydrates: A comprehensive review on techniques and future trends. Food Chem. 2023, 400, 134118. [Google Scholar] [CrossRef]
- Zhan, Q.; Chen, Y.; Guo, Y.; Wang, Q.; Wu, H.; Zhao, L. Effects of selenylation modification on the antioxidative and immunoregulatory activities of polysaccharides from the pulp of Rose laevigata Michx fruit. Int. J. Biol. Macromol. 2022, 206, 242–254. [Google Scholar] [CrossRef]
- Wu, H.-Q.; Ma, Z.-L.; Zhang, D.-X.; Wu, P.; Guo, Y.-H.; Yang, F.; Li, D.-Y.; Extraction, S. Characterization, and Analysis of Pumpkin Polysaccharides for Their Hypoglycemic Activities and Effects on Gut Microbiota in Mice. Front. Nutr. 2021, 8, 769181. [Google Scholar] [CrossRef]
- Niu, J.; Wang, S.; Wang, B.; Chen, L.; Zhao, G.; Liu, S.; Wang, S.; Wang, Z. Structure and anti-tumor activity of a polysaccharide from Bletilla ochracea Schltr. Int. J. Biol. Macromol. 2020, 154, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; An, L.; Wang, P.; Zhang, X.; Gao, W.; Li, X. Review of Astragalus membranaceus polysaccharides: Extraction process, structural features, bioactivities and applications. Chin. Herb. Med. 2024, in press. [Google Scholar] [CrossRef]
- Chen, T.; Xie, L.; Shen, M.; Yu, Q.; Chen, Y.; Xie, J. Recent advances in Astragalus polysaccharides: Structural characterization, bioactivities and gut microbiota modulation effects. Trends Food Sci. Technol. 2024, 153, 104707. [Google Scholar] [CrossRef]
- Shi, F.; Lu, Z.; Yang, M.; Li, F.; Zhan, F.; Zhao, L.; Li, Y.; Li, Q.; Li, J.; Li, J.; et al. Astragalus polysaccharides mediate the immune response and intestinal microbiota in grass carp (Ctenopharyngodon idellus). Aquaculture 2021, 534, 736205. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. The antiviral activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 115, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wen, L.; Zhao, Y.; Jiang, Y.; Tian, M.; Liu, H.; Liu, J.; Yang, B. Structure identification of an arabinogalacturonan in Citrus reticulata Blanco ‘Chachiensis’ peel. Food Hydrocoll. 2018, 84, 481–488. [Google Scholar] [CrossRef]
- Liu, X.; Ma, J.; Peng, P.; Zheng, W. Hydrothermal synthesis of cubic MnSe2 and octahedral α-MnSe microcrystals. J. Cryst. Growth 2009, 311, 1359–1363. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Lv, J.; Gu, Y.-J.; He, Y.; Chen, J.; Zhou, Z.; Ye, X. Polysaccharides of Chinese bayberry pomace wine: Structural characteristics, antioxidant activity and influence on the bayberry wine. Food Biosci. 2022, 50, 102025. [Google Scholar] [CrossRef]
- Mu, S.; Yang, W.; Huang, G. Antioxidant activities and mechanisms of polysaccharides. Chem. Biol. Drug Des. 2020, 97, 628–632. [Google Scholar] [CrossRef]
- Wang, F.; Lui, J.; Ye, Y.F.; Zhang, X.J.; Li, Z. Astragalus polysaccharides improved the cardiac function in Sjgren’s syndrome model rats based on keap 1-Nrf2/ARE signaling pathway: A mechanism exploration. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi Chin. J. Integr. Tradit. West. Med. 2014, 34, 566–574. [Google Scholar]
- Yue, C.; Chen, J.; Hou, R.; Tian, W.; Liu, K.; Wang, D.; Lu, Y.; Liu, J.; Wu, Y.; Hu, Y. The antioxidant action and mechanism of selenizing Schisandra chinensis polysaccharide in chicken embryo hepatocyte. Int. J. Biol. Macromol. 2017, 98, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, G. Extraction, characterization and antioxidant activities of pumpkin polysaccharide. Int. J. Biol. Macromol. 2018, 118, 770–774. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. Antioxidant activities of phosphorylated pumpkin polysaccharide. Int. J. Biol. Macromol. 2019, 125, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yang, Z.; Huang, L.; Zuo, S.; Li, X.; Li, J.; Jiang, W.; Wang, S.; Zhang, Y. Protective effects of pumpkin polysaccharide hydrolysates on oxidative stress injury and its potential mechanism—Antioxidant mechanism of pumpkin polysaccharide hydrolysates. Int. J. Biol. Macromol. 2023, 241, 124423. [Google Scholar] [CrossRef]
- Zhao, R.-H.; Yang, F.; Bai, Y.; Zhao, J.; Hu, M.; Zhang, X.-Y.; Dou, T.; Jia, J.-J. Research progress on the mechanisms underlying poultry immune regulation by plant polysaccharides. Front. Veter Sci. 2023, 10, 1175848. [Google Scholar] [CrossRef] [PubMed]
- Alem, W.T. Effect of herbal extracts in animal nutrition as feed additives. Heliyon 2024, 10, e24973. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhu, H.; Chen, D.; Yang, L.; Yang, F.; Pei, Q.; He, Y.; Zhang, X.; Qu, L.; Liu, T.; et al. Salvia miltiorrhiza polysaccharides enhance the antioxidant capacity and immune resistance of hybrid sturgeon (Acipenser baerii♀ × Acipenser schrenckii♂) against Streptococcus iniae infection. Aquac. Int. 2023, 31, 1911–1923. [Google Scholar] [CrossRef]
- Aqmasjed, S.B.; Sajjadi, M.M.; Falahatkar, B.; Safari, R. Effects of dietary ginger (Zingiber officinale) extract and curcumin on growth, hematology, immunity, and antioxidant status in rainbow trout (Oncorhynchus mykiss). Aquac. Rep. 2023, 32, 101714. [Google Scholar] [CrossRef]
- Sun, Y.; Meng, X.; Hu, X.; Liu, R.; Zhao, Z.; Wang, S.; Zhang, R.; Guo, K.; Luo, L. Dietary supplementation with Lycium barbarum polysaccharides conducive to maintaining the health of Luciobarbus capito via the enhancement of enzyme activities and the modulation of gut microbiota. Int. J. Biol. Macromol. 2023, 232, 123500. [Google Scholar] [CrossRef]
- Liu, H.; Fang, Y.; Zou, C. Pomelo polysaccharide extract inhibits oxidative stress, inflammation, and mitochondrial apoptosis of Epinephelus coioides. Aquaculture 2021, 544, 737040. [Google Scholar] [CrossRef]
- Mohan, K.; Ravichandran, S.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Seedevi, P.; Abirami, R.G.; Rajan, D.K. Application of marine-derived polysaccharides as immunostimulants in aquaculture: A review of current knowledge and further perspectives. Fish Shellfish Immunol. 2019, 86, 1177–1193. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.W.; Kari, Z.A.; Wee, W.; Van Doan, H.; Reduan, M.F.; Kabir, M.A.; Khoo, M.I.; Al-Amsyar, S.M.; Wei, L.S. The Roles of Polysaccharides in Carp Farming: A Review. Animals 2023, 13, 244. [Google Scholar] [CrossRef]
- Ringø, E.; Song, S.K. Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquac. Nutr. 2016, 22, 4–24. [Google Scholar] [CrossRef]
- Pham, V.T.; Dold, S.; Rehman, A.; Bird, J.K.; Steinert, R.E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 2021, 95, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Godswill, A.G.; Somtochukwu, I.V.; Ikechukwu, A.O.; Kate, E.C. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Youness, R.A.; Dawoud, A.; ElTahtawy, O.; Farag, M.A. Fat-soluble vitamins: Updated review of their role and orchestration in human nutrition throughout life cycle with sex differences. Nutr. Metab. 2022, 19, 60. [Google Scholar] [CrossRef]
- Olszewska, A.M.; Zmijewski, M.A. Genomic and non-genomic action of vitamin D on ion channels—Targeting mitochondria. Mitochondrion 2024, 77, 101891. [Google Scholar] [CrossRef]
- Kim, H.K.; Han, S.N. Vitamin E: Regulatory role on gene and protein expression and metabolomics profiles. IUBMB Life 2019, 71, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J. B Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J.; Dudash, H.J.; Docherty, M.; Geronilla, K.B.; Baker, B.A.; Haff, G.G.; Cutlip, R.G.; Alway, S.E. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp. Gerontol. 2010, 45, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.R.; Witting, P.K.; Stocker, R. 3-Hydroxyanthranilic Acid Is an Efficient, Cell-derived Co-antioxidant for α-Tocopherol, Inhibiting Human Low Density Lipoprotein and Plasma Lipid Peroxidation*. J. Biol. Chem. 1996, 271, 32714–32721. [Google Scholar] [CrossRef]
- Ross, A.C.; Restori, K.H. 8—Vitamin A and the immune system. In Diet, Immunity and Inflammation; Calder, P.C., Yaqoob, P., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 221–243. [Google Scholar]
- Prasad, K.N.; Edwards-Prasad, J.; Kumar, S.; Meyers, A. Vitamins regulate gene expression and induce differentiation and growth inhibition in cancer prevention. Arch. Otolaryngol. Head Neck Surg. 1993, 119, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; Von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, X.-F.; Tan, Q.; Yuan, X.; Liu, L.; Zhou, Y.; Li, B. Effects of vitamin E on growth performance and antioxidant status in juvenile grass carp Ctenopharyngodon idellus. Aquaculture 2014, 430, 21–27. [Google Scholar] [CrossRef]
- Zhu, C.; Ren, H.C.; Wu, Y.; Yang, S.; Fei, H. Benefits and applications of vitamin C in farmed aquatic animals: An updated review. Aquac. Int. 2023, 32, 1295–1315. [Google Scholar] [CrossRef]
- Asaikkutti, A.; Bhavan, P.S.; Vimala, K.; Karthik, M.; Cheruparambath, P. Effect of different levels dietary vitamin C on growth performance, muscle composition, antioxidant and enzyme activity of freshwater prawn, Macrobrachium malcolmsonii. Aquac. Rep. 2016, 3, 229–236. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Xiang, Z. Veratrum nigrum L.: A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and metabolism, toxicity, and incompatibility. J. Ethnopharmacol. 2024, 331, 118219. [Google Scholar] [CrossRef]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant Foods and Herbal Sources of Resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef]
- Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.A.; Abbaszadeh, H.A.; Rezaei-Tavirani, M. Nutrition, Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr. 2018, 6, 2473–2490. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Nigam, M.; Sener, B.; Kılıç, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Cruz-Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-D.; Fu, L.-N.; Wang, L.-T.; Cai, Z.-H.; Wang, Y.-Q.; Yang, Q.; Fu, Y.-J. Simultaneous transformation and extraction of resveratrol from Polygonum cuspidatum using acidic natural deep eutectic solvent. Ind. Crops Prod. 2021, 173, 114140. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Kim, E.; Lim, J.H.; Kim, M.; Ban, T.H.; Jang, I.-A.; Yoon, H.; Park, C.; Chang, Y.; Choi, B. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging 2018, 10, 83. [Google Scholar] [CrossRef]
- Miguel, C.A.; Noya-Riobó, M.V.; Mazzone, G.L.; Villar, M.J.; Coronel, M.F. Antioxidant, anti-inflammatory and neuroprotective actions of resveratrol after experimental nervous system insults. Special focus on the molecular mechanisms involved. Neurochem. Int. 2021, 150, 105188. [Google Scholar] [CrossRef]
- Wu, D.; Li, J.; Fan, Z.; Wang, L.; Zheng, X. Resveratrol ameliorates oxidative stress, inflammatory response and lipid metabolism in common carp (Cyprinus carpio) fed with high-fat diet. Front. Immunol. 2022, 13, 965954. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Li, Y.; Cao, L.; Du, J.; Zheng, T.; Qian, H.; Gu, Z.; Jeney, G.; Xu, P.; Yin, G. Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 215, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Han, G.; Li, Y.; Zhao, L.; Wang, G. Effects of resveratrol on growth, antioxidative status and immune response of snakehead fish (Channa argus). Aquac. Nutr. 2021, 27, 1472–1481. [Google Scholar] [CrossRef]
- Torno, C.; Staats, S.; de Pascual-Teresa, S.; Rimbach, G.; Schulz, C. Effects of resveratrol and genistein on growth, nutrient utilization and fatty acid composition of rainbow trout. Animal 2019, 13, 933–940. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, K.; Wan, W.; Cheng, Y.; Pu, X.; Ye, X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018, 5, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.; Diwan, A.; Chandra, S. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, V.; Chatzimitakos, T.; Makrygiannis, I.; Kalompatsios, D.-R.; Bozinou, E.; Lalas, S. Antioxidant-Rich Extracts from Lemon Verbena (Aloysia citrodora L.) Leaves through Response Surface Methodology. Oxygen 2024, 4, 1–19. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Mitsuhashi, S.; Shigetomi, K.; Ubukata, M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species, Bioscience. Biotechnol. Biochem. 2017, 81, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, N.; Visalli, G.; Cirmi, S.; Lombardo, G.E.; Laganà, P.; Di Pietro, A.; Navarra, M. Natural iron chelators: Protective role in A549 cells of flavonoids-rich extracts of Citrus juices in Fe3+-induced oxidative stress. Environ. Toxicol. Pharmacol. 2016, 43, 248–256. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, A.M.; Mayr, A.; Shaw, N.B.; Murphy, S.C.; Kerry, J.P. Use of Natural Antioxidants to Stabilize Fish Oil Systems. J. Aquat. Food Prod. Technol. 2005, 14, 75–94. [Google Scholar] [CrossRef]
- Cho, S.H.; Sciences, A. Effect of Natural Antioxidant Sources on Oxidation of Olive Flounder (Paralichthys olivaceus) and Fish Feed during Storage. Fish. Aquat. Sci. 2010, 13, 231–235. [Google Scholar] [CrossRef]
- Abbate, F.; Maugeri, A.; Laurà, R.; Levanti, M.; Navarra, M.; Cirmi, S.; Germanà, A. Zebrafish as a Useful Model to Study Oxidative Stress-Linked Disorders: Focus on Flavonoids. Antioxidants 2021, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Piovesana, A.; Rodrigues, E.; Noreña, C.P.Z. Composition analysis of carotenoids and phenolic compounds and antioxidant activity from Hibiscus calyces (L.) by HPLC-DAD-MS/MS. Phytochem. Anal. 2019, 30, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Merken, H.M.; Beecher, G.R. Measurement of Food Flavonoids by High-Performance Liquid Chromatography: A Review. J. Agric. Food Chem. 2000, 48, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Pirker, K.F.; Severino, J.F.; Reichenauer, T.G.; Goodman, B.A. Free Radical Processes in Green Tea Polyphenols (GTP) Investigated by Electron Paramagnetic Resonance (EPR) Spectroscopy; El-Gewely, M.R., Ed.; Biotechnology Annual Review; Elsevier: Amsterdam, The Netherlands, 2008; pp. 349–401. [Google Scholar]
- Islam, M.N.; Rauf, A.; Fahad, F.I.; Emran, T.B.; Mitra, S.; Olatunde, A.; Shariati, M.A.; Rebezov, M.; Rengasamy, K.R.R.; Mubarak, M.S. Superoxide dismutase: An updated review on its health benefits and industrial applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 7282–7300. [Google Scholar] [CrossRef]
- Grajeda-Iglesias, C.; Salas, E.; Barouh, N.; Baréa, B.; Panya, A.; Figueroa-Espinoza, M.C. Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods. Food Chem. 2016, 194, 749–757. [Google Scholar] [CrossRef]
- Ibrahim, M.; Muhammad, N.; Naeem, M.; Deobald, A.M.; Kamdem, J.P.; Rocha, J.B.T. In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol. Vitr. 2015, 29, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Alisik, M.; Neselioglu, S.; Erel, O. A colorimetric method to measure oxidized, reduced and total glutathione levels in erythrocytes. J. Lab. Med. 2019, 43, 269–277. [Google Scholar] [CrossRef]
- Fraga, C.G.; Oteiza, P.I.; Galleano, M. In vitro measurements and interpretation of total antioxidant capacity. Biochim. Biophys. Acta (BBA) Gen. Subj. 2014, 1840, 931–934. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, S.; Jiang, W.; Liu, D. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ. Sci. Pollut. Res. 2013, 20, 1117–1123. [Google Scholar] [CrossRef]
- Elkabany, Z.A.; El-Farrash, R.A.; Shinkar, D.M.; Ismail, E.A.; Nada, A.S.; Farag, A.S.; Elsayed, M.A.; Salama, D.H.; Macken, E.L.; Gaballah, S.A. Oxidative stress markers in neonatal respiratory distress syndrome: Advanced oxidation protein products and 8-hydroxy-2-deoxyguanosine in relation to disease severity. Pediatr. Res. 2020, 87, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, J.M.G.; Esteban, M.Á. Nature-identical compounds as feed additives in aquaculture. Fish Shellfish. Immunol. 2022, 123, 409–416. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Shahidi, F. Emerging Role of Phenolic Compounds as Natural Food Additives in Fish and Fish Products. Crit. Rev. Food Sci. Nutr. 2013, 53, 162–179. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.; Ranveer, D.R.; Benjakul, S.; Kim, S.K.; Pagarkar, A.; Patange, S.; Ozogul, F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4180–4210. [Google Scholar] [CrossRef] [PubMed]
- Anastasiou, T.I.; Mandalakis, M.; Krigas, N.; Vézignol, T.; Lazari, D.; Katharios, P.; Dailianis, T.; Antonopoulou, E. Comparative Evaluation of Essential Oils from Medicinal-Aromatic Plants of Greece: Chemical Composition, Antioxidant Capacity and Antimicrobial Activity against Bacterial Fish Pathogens. Molecules 2019, 25, 148. [Google Scholar] [CrossRef]
- Kulikov, M.P.; Statsenko, V.N.; Prazdnova, E.V.; Emelyantsev, S.A. Antioxidant, DNA-protective, and SOS inhibitory activities of Enterococcus durans metabolites. Gene Rep. 2022, 27, 101544. [Google Scholar] [CrossRef]
- Iwashina, T.; Nakane, T.; Ishikawa-Takano, Y.; Devkota, H.P. Phenolic compounds from the aerial parts of Rhodiola rosea in Japan, and their antioxidant activity and chemical adaptation to alpine environment. Nat. Prod. Res. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dinn, J.; Liu, J.; Bashir, S. Use of Natural Products as Green Reducing Agents To Fabricate Highly Effective Nanodisinfectants. J. Agric. Food Chem. 2013, 61, 2019–2027. [Google Scholar] [CrossRef]
- Vladkova, T.; Georgieva, N.; Staneva, A.; Gospodinova, D. Recent Progress in Antioxidant Active Substances from Marine Biota. Antioxidants 2022, 11, 439. [Google Scholar] [CrossRef]
Name | Characteristic | Extraction Technique | Source |
---|---|---|---|
β-Carotene | Antioxidant and eye protection | Organic solvent extraction | carrots, pumpkin |
Lycopene | Antioxidant and prevents cardiovascular disease | Distillation concentration | tomato |
Lutein | Antioxidant and eye protection | Supercritical fluid extraction | collard |
Astaxanthin | Antioxidant, anti-inflammatory | Ultrasound-assisted extraction | Haematococcus pluvialis |
Zeaxanthin | Antioxidant and eye protection | Enzymatic digestion | corn |
Type | Category | Characteristic | Extraction Method | Source |
---|---|---|---|---|
Plant polysaccharides | Natural polymer compounds | Water soluble, viscous, enhances immunity, anti-tumor, lowers blood sugar | Hot water extraction method, alkaline extraction method | Chinese herbal medicines (wolfberry, astragalus), grains (oats, corn), fruits and vegetables (kelp, pumpkin) |
Animal polysaccharides | Bioactive polysaccharides | Lubricate joints, moisturize skin, promote cell repair | Acid alkali extraction method, organic solvent extraction method | Animal tissues (cartilage, skin, mesentery), body fluids (plasma, urine) |
Bacterial polysaccharide | Microbial polysaccharide | Produced by bacterial fermentation. Enhance immunity, anti-tumor, as a vaccine adjuvant, etc. | Fermentation extraction method, organic solvent precipitation method | Bacterial fermentation broth (lactic acid bacteria, yeast, actinomycetes) |
Vitamin Type | Characteristic | Function | Extraction Method | Source |
---|---|---|---|---|
Vitamin A | Fat-soluble | Maintains vision, skin health, and normal function of epithelial tissues | Extraction with organic solvents | Animal livers, dairy products, eggs, vegetables and fruits rich in carotenoids (such as carrots, where carotenoids can be converted into vitamin A) |
Vitamin B1 (thiamine) | Water-soluble | Involved in carbohydrate metabolism and has effects on the nervous system, etc. | Obtained through separation and purification methods | Yeast, brown rice, whole wheat, beans, lean meat, etc. |
Vitamin B2 (riboflavin) | Water-soluble | Involved in biological oxidation processes in the body and related to mucosal health | Often extracted from microbial fermentation products or animal and plant materials rich in it | Dairy products, eggs, meat, cereals, vegetables, etc. |
Vitamin C (ascorbic acid) | Water-soluble | Antioxidant, promotes collagen synthesis, enhances immunity, etc. | Extracted through processes such as pressing, filtering, concentrating, and crystallizing fruits and vegetables | Fresh fruits (oranges, lemons), vegetables (broccoli, green peppers) |
Vitamin D | Fat-soluble | Promotes calcium absorption and bone development | Extracted from fish oil, etc., and partially synthesized through ultraviolet radiation on related substances | Marine fish, animal livers, eggs, and also synthesized partially by human skin through ultraviolet radiation |
Vitamin E | Fat-soluble | Antioxidant, protects cells from damage caused by free radicals | Extracted from vegetable oils, nuts, and other raw materials using extraction and other methods | Vegetable oils (corn oil, olive oil), nuts, leafy vegetables |
Name | Function | Source | Extraction Method | Characteristic |
---|---|---|---|---|
Tea polyphenols | Antioxidant, antibacterial, lipid-lowering, cardiovascular protection | Tea leaves, such as green tea, black tea, oolong tea, etc. | Hot water extraction | Astringent taste, water-soluble and fat-soluble, affected by heat and light |
Anthocyanins | Antioxidant, anti-inflammatory, eye protection, giving vivid colors to plants | Blueberries, purple potatoes, black goji berries, cranberries, etc. | Extraction with acidic ethanol solution | Water-soluble; sensitive to light, heat, and oxygen; should be stored at low temperature, away from light and oxygen |
Resveratrol | Antioxidant, anticancer, anti-aging | Grapes, peanuts, Polygonum cuspidatum, etc. | Ultrasound-assisted extraction | White needle-like crystals, insoluble in water, easily soluble in organic solvents |
Ellagic acid | Antioxidant, anticancer, antibacterial | Pomegranates, strawberries, walnuts, raspberries, etc. | Extraction with organic solvent reflux | Yellow needle-like crystals, slightly soluble in water, soluble in organic solvents, strongly acidic |
Name | Characteristics | Extraction Methods | Source |
---|---|---|---|
Quercetin | Antioxidant, anti-inflammatory, antibacterial | Supercritical fluid extraction technology | Fruits, vegetables, tea, etc. |
Anthocyanidins | Antioxidant, anti-inflammatory | Ultrasound-assisted extraction technology | Fruits, berries |
Isoflavones | Antioxidant, antitumor | Deep eutectic solvent extraction technology | Soybeans, legumes |
Catechins | Antioxidant, antibacterial | Supercritical CO2 extraction technology | Green tea, tea |
Flavones | Antioxidant, anti-inflammatory | Solvent-mediated extraction technology | Flowers, spices |
Flanones | Antioxidant, antiviral | Ultrasound-assisted extraction technology | Citrus fruits |
Chalcones | Antioxidant, anti-inflammatory | Deep eutectic solvent extraction technology | Flowers, spices |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Ma, W.; Zhang, D.; Tian, Z.; Yang, Y.; Huang, Y.; Hong, Y. Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review. Biology 2025, 14, 87. https://doi.org/10.3390/biology14010087
Hu X, Ma W, Zhang D, Tian Z, Yang Y, Huang Y, Hong Y. Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review. Biology. 2025; 14(1):87. https://doi.org/10.3390/biology14010087
Chicago/Turabian StyleHu, Xiaodan, Wenjing Ma, Disen Zhang, Zikun Tian, Yuanqiang Yang, Yi Huang, and Yuhang Hong. 2025. "Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review" Biology 14, no. 1: 87. https://doi.org/10.3390/biology14010087
APA StyleHu, X., Ma, W., Zhang, D., Tian, Z., Yang, Y., Huang, Y., & Hong, Y. (2025). Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review. Biology, 14(1), 87. https://doi.org/10.3390/biology14010087