Melatonin Promotes Yield Increase in Wheat by Regulating Its Antioxidant System and Growth Under Drought Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Wheat Seed Coating
2.2. Plant Growth and Drought Treatment
2.3. Seeds Germination
2.4. Measurement of Fresh Weight, Plant Height, and Root Length
2.5. Measurement of the Contents of ROS, MDA, and Proline
2.6. Determination of Antioxidant Enzyme Activities
2.7. Determination of Soluble Protein, Sugar, and Total Chlorophyll Content in Wheat Seedlings
2.8. Measurement of Individual Grain Weight, Thousand-Grain Weight, and Yield After Wheat Maturity
2.9. Determination of Related Quality Indicators After Wheat Maturity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Melatonin Promotes Germination Rate
3.2. Melatonin Promotes Wheat Seedling Growth Under Drought Conditions
3.3. Melatonin Reduces the Oxidative Damage in Wheat Seedlings Under Drought Conditions
3.4. Melatonin Increases Antioxidant Activity in Wheat Seedlings Under Drought Conditions
3.5. Melatonin Improves the Content of Total Soluble Protein, Soluble Sugar, and Chlorophyll Under Drought Conditions
3.6. Melatonin Enhances the Thousand-Grain Weight and Yield of Wheat Under Drought Conditions
3.7. Melatonin Improves the Quality of Wheat After Its Maturity Under Drought Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sine, B.; Ndiaye, A.; Kanfany, G.; Grondin, A.; Ndiaye, A.; Faye, A.; Laplaze, L. Physiological and molecular bases of drought and heat tolerance in pearl millet. In Pearl Millet in the 21st Century: Food-Nutrition-Climate Resilience-Improved Livelihoods; Springer Nature: Singapore, 2024; pp. 247–278. [Google Scholar]
- Miransari, M.; Smith, D. Sustainable wheat (Triticum aestivum L.) production in saline fields: A review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef]
- Boukid, F.; Folloni, S.; Ranieri, R.; Vittadini, E. A compendium of wheat germ: Separation, stabilization and food applications. Trends Food Sci. 2018, 78, 120–133. [Google Scholar] [CrossRef]
- Bhalla, P.L.; Sharma, A.; Singh, M.B. Enabling molecular technologies for trait improvement in wheat. Methods Mol. Biol. 2017, 1679, 3–24. [Google Scholar]
- Mottaleb, K.A.; Kruseman, G.; Frija, A.; Sonder, K.; Lopez-Ridaura, S. Projecting wheat demand in China and India for 2030 and 2050: Implications for food security. Front. Nutr. 2023, 9, 1077443. [Google Scholar] [CrossRef]
- Ahmad, W.; Bibi, N.; Sanwal, M.; Ahmed, R.; Jamil, M.; Kalsoom, R.; Fahad, S. Cereal crops in the era of climate change: An overview. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzerland, 2024; pp. 609–630. [Google Scholar]
- Frederiks, T.M.; Christopher, J.T.; Sutherland, M.W.; Borrell, A.K. Post-head emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. J. Exp. Bot. 2015, 66, 3487–3498. [Google Scholar] [CrossRef]
- Kaya, C.; Okant, M.; Ugurlar, F.; Alyemeni, M.N.; Ashraf, M.; Ahmad, P. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 2019, 225, 627–638. [Google Scholar] [CrossRef]
- Wang, L.; Qin, L.; Sun, X.; Zhao, S.; Yu, L.; Chen, S.; Wang, M. Salt stress-induced changes in soil metabolites promote cadmium transport into wheat tissues. J. Environ. Sci. 2023, 127, 577–588. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Lewis, J.M.; Ammar, K.; Basnet, B.R.; Crespo-Herrera, L.; Crossa, J.; Dhugga, K.S.; Dreisigacker, S.; Juliana, P.; Karwat, H.; et al. Harnessing translational research in wheat for climate resilience. J. Exp. Bot. 2021, 72, 5134–5157. [Google Scholar] [CrossRef]
- Lopes, M.S.; Rebetzke, G.J.; Reynolds, M. Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J. Exp. Bot. 2014, 65, 6167–6177. [Google Scholar] [CrossRef]
- Fischer, R.A. Growth and water limitation to dryland wheat yield in Australia: A physiological framework. J. Aust. Inst. Agric. Sci. 1979, 45, 83–94. [Google Scholar]
- Ottman, M.J.; Kimball, B.A.; White, J.W.; Wall, G.W. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron. J. 2012, 104, 7–16. [Google Scholar] [CrossRef]
- Wang, R.; Yu, M.; Xia, J.; Ren, Z.; Xing, J.; Li, C.; Xu, Q.; Cang, J.; Zhang, D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. Plant Biol. 2023, 25, 308–321. [Google Scholar] [CrossRef]
- Ross, I.A. Melatonin in lants and animals. In Plant-Based Therapeutics, the Brassicaceae Family; Springer Nature: Cham, Switzerland, 2024; pp. 735–812. [Google Scholar]
- Dubbels, R.; Reiter, R.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef]
- Hattori, A.; Migitaka, H.; Iigo, M.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar]
- Wang, K.; Xing, Q.; Ahammed, G.J.; Zhou, J. Functions and prospects of melatonin in plant growth, yield, and quality. J. Exp. Bot. 2022, 73, 5928–5946. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Hernández-Ruiz, J. Phytomelatonin: An unexpectedmolecule with amazing performances in plants. J. Exp. Bot. 2022, 73, 5779–5800. [Google Scholar] [CrossRef]
- Huang, X.; Tanveer, M.; Min, Y.; Shabala, S. Melatonin as a regulator of plant ionic homeostasis: Implications for abiotic stress tolerance. J. Exp. Bot. 2022, 73, 5886–5902. [Google Scholar] [CrossRef]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin and reactive oxygen and nitrogen species: A model for the plant redox network. Melatonin Res. 2019, 2, 152–168. [Google Scholar] [CrossRef]
- Kul, R.; Esringü, A.; Dadasoglu, E.; Sahin, Ü.; Turan, M.; Örs, S.; Ekinci, M.; Agar, G.; Yildirim, E. Melatonin: Role in increasing plant tolerance in abiotic stress conditions. Abiot. Biol. Stress Plants 2019, 1, 19. [Google Scholar]
- Gao, H.; Zhang, Z.K.; Chai, H.K.; Cheng, N.; Yang, Y.; Wang, D.N.; Yang, T.; Cao, W. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 2016, 118, 103–110. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Chang, C.; Feng, F.; Liang, D.; Cheng, L.; Ma, F. Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J. Pineal. Res. 2013, 55, 424–434. [Google Scholar] [CrossRef]
- Liu, J.L.; Wang, W.X.; Wang, L.Y.; Sun, Y. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul. 2015, 77, 317–326. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, X.; Liu, S.; Sun, F.; Zhang, C.; Xi, Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Biochem. 2017, 118, 138–149. [Google Scholar] [CrossRef]
- Meng, J.F.; Xu, T.F.; Wang, Z.Z.; Fang, Y.L.; Xi, Z.M.; Zhang, Z.W. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: Antioxidant metabolites, leaf anatomy, and chloroplast morphology. J. Pineal Res. 2014, 57, 200–212. [Google Scholar] [CrossRef]
- Turk, H.; Erdal, S.; Genisel, M.; Atici, O.; Demir, Y.; Yanmis, D. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedling. Plant Growth Regul. 2014, 74, 139–152. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. polyphenol oxidase in beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Reinsch, S.; Robinson, D.A.; Van Soest, M.A.; Keith, A.M.; Parry, S.; Tye, A.M. Temperate soils exposed to drought-key processes, impacts, indicators, and unknowns. Land 2024, 13, 1759. [Google Scholar] [CrossRef]
- Pulwarty, R.S.; Sivakumar, V.K.M. Information systems in a changing climate: Early warnings and drought risk management. Weather Clim. Extreme 2014, 3, 14–21. [Google Scholar] [CrossRef]
- Garg, K.K.; Anantha, K.H.; Jat, M.L.; Kumar, S.; Sawargaonkar, G.; Singh, A.; Gathala, M.K. 6 drought management in soils. In Managing Soil Drought; CRC Press: Boca Raton, FL, USA, 2024; p. 161. [Google Scholar]
- Langridge, P.; Reynolds, M. Breeding for drought and heat tolerance in wheat. Theor. Appl. Genet. 2021, 134, 1753–1769. [Google Scholar] [CrossRef]
- Park, S.; Back, K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J. Pineal Res. 2012, 53, 385–389. [Google Scholar] [CrossRef]
- Murch, S.J.; Campbell, S.S.; Saxena, P.K. The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of st. John’s Wort (Hypericum perforatum L.). In Vitro. Cell. Dev. Biol. Plants 2001, 37, 786–793. [Google Scholar] [CrossRef]
- Fan, J.; Hu, Z.; Xie, Y.; Chan, Z.; Chen, K.; Amombo, E.; Chen, L.; Fu, J. Alleviation of cold damage to photosystem II and metabolisms by melatonin in bermudagrass. Front. Plant Sci. 2015, 6, 925. [Google Scholar] [CrossRef]
- Khan, M.N.; Zhang, J.; Luo, T.; Liu, J.; Rizwan, M.; Fahad, S.; Xu, Z.; Hu, L. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind. Crops Prod. 2019, 140, 111597. [Google Scholar] [CrossRef]
- Liang, B.; Ma, C.; Zhang, Z.; Wei, Z.; Gao, T.; Zhao, Q.; Ma, F.; Li, C. Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environ. Exp. Bot. 2018, 155, 650–661. [Google Scholar] [CrossRef]
- Manafi, H.; Baninasab, B.; Gholami, M.; Talebi, M.; Khanizadeh, S. Exogenous melatonin alleviates heat–induced oxidative damage in strawberry (Fragaria ananassa Duch. cv. Ventana) plant. Plant Growth Regul. 2021, 41, 52–64. [Google Scholar] [CrossRef]
- Michard, E.; Simon, A.A. Melatonin’s antioxidant properties protect plants under salt stress. Plant Cell Environ. 2020, 43, 2587–2590. [Google Scholar] [CrossRef]
- Sun, C.; Lv, T.; Huang, L.; Liu, X.; Jin, C.; Lin, X. Melatonin ameliorates aluminum toxicity through enhancing aluminum exclusion and reestablishing redox homeostasis in roots of wheat. J. Pineal Res. 2020, 68, e12642. [Google Scholar] [CrossRef]
- Gowtham, H.G.; Singh, S.B.; Shilpa, N.; Aiyaz, M.; Nataraj, K.; Udayashankar, A.C.; Sayyed, R.Z. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants 2022, 11, 1763. [Google Scholar] [CrossRef]
- Samal, I.; Bhoi, T.K.; Mahanta, D.K.; Komal, J.; Majhi, P.K.; Murmu, S.; Chaurasia, H. Melatonin mediated abiotic stress mitigation in plants: A comprehensive study from biochemical to omics cascades. South Afr. J. Bot. 2024, 170, 331–347. [Google Scholar] [CrossRef]
- Aloui, N.; Kharbech, O.; Mahjoubi, Y.; Chaoui, A.; Karmous, I. Exogenous melatonin alleviates cadmium toxicity in wheat (Triticum turgidum L.) by modulating endogenous nitric oxide and hydrogen sulfide metabolism. J. Soil Sci. Plant Nutr. 2024, 24, 2535–2552. [Google Scholar] [CrossRef]
- Li, X.; Yan, D.; Jiang, D.; Liu, F. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. J. Pineal Res. 2016, 61, 328–339. [Google Scholar] [CrossRef]
- Cherono, S.; Ntini, C.; Wassie, M.; Mollah, M.D.; Belal, M.A.; Ogutu, C.; Han, Y. Exogenous application of melatonin improves drought tolerance in coffee by regulating photosynthetic efficiency and oxidative damage. J. Am. Soc. Hortic. Sci. 2021, 146, 24–32. [Google Scholar] [CrossRef]
- Meng, J.F.; Xu, T.F.; Song, C.Z.; Yu, Y.; Hu, F.; Zhang, L.; Zhang, Z.W.; Xi, Z.M. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chem. 2015, 185, 127–134. [Google Scholar] [CrossRef]
- Xu, L.L.; Yue, Q.Y.; Bian, F.E.; Yao, Y.X. Melatonin treatment enhances the polyphenol content and antioxidant capacity of red wine. Hortic. Plant J. 2018, 4, 144–150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, J.; Zhang, C.; Liu, Z.; Guo, X.; Li, S.; Li, H.; Liu, K.; Li, K.; Ding, M. Melatonin Promotes Yield Increase in Wheat by Regulating Its Antioxidant System and Growth Under Drought Stress. Biology 2025, 14, 94. https://doi.org/10.3390/biology14010094
Li X, Liu J, Zhang C, Liu Z, Guo X, Li S, Li H, Liu K, Li K, Ding M. Melatonin Promotes Yield Increase in Wheat by Regulating Its Antioxidant System and Growth Under Drought Stress. Biology. 2025; 14(1):94. https://doi.org/10.3390/biology14010094
Chicago/Turabian StyleLi, Xue, Jia Liu, Cuiping Zhang, Ze Liu, Xiang Guo, Shaoxiang Li, Hongsheng Li, Kun Liu, Kunzhi Li, and Mingliang Ding. 2025. "Melatonin Promotes Yield Increase in Wheat by Regulating Its Antioxidant System and Growth Under Drought Stress" Biology 14, no. 1: 94. https://doi.org/10.3390/biology14010094
APA StyleLi, X., Liu, J., Zhang, C., Liu, Z., Guo, X., Li, S., Li, H., Liu, K., Li, K., & Ding, M. (2025). Melatonin Promotes Yield Increase in Wheat by Regulating Its Antioxidant System and Growth Under Drought Stress. Biology, 14(1), 94. https://doi.org/10.3390/biology14010094