The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function
Simple Summary
Abstract
1. Introduction
2. General Structure and Activation of Group I and II PAKs
3. Why Recent Studies of PAK’s Action in Pancreatic Exocrine Function Were Performed?
4. Recent Insights of Group I and II PAKs’ Roles in Exocrine Pancreas: Presence and Activation
4.1. Presence of Group I and II PAKs in Exocrine Pancreas
4.2. Activation of Group I and II PAKs in Exocrine Pancreas
4.3. Dose–Response Effect on Group I and II PAK Activation in Exocrine Pancreas
5. Recent Insights into the Downstream Signaling Cascades of p21-Activated Kinases in Pancreatic Exocrine/Acinar Tissue (Downstream)
6. Secretion (Amylase Release and Fluid/Electrolyte Secretion)
7. Acute Pancreatitis
8. Pancreatic Tissue Growth (Exocrine, Cancer and Islets)
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kumar, R.; Sanawar, R.; Li, X.; Li, F. Structure, biochemistry, and biology of PAK kinases. Gene 2017, 605, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Rane, C.K.; Minden, A. P21 activated kinases: Structure, regulation, and functions. Small GTPases 2014, 5, e28003. [Google Scholar] [CrossRef] [PubMed]
- Chetty, A.K.; Ha, B.H.; Boggon, T.J. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol. Life Sci. 2022, 79, 598. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.S.; Manser, E. PAK family kinases: Physiological roles and regulation. Cell Logist. 2012, 2, 59–68. [Google Scholar] [CrossRef]
- Kumar, R.; Gururaj, A.E.; Barnes, C.J. p21-activated kinases in cancer. Nat. Rev. Cancer 2006, 6, 459–471. [Google Scholar] [CrossRef]
- Ha, B.H.; Morse, E.M.; Turk, B.E.; Boggon, T.J. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases. J. Biol. Chem. 2015, 290, 12975–12983. [Google Scholar] [CrossRef]
- Won, S.Y.; Park, J.J.; Shin, E.Y.; Kim, E.G. PAK4 signaling in health and disease: Defining the PAK4-CREB axis. Exp. Mol. Med. 2019, 51, 1–9. [Google Scholar] [CrossRef]
- Yu, X.; Huang, C.; Liu, J.; Shi, X.; Li, X. The significance of PAK4 in signaling and clinicopathology: A review. Open Life Sci. 2022, 17, 586–598. [Google Scholar] [CrossRef]
- Shao, Y.G.; Ning, K.; Li, F. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World J. Gastroenterol. 2016, 22, 1224–1235. [Google Scholar] [CrossRef]
- Nuche-Berenguer, B.; Jensen, R.T. Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. Biochim. Biophys. Acta 2015, 1853, 2371–2382. [Google Scholar] [CrossRef]
- Bokoch, G.M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 2003, 72, 743–781. [Google Scholar] [CrossRef] [PubMed]
- Nuche-Berenguer, B.; Ramos-Alvarez, I.; Jensen, R.T. The p21-activated kinase, PAK2, is important in the activation of numerous pancreatic acinar cell signaling cascades and in the onset of early pancreatitis events. Biochim. Biophys. Acta 2016, 1862, 1122–1136. [Google Scholar] [CrossRef] [PubMed]
- Dart, A.E.; Wells, C.M. P21-activated kinase 4–not just one of the PAK. Eur. J. Cell Biol. 2013, 92, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Alvarez, I.; Jensen, R.T. P21 activated kinase4 in pancreatic acini is activated by GI hormones /growth factors by novel signaling and is needed to stimulate secretory/growth cascades. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 315, G302–G317. [Google Scholar] [CrossRef]
- Ramos-Alvarez, I.; Lee, L.; Jensen, R.T. Cyclic AMP-dependent protein kinase A and EPAC mediate VIP and secretin stimulation of PAK4 and activation of Na(+),K(+)-ATPase in pancreatic acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G263–G277. [Google Scholar] [CrossRef]
- Arias-Romero, L.E.; Chernoff, J. A tale of two Paks. Biol. Cell 2008, 100, 97–108. [Google Scholar] [CrossRef]
- Molli, P.R.; Li, D.Q.; Murray, B.W.; Rayala, S.K.; Kumar, R. PAK signaling in oncogenesis. Oncogene 2009, 28, 2545–2555. [Google Scholar] [CrossRef]
- Lv, Z.; Hu, M.; Zhen, J.; Lin, J.; Wang, Q.; Wang, R. Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering beta-catenin transcriptional activity under high glucose conditions. Int. J. Biochem. Cell Biol. 2013, 45, 255–264. [Google Scholar] [CrossRef]
- Rudel, T.; Bokoch, G.M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 1997, 276, 1571–1574. [Google Scholar] [CrossRef]
- Abo, A.; Qu, J.; Cammarano, M.S.; Dan, C.; Fritsch, A.; Baud, V.; Belisle, B.; Minden, A. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J. 1998, 17, 6527–6540. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Li, F. P21 activated kinase 4 binds translation elongation factor eEF1A1 to promote gastric cancer cell migration and invasion. Oncol. Rep. 2017, 37, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, K.; Dong, Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front. Cell Dev. Biol. 2021, 9, 641381. [Google Scholar] [CrossRef] [PubMed]
- Civiero, L.; Greggio, E. PAKs in the brain: Function and dysfunction. Biochim. Biophys. Acta Mol. Basis. Dis. 2018, 1864, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Taglieri, D.M.; Ushio-Fukai, M.; Monasky, M.M. P21-activated kinase in inflammatory and cardiovascular disease. Cell Signal 2014, 26, 2060–2069. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Lei, M.; Boyett, M.; Tsui, H.; Liu, W.; Wang, X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: From mechanistic study to therapeutic exploration. Br. J. Pharmacol. 2018, 175, 1362–1374. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Fan, T.; Zeng, C.; Sun, Z.S. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2022, 13, 6–25. [Google Scholar] [CrossRef]
- Wells, C.M.; Jones, G.E. The emerging importance of group II PAKs. Biochem. J. 2010, 425, 465–473. [Google Scholar] [CrossRef]
- Jaffer, Z.M.; Chernoff, J. p21-activated kinases: Three more join the Pak. Int. J. Biochem. Cell Biol. 2002, 34, 713–717. [Google Scholar] [CrossRef]
- Eswaran, J.; Lee, W.H.; Debreczeni, J.E.; Filippakopoulos, P.; Turnbull, A.; Fedorov, O.; Deacon, S.W.; Peterson, J.R.; Knapp, S. Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure 2007, 15, 201–213. [Google Scholar] [CrossRef]
- Chong, C.; Tan, L.; Lim, L.; Manser, E. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem. 2001, 276, 17347–17353. [Google Scholar] [CrossRef]
- Baskaran, Y.; Ng, Y.W.; Selamat, W.; Ling, F.T.; Manser, E. Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep. 2012, 13, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Gasman, S.; Chasserot-Golaz, S.; Bader, M.F.; Vitale, N. Regulation of exocytosis in adrenal chromaffin cells: Focus on ARF and Rho GTPases. Cell Signal 2003, 15, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Deacon, S.W.; Beeser, A.; Fukui, J.A.; Rennefahrt, U.E.; Myers, C.; Chernoff, J.; Peterson, J.R. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem. Biol. 2008, 15, 322–331. [Google Scholar]
- Rudolph, J.; Crawford, J.J.; Hoeflich, K.P.; Wang, W. Inhibitors of p21-activated kinases (PAKs). J. Med. Chem. 2015, 58, 111–129. [Google Scholar] [CrossRef]
- Murray, B.W.; Guo, C.; Piraino, J.; Westwick, J.K.; Zhang, C.; Lamerdin, J.; Dagostino, E.; Knighton, D.; Loi, C.M.; Zager, M.; et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc. Natl. Acad. Sci. USA 2010, 107, 9446–9451. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Guo, Q.; Wang, Y.; Zhou, Y.; Peng, H.; Cheng, M.; Zhao, D.; Li, F. LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells. Cancer Lett. 2012, 317, 24–32. [Google Scholar] [CrossRef]
- He, H.; Shulkes, A.; Baldwin, G.S. PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins. Biochim. Biophys. Acta 2008, 1783, 1943–1954. [Google Scholar] [CrossRef]
- Senapedis, W.; Crochiere, M.; Baloglu, E.; Landesman, Y. Therapeutic Potential of Targeting PAK Signaling. Anticancer Agents Med. Chem. 2016, 16, 75–88. [Google Scholar] [CrossRef]
- Mortazavi, F.; Lu, J.; Phan, R.; Lewis, M.; Trinidad, K.; Aljilani, A.; Pezeshkpour, G.; Tamanoi, F. Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer 2015, 15, 381. [Google Scholar] [CrossRef]
- Ramos-Alvarez, I.; Lee, L.; Jensen, R.T. Cofilin activation in pancreatic acinar cells plays a pivotal convergent role for mediating CCK-stimulated enzyme secretion and growth. Front. Physiol. 2023, 14, 1147572. [Google Scholar] [CrossRef]
- Ramos-Ãlvarez, I.; Lee, L.; Jensen, R.T. Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and B-catenin in rat pancreatic acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G490–G503. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.S.; Manser, E. Do PAKs make good drug targets? F1000 Biol. Rep. 2010, 2, 70. [Google Scholar] [CrossRef] [PubMed]
- Kuzelova, K.; Grebenova, D.; Holoubek, A.; Roselova, P.; Obr, A. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells. PLoS ONE 2014, 9, e92560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, B.; Liao, B.; Yuan, S.; Liu, Y.; Liao, Z.; Cheng, B. Platelet-rich plasma in combination with adipose-derived stem cells promotes skin wound healing through activating Rho GTPase-mediated signaling pathway. Am. J. Transl. Res. 2019, 11, 4100–4112. [Google Scholar]
- Fu, X.; Feng, J.; Zeng, D.; Ding, Y.; Yu, C.; Yang, B. PAK4 confers cisplatin resistance in gastric cancer cells via PI3K/Akt- and MEK/ERK-dependent pathways. Biosci. Rep. 2014, 34, e00094. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Xu, L.; Tao, Y.; Yang, C.; Chen, X.; Fang, F.; Wu, Y.; Ding, X.; Zhao, H.; et al. Inhibition of neuroblastoma proliferation by PF-3758309, a small-molecule inhibitor that targets p21-activated kinase 4. Oncol. Rep. 2017, 38, 2705–2716. [Google Scholar] [CrossRef]
- Song, K.; Chen, D.; Li, J.; Zhang, J.; Tian, Y.; Xu, X.; Wang, B.; Huang, Z.; Lou, S.; Kang, J.; et al. PAK4 is Required for Meiotic Resumption, Spindle Assembly, and Cortical Migration in Mouse Oocytes During Meiotic Maturation. Adv. Biol. 2024, e2400307. [Google Scholar] [CrossRef]
- Ahn, M.; Yoder, S.M.; Wang, Z.; Oh, E.; Ramalingam, L.; Tunduguru, R.; Thurmond, D.C. The p21-activated kinase (PAK1) is involved in diet-induced beta cell mass expansion and survival in mice and human islets. Diabetologia 2016, 59, 2145–2155. [Google Scholar] [CrossRef]
- Bergeron, V.; Ghislain, J.; Poitout, V. The P21-activated kinase PAK4 is implicated in fatty-acid potentiation of insulin secretion downstream of free fatty acid receptor 1. Islets 2016, 8, 157–164. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Lai, X.N.; Qian, X.L.; Lv, L.C.; Li, J.; Duan, J.; Xiao, X.H.; Xiong, L.X. Cdc42: A Novel Regulator of Insulin Secretion and Diabetes-Associated Diseases. Int. J. Mol. Sci. 2019, 20, 179. [Google Scholar] [CrossRef]
- Ahn, M.; Dhawan, S.; McCown, E.M.; Garcia, P.A.; Bhattacharya, S.; Stein, R.; Thurmond, D.C. Beta cell-specific PAK1 enrichment ameliorates diet-induced glucose intolerance in mice by promoting insulin biogenesis and minimising beta cell apoptosis. Diabetologia 2024, 68, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Ansardamavandi, A.; Nikfarjam, M.; He, H. PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells 2023, 12, 2692. [Google Scholar] [CrossRef] [PubMed]
- Veluthakal, R.; Chepurny, O.G.; Leech, C.A.; Schwede, F.; Holz, G.G.; Thurmond, D.C. Restoration of Glucose-Stimulated Cdc42-Pak1 Activation and Insulin Secretion by a Selective Epac Activator in Type 2 Diabetic Human Islets. Diabetes 2018, 67, 1999–2011. [Google Scholar] [CrossRef]
- Chiang, Y.T.; Jin, T. p21-Activated protein kinases and their emerging roles in glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E707–E722. [Google Scholar] [CrossRef]
- Brown, A.M.; O’Sullivan, A.J.; Gomperts, B.D. Induction of exocytosis from permeabilized mast cells by the guanosine triphosphatases Rac and Cdc42. Mol. Biol. Cell 1998, 9, 1053–1063. [Google Scholar] [CrossRef]
- Hong-Geller, E.; Cerione, R.A. Cdc42 and Rac stimulate exocytosis of secretory granules by activating the IP(3)/calcium pathway in RBL-2H3 mast cells. J. Cell Biol. 2000, 148, 481–494. [Google Scholar] [CrossRef]
- Kosoff, R.; Chow, H.Y.; Radu, M.; Chernoff, J. Pak2 kinase restrains mast cell FcεRI receptor signaling through modulation of Rho protein guanine nucleotide exchange factor (GEF) activity. J. Biol. Chem. 2013, 288, 974–983. [Google Scholar] [CrossRef]
- Allen, J.D.; Jaffer, Z.M.; Park, S.J.; Burgin, S.; Hofmann, C.; Sells, M.A.; Chen, S.; Derr-Yellin, E.; Michels, E.G.; McDaniel, A.; et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood 2009, 113, 2695–2705. [Google Scholar] [CrossRef]
- Piccand, J.; Meunier, A.; Merle, C.; Jia, Z.; Barnier, J.V.; Gradwohl, G. Pak3 promotes cell cycle exit and differentiation of beta-cells in the embryonic pancreas and is necessary to maintain glucose homeostasis in adult mice. Diabetes 2014, 63, 203–215. [Google Scholar] [CrossRef]
- Xia, S.; Zhou, Z.; Leung, C.; Zhu, Y.; Pan, X.; Qi, J.; Morena, M.; Hill, M.N.; Xie, W.; Jia, Z. p21-activated kinase 1 restricts tonic endocannabinoid signaling in the hippocampus. eLife 2016, 5, e14653. [Google Scholar] [CrossRef]
- Lee, J.H.; Wittki, S.; Brau, T.; Dreyer, F.S.; Kratzel, K.; Dindorf, J.; Johnston, I.C.; Gross, S.; Kremmer, E.; Zeidler, R.; et al. HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol. Cell 2013, 49, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Aslan, J.E.; Itakura, A.; Haley, K.M.; Tormoen, G.W.; Loren, C.P.; Baker, S.M.; Pang, J.; Chernoff, J.; McCarty, O.J. p21 activated kinase signaling coordinates glycoprotein receptor VI-mediated platelet aggregation, lamellipodia formation, and aggregate stability under shear. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Goyal, P.; Dwivedi, S.; Siess, W. Unraveling a novel Rac1-mediated signaling pathway that regulates cofilin dephosphorylation and secretion in thrombin-stimulated platelets. Blood 2009, 114, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Perveen, R.; Dandamudi, A.; Adili, R.; Johnson, J.; Funk, K.; Berryman, M.; Davis, A.K.; Holinstat, M.; Zheng, Y.; et al. Pharmacologic targeting of Cdc42 GTPase by a small molecule Cdc42 activity-specific inhibitor prevents platelet activation and thrombosis. Sci. Rep. 2021, 11, 13170. [Google Scholar] [CrossRef] [PubMed]
- Tuazon, P.T.; Lorenson, M.Y.; Walker, A.M.; Traugh, J.A. p21-activated protein kinase gamma-PAK in pituitary secretory granules phosphorylates prolactin. FEBS Lett. 2002, 515, 84–88. [Google Scholar] [CrossRef]
- Zhao, M.; Rabieifar, P.; Costa, T.D.F.; Zhuang, T.; Minden, A.; Lohr, M.; Heuchel, R.; Stromblad, S. Pdx1-Cre-driven conditional gene depletion suggests PAK4 as dispensable for mouse pancreas development. Sci. Rep. 2017, 7, 7031. [Google Scholar] [CrossRef]
- Zhu, M.; Xu, Y.; Zhang, W.; Gu, T.; Wang, D. Inhibition of PAK1 alleviates cerulein-induced acute pancreatitis via p38 and NF-κB pathways. Biosci. Rep. 2019, 39, BSR20182221. [Google Scholar] [CrossRef]
- Tyagi, N.; Bhardwaj, A.; Singh, A.P.; McClellan, S.; Carter, J.E.; Singh, S. p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-kappaB pathway. Oncotarget 2014, 30, 8778–8789. [Google Scholar] [CrossRef]
- Yeo, D.; He, H.; Patel, O.; Lowy, A.M.; Baldwin, G.S.; Nikfarjam, M. FRAX597, a PAK1 inhibitor, synergistically reduces pancreatic cancer growth when combined with gemcitabine. BMC. Cancer 2016, 16, 24. [Google Scholar] [CrossRef]
- Kalwat, M.A.; Yoder, S.M.; Wang, Z.; Thurmond, D.C. A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic beta cells. Biochem. Pharmacol. 2013, 85, 808–816. [Google Scholar] [CrossRef]
- Jagadeeshan, S.; Krishnamoorthy, Y.R.; Singhal, M.; Subramanian, A.; Mavuluri, J.; Lakshmi, A.; Roshini, A.; Baskar, G.; Ravi, M.; Joseph, L.D.; et al. Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene 2015, 34, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Oh, E.; Thurmond, D.C. Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J. Biol. Chem. 2007, 282, 9536–9546. [Google Scholar] [CrossRef] [PubMed]
- Sorrenson, B.; Dissanayake, W.C.; Hu, F.; Lee, K.L.; Shepherd, P.R. A role for PAK1 mediated phosphorylation of β-catenin Ser552 in the regulation of insulin secretion. Biochem. J. 2021, 478, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Oh, E.; Clapp, D.W.; Chernoff, J.; Thurmond, D.C. Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo. J. Biol. Chem. 2011, 286, 41359–41367. [Google Scholar] [CrossRef]
- Yeo, D.; He, H.; Baldwin, G.S.; Nikfarjam, M. The role of p21-activated kinases in pancreatic cancer. Pancreas 2015, 44, 363–369. [Google Scholar] [CrossRef]
- Wang, K.; Baldwin, G.S.; Nikfarjam, M.; He, H. p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World J. Gastroenterol. 2018, 24, 3709–3723. [Google Scholar] [CrossRef]
- Wu, H.Y.; Yang, M.C.; Ding, L.Y.; Chen, C.S.; Chu, P.C. p21-Activated kinase 3 promotes cancer stem cell phenotypes through activating the Akt-GSK3β-β-catenin signaling pathway in pancreatic cancer cells. Cancer Lett. 2019, 456, 13–22. [Google Scholar] [CrossRef]
- Matsumoto, M.; Collins, J.G.; Kitahata, L.M.; Yuge, O.; Tanaka, A. A comparison of the effects of alfentanil applied to the spinal cord and intravenous alfentanil on noxiously evoked activity of dorsal horn neurons in the cat spinal cord. Anesth. Analg. 1986, 65, 145–150. [Google Scholar]
- Jensen, R.T. Receptors on pancreatic acinar cells. In Physiology of the Gastrointestinal Tract, 3rd ed.; Johnson, L.R., Jacobson, E.D., Christensen, J., Alpers, D.H., Walsh, J.H., Eds.; Raven Press: New York, NY, USA, 1994; Volume 2, pp. 1377–1446. [Google Scholar]
- Dufresne, M.; Seva, C.; Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev. 2006, 86, 805–847. [Google Scholar] [CrossRef]
- Hildebrand, P.; Mrozinski, J.E., Jr.; Mantey, S.A.; Patto, R.J.; Jensen, R.T. Pancreatic acini possess endothelin receptors whose internalization is regulated by PLC-activating agents. Am. J. Physiol. 1993, 264, G984–G993. [Google Scholar] [CrossRef]
- Williams, J.A. Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. Compr. Physiol. 2019, 9, 535–564. [Google Scholar] [PubMed]
- Jensen, R.T.; Gardner, J.D. Identification and characterization of receptors for secretagogues on pancreatic acinar cells. Fed. Proc. 1981, 40, 2486–2496. [Google Scholar] [PubMed]
- Bissonnette, B.M.; Collen, M.J.; Adachi, H.; Jensen, R.T.; Gardner, J.D. Receptors for vasoactive intestinal peptide and secretin on rat pancreatic acini. Am. J. Physiol. 1984, 246, G710–G717. [Google Scholar] [CrossRef] [PubMed]
- Gatti, A.; Huang, Z.; Tuazon, P.T.; Traugh, J.A. Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J. Biol. Chem. 1999, 274, 8022–8028. [Google Scholar] [CrossRef]
- Pulkkinen, K.; Renkema, G.H.; Kirchhoff, F.; Saksela, K. Nef associates with p21-activated kinase 2 in a p21-GTPase-dependent dynamic activation complex within lipid rafts. J. Virol. 2004, 78, 12773–12780. [Google Scholar] [CrossRef]
- Jakobi, R.; Chen, C.J.; Tuazon, P.T.; Traugh, J.A. Molecular cloning and sequencing of the cytostatic G protein-activated protein kinase PAK I. J. Biol. Chem. 1996, 271, 6206–6211. [Google Scholar] [CrossRef]
- Tuazon, P.T.; Chinwah, M.; Traugh, J.A. Autophosphorylation and protein kinase activity of p21-activated protein kinase gamma-PAK are differentially affected by magnesium and manganese. Biochemistry 1998, 37, 17024–17029. [Google Scholar] [CrossRef]
- Sato, S.; Stark, H.A.; Martinez, J.; Beaven, M.A.; Jensen, R.T.; Gardner, J.D. Receptor occupation, calcium mobilization and amylase release in pancreatic acini: Effect of CCK-JMV-180. Am. J. Physiol. 1989, 257, G202–G209. [Google Scholar] [CrossRef]
- Stark, H.A.; Sharp, C.M.; Sutliff, V.E.; Martinez, J.; Jensen, R.T.; Gardner, J.D. CCK-JMV 180: A peptide that distinguishes high affinity cholecystokinin receptors from low affinity cholecystokinin receptors. Biochim. Biophys. Acta 1989, 1010, 145–150. [Google Scholar] [CrossRef]
- Berna, M.J.; Hoffmann, K.M.; Tapia, J.A.; Thill, M.; Pace, A.; Mantey, S.A.; Jensen, R.T. CCK causes PKD1 activation in pancreatic acini by signaling through PKC-delta and PKC-independent pathways. Biochim. Biophys. Acta 2007, 1773, 483–501. [Google Scholar] [CrossRef]
- Menard, R.E.; Mattingly, R.R. Cell surface receptors activate p21-activated kinase 1 via multiple Ras and PI3-kinase-dependent pathways. Cell. Signal. 2003, 15, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Clerk, A.; Sugden, P.H. Activation of p21-activated protein kinase alpha (alpha PAK) by hyperosmotic shock in neonatal ventricular myocytes. FEBS Lett. 1997, 403, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, V.A.; Bister, K.; Stefan, E. Interplay of PKA and Rac: Fine-tuning of Rac localization and signaling. Small GTPases 2013, 4, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Barrows, D.; He, J.Z.; Parsons, R. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs). J. Biol. Chem. 2016, 291, 20042–20054. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.Y.; You, S.T.; Kim, J.H.; Chung, J.H.; Han, S.B.; Shin, E.Y.; Kim, E.G. p21-activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF and beta-catenin/MITF pathways. J. Invest. Dermatol. 2015, 135, 1385–1394. [Google Scholar] [CrossRef]
- Xie, X.; Shi, X.; Guan, H.; Guo, Q.; Fan, C.; Dong, W.; Wang, G.; Li, F.; Shan, Z.; Cao, L.; et al. P21-activated kinase 4 involves TSH induced papillary thyroid cancer cell proliferation. Oncotarget 2017, 8, 24882–24891. [Google Scholar] [CrossRef]
- Naswa, N.; Sharma, P.; Gupta, S.K.; Karunanithi, S.; Reddy, R.M.; Patnecha, M.; Lata, S.; Kumar, R.; Malhotra, A.; Bal, C. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: Competitive or complimentary? Clin. Nucl. Med. 2014, 39, e27–e34. [Google Scholar] [CrossRef]
- Beeser, A.; Jaffer, Z.M.; Hofmann, C.; Chernoff, J. Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J. Biol. Chem. 2005, 280, 36609–36615. [Google Scholar] [CrossRef]
- Tabusa, H.; Brooks, T.; Massey, A.J. Knockdown of PAK4 or PAK1 inhibits the proliferation of mutant KRAS colon cancer cells independently of RAF/MEK/ERK and PI3K/AKT signaling. Mol. Cancer Res. 2013, 11, 109–121. [Google Scholar] [CrossRef]
- Bowers, S.L.; Norden, P.R.; Davis, G.E. Molecular Signaling Pathways Controlling Vascular Tube Morphogenesis and Pericyte-Induced Tube Maturation in 3D Extracellular Matrices. Adv. Pharmacol. 2016, 77, 241–280. [Google Scholar]
- Huang, Y.; Mikami, F.; Jono, H.; Zhang, W.; Weng, X.; Koga, T.; Xu, H.; Yan, C.; Kai, H.; Li, J.D. Opposing roles of PAK2 and PAK4 in synergistic induction of MUC5AC mucin by bacterium NTHi and EGF. Biochem. Biophys. Res. Commun. 2007, 359, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, J.; Zhu, F.; Wen, W.; Zykova, T.; Li, X.; Liu, K.; Peng, C.; Ma, W.; Shi, G.; et al. P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation. Carcinogenesis 2011, 32, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.Y.; Shim, E.S.; Lee, C.S.; Kim, H.K.; Kim, E.G. Phosphorylation of RhoGDI1 by p21-activated kinase 2 mediates basic fibroblast growth factor-stimulated neurite outgrowth in PC12 cells. Biochem. Biophys. Res. Commun. 2009, 379, 384–389. [Google Scholar] [CrossRef]
- Kang, M.J.; Seo, J.S.; Park, W.Y. Caveolin-1 inhibits neurite growth by blocking Rac1/Cdc42 and p21-activated kinase 1 interactions. Neuroreport 2006, 17, 823–827. [Google Scholar] [CrossRef]
- Shin, K.S.; Shin, E.Y.; Lee, C.S.; Quan, S.H.; Woo, K.N.; Soung, N.K.; Kwak, S.J.; Kim, S.R.; Kim, E.G. Basic fibroblast growth factor-induced translocation of p21-activated kinase to the membrane is independent of phospholipase C-gamma1 in the differentiation of PC12 cells. Exp. Mol. Med. 2002, 34, 172–176. [Google Scholar] [CrossRef]
- Woolfolk, E.A.; Eguchi, S.; Ohtsu, H.; Nakashima, H.; Ueno, H.; Gerthoffer, W.T.; Motley, E.D. Angiotensin II-induced activation of p21-activated kinase 1 requires Ca2+ and protein kinase C{delta} in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2005, 289, C1286–C1294. [Google Scholar] [CrossRef]
- Schmitz, U.; Ishida, T.; Ishida, M.; Surapisitchat, J.; Hasham, M.I.; Pelech, S.; Berk, B.C. Angiotensin II stimulates p21-activated kinase in vascular smooth muscle cells: Role in activation of JNK. Circ. Res. 1998, 82, 1272–1278. [Google Scholar] [CrossRef]
- Huynh, N.; Yim, M.; Chernoff, J.; Shulkes, A.; Baldwin, G.S.; He, H. Demonstration and biological significance of a gastrin-P21-activated kinase 1 feedback loop in colorectal cancer cells. Physiol. Rep. 2014, 2, e12048. [Google Scholar] [CrossRef]
- Huynh, N.; Yim, M.; Chernoff, J.; Shulkes, A.; Baldwin, G.S.; He, H. p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G561–G567. [Google Scholar] [CrossRef]
- Murthy, K.S.; Zhou, H.; Grider, J.R.; Brautigan, D.L.; Eto, M.; Makhlouf, G.M. Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation via Rho-associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI-17 pathway. Biochem. J. 2003, 374, 145–155. [Google Scholar]
- Royal, I.; Lamarche-Vane, N.; Lamorte, L.; Kaibuchi, K.; Park, M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol. Biol. Cell 2000, 11, 1709–1725. [Google Scholar] [CrossRef] [PubMed]
- Chahdi, A.; Miller, B.; Sorokin, A. Endothelin 1 induces beta 1Pix translocation and Cdc42 activation via protein kinase A-dependent pathway. J. Biol. Chem. 2005, 280, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Lee, H.S.; Lee, C.S.; You, S.T.; Kim, D.J.; Park, B.H.; Kang, M.J.; Heo, W.D.; Shin, E.Y.; Schwartz, M.A.; et al. p21-Activated kinase 4 promotes prostate cancer progression through CREB. Oncogene 2013, 32, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Shapiro, P.; Kumar, R.; Passaniti, A. Insulin-like growth factor-1 regulates endogenous RUNX2 activity in endothelial cells through a phosphatidylinositol 3-kinase/ERK-dependent and Akt-independent signaling pathway. J. Biol. Chem. 2004, 279, 42709–42718. [Google Scholar] [CrossRef]
- Chiang, Y.A.; Shao, W.; Xu, X.X.; Chernoff, J.; Jin, T. P21-activated protein kinase 1 (Pak1) mediates the cross talk between insulin and beta-catenin on proglucagon gene expression and its ablation affects glucose homeostasis in male C57BL/6 mice. Endocrinology 2013, 154, 77–88. [Google Scholar] [CrossRef]
- Bright, M.D.; Garner, A.P.; Ridley, A.J. PAK1 and PAK2 have different roles in HGF-induced morphological responses. Cell. Signal. 2009, 21, 1738–1747. [Google Scholar] [CrossRef]
- Miao, H.; Nickel, C.H.; Cantley, L.G.; Bruggeman, L.A.; Bennardo, L.N.; Wang, B. EphA kinase activation regulates HGF-induced epithelial branching morphogenesis. J. Cell Biol. 2003, 162, 1281–1292. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Srivastava, S.K.; Singh, S.; Arora, S.; Tyagi, N.; Andrews, J.; McClellan, S.; Carter, J.E.; Singh, A.P. CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget 2014, 5, 11490–11500. [Google Scholar] [CrossRef]
- Jensen, R.T. Involvement of cholecystokinin/gastrin-related peptides and their receptors in clinical gastrointestinal disorders. Pharmacol. Toxicol. 2002, 91, 333–350. [Google Scholar] [CrossRef]
- Williams, J.A. Regulation of Normal and Adaptative Pancreatic Growth. Pancreapedia Exocrine Pancreas Knowl. Base 2020. [Google Scholar] [CrossRef]
- Sans, M.D.; Williams, J.A. The mTor Signaling Pathway and regulation of Pancreatlc Function. Pancreapedia Exocrine Pancreas Knowl. Base 2021. [Google Scholar] [CrossRef]
- Lankisch, T.O.; Nozu, F.; Owyang, C.; Tsunoda, Y. High-affinity cholecystokinin type A receptor/cytosolic phospholipase A2 pathways mediate Ca2+ oscillations via a positive feedback regulation by calmodulin kinase in pancreatic acini. Eur. J. Cell Biol. 1999, 78, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Williams, J.A. A role for Rho and Rac in secretagogue-induced amylase release by pancreatic acini. Am. J. Physiol. (Cell Physiol.) 2005, 289, C22–C32. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Page, S.L.; Williams, J.A. Rho and Rac promote acinar morphological changes, actin reorganization, and amylase secretion. Am. J. Physiol. (Gastrointest. Liver Physiol.) 2005, 289, G561–G570. [Google Scholar] [CrossRef]
- Sabbatini, M.E.; Bi, Y.; Ji, B.; Ernst, S.A.; Williams, J.A. CCK activates RhoA and Rac1 differentially through Galpha13 and Galphaq in mouse pancreatic acini. Am. J. Physiol. Cell Physiol. 2010, 298, C592–C601. [Google Scholar] [CrossRef]
- Weber, H.C. Regulation and signaling of human bombesin receptors and their biological effects. Curr. Opin. Endocrinol. Diabetes Obes. 2009, 16, 66–71. [Google Scholar] [CrossRef]
- Tapia, J.A.; Ferris, H.A.; Jensen, R.T.; Marin, L.J. Cholecystokinin activates PYK2/CAKb, by a phospholipase C-dependent mechanism, and its association with the mitogen-activated protein kinase signaling pathway in pancreatic acinar cells. J. Biol. Chem. 1999, 274, 31261–31271. [Google Scholar] [CrossRef]
- Nuche-Berenguer, B.; Moreno, P.; Jensen, R.T. Elucidation of the Roles of the Src kinases in pancreatic acinar cell signaling. J. Cell Biochem. 2015, 116, 22–36. [Google Scholar] [CrossRef]
- Lynch, G.; Kohler, S.; Leser, J.; Beil, M.; Garcia-Marin, L.J.; Lutz, M.P. The tyrosine kinase Yes regulates actin structure and secretion during pancreatic acinar cell damage in rats. Pflug. Arch. 2004, 447, 445–451. [Google Scholar] [CrossRef]
- Nozu, F.; Owyang, C.; Tsunoda, Y. Involvement of phosphoinositide 3-kinase and its association with pp60src in cholecystokinin-stimulated pancreatic acinar cells. Eur. J. Cell Biol. 2000, 79, 803–809. [Google Scholar] [CrossRef]
- Redondo, P.C.; Lajas, A.I.; Salido, G.M.; Gonzalez, A.; Rosado, J.A.; Pariente, J.A. Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells. Biochem. J. 2003, 370, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Piiper, A.; Elez, R.; You, S.J.; Kronenberger, B.; Loitsch, S.; Roche, S.; Zeuzem, S. Cholecystokinin stimulates extracellular signal-regulated kinase through activation of the epidermal growth factor receptor, Yes, and protein kinase C. Signal amplification at the level of Raf by activation of protein kinase Cepsilon. J. Biol. Chem. 2003, 278, 7065–7072. [Google Scholar] [CrossRef] [PubMed]
- Pace, A.; Tapia, J.A.; Garcia-Marin, L.J.; Jensen, R.T. The Src family kinase, Lyn, is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors which stimulate its association with numerous other signaling molecules. Biochim. Biophys. Acta 2006, 1763, 356–365. [Google Scholar] [CrossRef]
- Sancho, V.; Nuche-Berenguer, B.; Jensen, R.T. The Src kinase Yes is activated in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters, but not pancreatic growth factors, which stimulate its association with numerous other signaling molecules. Biochim. Biophys. Acta 2012, 1823, 1285–1294. [Google Scholar] [CrossRef]
- Pace, A.; Garcia-Marin, L.J.; Tapia, J.A.; Bragado, M.J.; Jensen, R.T. Phosphospecific site tyrosine phosphorylation of p125FAK and proline-rich kinase 2 is differentially regulated by cholecystokinin receptor A activation in pancreatic acini. J. Biol. Chem. 2003, 278, 19008–19016. [Google Scholar] [CrossRef]
- Garcia, L.J.; Rosado, J.A.; Gonzalez, A.; Jensen, R.T. Cholecystokinin-stimulated tyrosine phosphorylation of p125FAK and paxillin is mediated by phospholipase C-dependent and -independent mechanisms and requires the integrity of the actin cytoskeleton and participation of p21rho. Biochem. J. 1997, 327, 461–472. [Google Scholar] [CrossRef]
- Rivard, N.; Rydzewska, G.; Lods, J.S.; Martinez, J.; Morisset, J. Pancreas growth, tyrosine kinase, PtdIns 3-kinase, and PLD involve high-affinity CCK-receptor occupation. Am. J. Physiol. 1994, 266, G62–G70. [Google Scholar] [CrossRef]
- Tapia, J.A.; Garcia-Marin, L.J.; Jensen, R.T. Cholecystokinin-stimulated protein kinase C-delta activation, tyrosine phosphorylation and translocation is mediated by Src tyrosine kinases in pancreatic acinar cells. J. Biol. Chem. 2003, 12, 35220–35230. [Google Scholar] [CrossRef]
- Andreoletti, A.G.; Bragado, M.J.; Tapia, J.A.; Jensen, R.T.; Garcia-Marin, L.J. Cholecystokinin rapidly stimulates CrK11 function in vivo in rat pancreatic acini: Formation of crk-11-protein complexes. Eur. J. Biochem. 2003, 270, 4706–4713. [Google Scholar] [CrossRef]
- Tsunoda, Y.; Yoshida, H.; Nozu, F. Receptor-operated Ca2+ influx and its association with the Src family in secretagogue-stimulated pancreatic acini. Biochem. Biophys. Res. Commun. 2004, 314, 916–924. [Google Scholar] [CrossRef]
- Jensen, R.T.; Wank, S.A.; Rowley, W.H.; Sato, S.; Gardner, J.D. Interaction of CCK with pancreatic acinar cells. Trends Pharmacol. Sci. 1989, 10, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Li, K.S.; Xiao, P.; Zhang, D.L.; Hou, X.B.; Ge, L.; Yang, D.X.; Liu, H.D.; He, D.F.; Chen, X.; Han, K.R.; et al. Identification of para-Substituted Benzoic Acid Derivatives as Potent Inhibitors of the Protein Phosphatase Slingshot. ChemMedChem 2015, 10, 1980–1987. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.M.; Abo, A.; Ridley, A.J. PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J. Cell Sci. 2002, 115, 3947–3956. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, A.; Groblewski, G.E.; Schafer, C.; Guan, K.L.; Williams, J.A. Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Am. J. Physiol. 1997, 273, C1472–C1479. [Google Scholar] [CrossRef]
- Berna, M.J.; Tapia, J.A.; Sancho, V.; Thill, M.; Pace, A.; Hoffmann, K.M.; Gonzalez-Fernandez, L.; Jensen, R.T. Gastrointestinal growth factors and hormones have divergent effects on Akt activation. Cell Signal 2009, 21, 622–638. [Google Scholar] [CrossRef]
- Gukovsky, I.; Cheng, J.H.; Nam, K.J.; Lee, O.T.; Lugea, A.; Fischer, L.; Penninger, J.M.; Pandol, S.J.; Gukovskaya, A.S. Phosphatidylinositide 3-kinase gamma regulates key pathologic responses to cholecystokinin in pancreatic acinar cells. Gastroenterology 2004, 126, 554–566. [Google Scholar] [CrossRef]
- Smith, J.P.; Fonkoua, L.K.; Moody, T.W. The Role of Gastrin and CCK Receptors in Pancreatic Cancer and other Malignancies. Int. J. Biol. Sci. 2016, 12, 283–291. [Google Scholar] [CrossRef]
- Wong, L.E.; Reynolds, A.B.; Dissanayaka, N.T.; Minden, A. p120-catenin is a binding partner and substrate for Group B Pak kinases. J. Cell Biochem. 2010, 110, 1244–1254. [Google Scholar] [CrossRef]
- Berna, M.J.; Tapia, J.A.; Sancho, V.; Jensen, R.T. Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr. Opin. Pharmacol. 2007, 7, 583–592. [Google Scholar] [CrossRef]
- He, H.; Baldwin, G.S. Rho GTPases and p21-activated kinase in the regulation of proliferation and apoptosis by gastrins. Int. J. Biochem. Cell Biol. 2008, 40, 2018–2022. [Google Scholar] [CrossRef]
- Tapia, J.A.; Camello, C.; Jensen, R.T.; Garcia, L.J. EGF stimulates tyrosine-phosphorylation of focal adhesion kinase (p125FAK) and paxillin in rat pancreatic acinar cells by a phospholipase C-independent process that depends on P13-K, the small GTP-binding protein, Rho and the integrity of the actin cytoskeleton. Biochim. Biophys. Acta 1999, 1448, 486–499. [Google Scholar] [PubMed]
- Morisset, J.; Aliaga, J.C.; Calvo, E.L.; Bourassa, J.; Rivard, N. Expression and modulation of p42/p44 MAPKs and cell cycle regulatory proteins in rat pancreas regeneration. Am. J. Physiol. 1999, 277, G953–G959. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Okamura, D.; Starr, M.E.; Saito, H.; Evers, B.M. Age-dependent reduction of the PI3K regulatory subunit p85alpha suppresses pancreatic acinar cell proliferation. Aging Cell 2012, 11, 305–314. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tsubouchi, A.; Mazaki, Y.; Sabe, H. Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J. Biol. Chem. 2001, 276, 6037–6045. [Google Scholar] [CrossRef]
- Brown, M.C.; West, K.A.; Turner, C.E. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol. Biol. Cell 2002, 13, 1550–1565. [Google Scholar] [CrossRef]
- Turner, C.E.; Brown, M.C.; Perrotta, J.A.; Riedy, M.C.; Nikolopoulos, S.N.; McDonald, A.R.; Bagrodia, S.; Thomas, S.; Leventhal, P.S. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol. 1999, 145, 851–863. [Google Scholar] [CrossRef]
- Wang, R.; Li, Q.F.; Anfinogenova, Y.; Tang, D.D. Dissociation of Crk-associated substrate from the vimentin network is regulated by p21-activated kinase on ACh activation of airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L240–L248. [Google Scholar] [CrossRef]
- Ryu, B.J.; Lee, H.; Kim, S.H.; Heo, J.N.; Choi, S.W.; Yeon, J.T.; Lee, J.; Lee, J.; Cho, J.Y.; Kim, S.H.; et al. PF-3758309, p21-activated kinase 4 inhibitor, suppresses migration and invasion of A549 human lung cancer cells via regulation of CREB, NF-kappaB, and beta-catenin signalings. Mol. Cell Biochem. 2014, 389, 69–77. [Google Scholar] [CrossRef]
- Wells, C.M.; Whale, A.D.; Parsons, M.; Masters, J.R.; Jones, G.E. PAK4: A pluripotent kinase that regulates prostate cancer cell adhesion. J. Cell Sci. 2010, 123, 1663–1673. [Google Scholar] [CrossRef]
- Qu, J.; Cammarano, M.S.; Shi, Q.; Ha, K.C.; de Lanerolle, P.; Minden, A. Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol. Cell Biol. 2001, 21, 3523–3533. [Google Scholar] [CrossRef]
- Ghatak, S.; Misra, S.; Moreno-Rodrigue, R.A.; Hascall, V.C.; Leone, G.W.; Markwald, R.R. Periostin/beta1integrin interaction regulates p21-activated kinases in valvular interstitial cell survival and in actin cytoskeleton reorganization. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Bogoyevitch, M.A.; Ngoei, K.R.; Zhao, T.T.; Yeap, Y.Y.; Ng, D.C. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochim. Biophys. Acta 2010, 1804, 463–475. [Google Scholar] [CrossRef]
- Bachmann, V.A.; Riml, A.; Huber, R.G.; Baillie, G.S.; Liedl, K.R.; Valovka, T.; Stefan, E. Reciprocal regulation of PKA and Rac signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 8531–8536. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Wang, Z.H.; Mi, X.G.; Liu, L.; Tan, Y. MiR-199a/b-3p suppresses migration and invasion of breast cancer cells by downregulating PAK4/MEK/ERK signaling pathway. IUBMB Life 2015, 67, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Ha, U.H.; Lim, J.H.; Kim, H.J.; Wu, W.; Jin, S.; Xu, H.; Li, J.D. MKP1 regulates the induction of MUC5AC mucin by Streptococcus pneumoniae pneumolysin by inhibiting the PAK4-JNK signaling pathway. J. Biol. Chem. 2008, 283, 30624–30631. [Google Scholar] [CrossRef]
- He, W.; Zhao, Z.; Anees, A.; Li, Y.; Ashraf, U.; Chen, Z.; Song, Y.; Chen, H.; Cao, S.; Ye, J. p21-Activated Kinase 4 Signaling Promotes Japanese Encephalitis Virus-Mediated Inflammation in Astrocytes. Front. Cell. Infect. Microbiol. 2017, 7, 271. [Google Scholar] [CrossRef]
- Dabrowski, A.; Tribillo, I.; Dabrowska, M.I.; Wereszczynska-Siemiatkowska, U.; Gabryelewicz, A. Activation of mitogen-activated protein kinases in different models of pancreatic acinar cell damage. Z. Gastroenterol. 2000, 38, 469–481. [Google Scholar] [CrossRef]
- Dabrowski, A.; Boguslowicz, C.; Dabrowska, M.; Tribillo, I.; Gabryelewicz, A. Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas 2000, 21, 376–384. [Google Scholar] [CrossRef]
- Ramnath, R.D.; Sun, J.; Bhatia, M. Involvement of SRC family kinases in substance P-induced chemokine production in mouse pancreatic acinar cells and its significance in acute pancreatitis. J. Pharmacol. Exp. Ther. 2009, 329, 418–428. [Google Scholar] [CrossRef]
- Chow, H.Y.; Jubb, A.M.; Koch, J.N.; Jaffer, Z.M.; Stepanova, D.; Campbell, D.A.; Duron, S.G.; O’Farrell, M.; Cai, K.Q.; Klein-Szanto, A.J.; et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012, 72, 5966–5975. [Google Scholar] [CrossRef]
- Cho, S.M.; Lee, E.O.; Kim, S.H.; Lee, H.J. Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells. BMC Complement. Altern. Med. 2014, 14, 275. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fang, Y. A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem. Pharmacol. 2002, 64, 1071–1077. [Google Scholar] [CrossRef]
- Gingras, A.C.; Raught, B.; Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001, 15, 807–826. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sampat, K.; Hu, N.; Zakari, J.; Yuspa, S.H. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes. J. Biol. Chem. 2006, 281, 3237–3243. [Google Scholar] [CrossRef]
- King, H.; Thillai, K.; Whale, A.; Arumugam, P.; Eldaly, H.; Kocher, H.M.; Wells, C.M. PAK4 interacts with p85 alpha: Implications for pancreatic cancer cell migration. Sci. Rep. 2017, 7, 42575. [Google Scholar] [CrossRef]
- Shu, X.R.; Wu, J.; Sun, H.; Chi, L.Q.; Wang, J.H. PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn. Pathol. 2015, 10, 177. [Google Scholar] [CrossRef]
- He, L.F.; Xu, H.W.; Chen, M.; Xian, Z.R.; Wen, X.F.; Chen, M.N.; Du, C.W.; Huang, W.H.; Wu, J.D.; Zhang, G.J. Activated-PAK4 predicts worse prognosis in breast cancer and promotes tumorigenesis through activation of PI3K/AKT signaling. Oncotarget 2017, 8, 17573–17585. [Google Scholar] [CrossRef]
- Kim, H.; Woo, D.J.; Kim, S.Y.; Yang, E.G. p21-activated kinase 4 regulates HIF-1alpha translation in cancer cells. Biochem. Biophys. Res. Commun. 2017, 486, 270–276. [Google Scholar] [CrossRef]
- Thillai, K.; Lam, H.; Sarker, D.; Wells, C.M. Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget 2017, 8, 14173–14191. [Google Scholar] [CrossRef]
- Cao, J.; Yu, J.P.; Liu, C.H.; Zhou, L.; Yu, H.G. Effects of gastrin 17 on beta-catenin/Tcf-4 pathway in Colo320WT colon cancer cells. World J. Gastroenterol. 2006, 12, 7482–7487. [Google Scholar] [CrossRef]
- Sans, M.D.; Kimball, S.R.; Williams, J.A. Effect of CCK and intracellular calcium to regulate eIF2B and protein synthesis in rat pancreatic acinar cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G267–G276. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol. Ther. 2015, 148, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Cuzzocrea, S.; Malleo, G.; Genovese, T.; Mazzon, E.; Esposito, E.; Muia, C.; Abdelrahman, M.; Di Paola, R.; Thiemermann, C. Effects of glycogen synthase kinase-3beta inhibition on the development of cerulein-induced acute pancreatitis in mice. Crit. Care Med. 2007, 35, 2811–2821. [Google Scholar] [PubMed]
- Guo, L.; Sans, M.D.; Hou, Y.; Ernst, S.A.; Williams, J.A. c-Jun/AP-1 is required for CCK-induced pancreatic acinar cell dedifferentiation and DNA synthesis in vitro. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G1381–G1396. [Google Scholar] [CrossRef]
- Hu, Y.; Wan, R.; Yu, G.; Shen, J.; Ni, J.; Yin, G.; Xing, M.; Chen, C.; Fan, Y.; Xiao, W.; et al. Imbalance of Wnt/Dkk negative feedback promotes persistent activation of pancreatic stellate cells in chronic pancreatitis. PLoS ONE 2014, 9, e95145. [Google Scholar] [CrossRef]
- Huang, H.L.; Tang, G.D.; Liang, Z.H.; Qin, M.B.; Wang, X.M.; Chang, R.J.; Qin, H.P. Role of Wnt/beta-catenin pathway agonist SKL2001 in Caerulein-induced acute pancreatitis. Can. J. Physiol. Pharmacol. 2019, 97, 15–22. [Google Scholar] [CrossRef]
- Sorrenson, B.; Cognard, E.; Lee, K.L.; Dissanayake, W.C.; Fu, Y.; Han, W.; Hughes, W.E.; Shepherd, P.R. A Critical Role for beta-Catenin in Modulating Levels of Insulin Secretion from beta-Cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization. J. Biol. Chem. 2016, 291, 25888–25900. [Google Scholar] [CrossRef]
- Yamada, N.; Noguchi, S.; Mori, t.; Naoe, T.; Maruo, K.; Akao, Y. Tumor-suppressive microRNA-145 targets catenin delta-1 to regulate Wnt/beta-catenin signaling in human colon cancer cells. Cancer Lett. 2013, 335, 332–342. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, M.; Wilson, T.M.; Omelchenko, I.; Klimek, J.E.; Wilmarth, P.A.; David, L.L.; Nuttall, A.L.; Gillespie, P.G.; Shi, X. Na+/K+-ATPase alpha1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity. PLoS ONE 2011, 6, e16547. [Google Scholar]
- Kunimura, K.; Akiyoshi, S.; Uruno, T.; Matsubara, K.; Sakata, D.; Morino, K.; Hirotani, K.; Fukui, Y. DOCK2 regulates MRGPRX2/B2-mediated mast cell degranulation and drug-induced anaphylaxis. J. Allergy Clin. Immunol. 2023, 151, 1585–1594. [Google Scholar] [CrossRef]
- Rider, L.; Oladimeji, P.; Diakonova, M. PAK1 regulates breast cancer cell invasion through secretion of matrix metalloproteinases in response to prolactin and three-dimensional collagen IV. Mol. Endocrinol. 2013, 27, 1048–1064. [Google Scholar] [CrossRef] [PubMed]
- Schiavi-Ehrenhaus, L.J.; Romarowski, A.; Jabloñski, M.; Krapf, D.; Luque, G.M.; Buffone, M.G. The early molecular events leading to COFILIN phosphorylation during mouse sperm capacitation are essential for acrosomal exocytosis. J. Biol. Chem. 2022, 298, 101988. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.E.; Xu, M.; Sun, J.; Jin, T.; Brubaker, P.L. The rho guanosine 5′-triphosphatase, cell division cycle 42, is required for insulin-induced actin remodeling and glucagon-like peptide-1 secretion in the intestinal endocrine L cell. Endocrinology 2009, 150, 5249–5261. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhou, Z.; Jia, Z. PAK1 regulates inhibitory synaptic function via a novel mechanism mediated by endocannabinoids. Small GTPases 2018, 9, 322–326. [Google Scholar] [CrossRef]
- Li, Q.; Ho, C.S.; Marinescu, V.; Bhatti, H.; Bokoch, G.M.; Ernst, S.A.; Holz, R.W.; Stuenkel, E.L. Facilitation of Ca(2+)-dependent exocytosis by Rac1-GTPase in bovine chromaffin cells. J. Physiol. 2003, 550, 431–445. [Google Scholar] [CrossRef]
- Suzuki, J.; Jin, Z.G.; Meoli, D.F.; Matoba, T.; Berk, B.C. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ. Res. 2006, 98, 811–817. [Google Scholar] [CrossRef]
- Pandol, S.J.; Saluja, A.K.; Imrie, C.W.; Banks, P.A. Acute pancreatitis: Bench to the bedside. Gastroenterology 2007, 132, 1127–1151. [Google Scholar] [CrossRef]
- Lankisch, P.G.; Apte, M.; Banks, P.A. Acute pancreatitis. Lancet 2015, 386, 85–96. [Google Scholar] [CrossRef]
- Dammann, K.; Khare, V.; Gasche, C. Republished: Tracing PAKs from GI inflammation to cancer. Postgrad. Med. J. 2014, 90, 657–668. [Google Scholar] [CrossRef]
- Ji, B.; Gaiser, S.; Chen, X.; Ernst, S.A.; Logsdon, C.D. Intracellular trypsin induces pancreatic acinar cell death but not NF-kappaB activation. J. Biol. Chem. 2009, 284, 17488–17498. [Google Scholar] [CrossRef]
- Dixit, A.D.R.K.; Dudeja, V.; Saluja, A.K. Role of trypinsinogen activation in genesis of pancreatitis. Pancreapedia Exocrine Pancreas Knowl. Base 2016. [Google Scholar] [CrossRef]
- Tonelli, F.; Giudici, F.; Nesi, G.; Batignani, G.; Brandi, M.L. Operation for insulinomas in multiple endocrine neoplasia type 1: When pancreatoduodenectomy is appropriate. Surgery 2017, 161, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Granados, M.P.; Salido, G.M.; Pariente, J.A.; Gonzalez, A. Generation of ROS in response to CCK-8 stimulation in mouse pancreatic acinar cells. Mitochondrion 2004, 3, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Binker, M.G.; Binker-Cosen, A.A.; Gaisano, H.Y.; Cosen-Binker, L.I. Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitis-associated lung injury in mice. Exp. Physiol. 2008, 93, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Mareninova, O.A.; Sung, K.F.; Hong, P.; Lugea, A.; Pandol, S.J.; Gukovsky, I.; Gukovskaya, A.S. Cell death in pancreatitis: Caspases protect from necrotizing pancreatitis. J. Biol. Chem. 2006, 281, 3370–3381. [Google Scholar] [CrossRef]
- Kaiser, A.M.; Saluja, A.K.; Sengupta, A.; Saluja, M.; Steer, M.L. Relationship between severity, necrosis, and apoptosis in five models of experimental acute pancreatitis. Am. J. Physiol. 1995, 269, C1295–C1304. [Google Scholar] [CrossRef]
- Frost, J.A.; Swantek, J.L.; Stippec, S.; Yin, M.J.; Gaynor, R.; Cobb, M.H. Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J. Biol. Chem. 2000, 275, 19693–19699. [Google Scholar] [CrossRef]
- Ma, B.; Wu, L.; Lu, M.; Gao, B.; Qiao, X.; Sun, B.; Xue, D.; Zhang, W. Differentially expressed kinase genes associated with trypsinogen activation in rat pancreatic acinar cells treated with taurolithocholic acid 3-sulfate. Mol. Med. Rep. 2013, 7, 1591–1596. [Google Scholar] [CrossRef]
- Tang, Y.; Yu, J.; Field, J. Signals from the Ras, Rac, and Rho GTPases converge on the Pak protein kinase in Rat-1 fibroblasts. Mol. Cell. Biol. 1999, 19, 1881–1891. [Google Scholar] [CrossRef]
- Yu, C.; Merza, M.; Luo, L.; Thorlacius, H. Inhibition of Ras signalling reduces neutrophil infiltration and tissue damage in severe acute pancreatitis. Eur. J. Pharmacol. 2015, 746, 245–251. [Google Scholar] [CrossRef]
- Zhen, J.; Chen, W.; Liu, Y.; Zang, X. Baicalin Protects Against Acute Pancreatitis Involving JNK Signaling Pathway via Regulating miR-15a. Am. J. Chin. Med. 2021, 49, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.M.; Manser, E. PAKs in human disease. Prog. Mol. Biol. Transl. Sci. 2012, 106, 171–187. [Google Scholar] [PubMed]
- Rane, C.K.; Minden, A. P21 activated kinase signaling in cancer. Semin. Cancer Biol. 2019, 54, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.Z.; Field, J. PAK signaling in cancer. Cell Logist. 2012, 2, 105–116. [Google Scholar] [CrossRef]
- Chen, A.; Tang, Y.; Zhuo, Y.; Wang, Q.; Pahk, A.; Field, J. Ras activation of PAK protein kinases. Methods Enzymol. 2001, 333, 55–61. [Google Scholar]
- Adamopoulos, C.; Cave, D.D.; Papavassiliou, A.G. Inhibition of the RAF/MEK/ERK Signaling Cascade in Pancreatic Cancer: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 1631. [Google Scholar] [CrossRef]
- Miller-Phillips, L.; Collisson, E.A. RAS and Other Molecular Targets in Pancreatic Cancer: The Next Wave Is Coming. Curr. Treat. Options Oncol. 2023, 24, 1088–1101. [Google Scholar] [CrossRef]
- Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 2003, 3, 11–22. [Google Scholar] [CrossRef]
- Wittinghofer, A.; Pai, E.F. The structure of Ras protein: A model for a universal molecular switch. Trends Biochem. Sci. 1991, 16, 382–387. [Google Scholar] [CrossRef]
- Zhao, H.; Tao, S. MiRNA-221 protects islet β cell function in gestational diabetes mellitus by targeting PAK1. Biochem. Biophys. Res. Commun. 2019, 520, 218–224. [Google Scholar] [CrossRef]
- Chen, Y.C.; Fueger, P.T.; Wang, Z. Depletion of PAK1 enhances ubiquitin-mediated survivin degradation in pancreatic β-cells. Islets 2013, 5, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Holtz, B.J.; Lodewyk, K.B.; Sebolt-Leopold, J.S.; Ernst, S.A.; Williams, J.A. ERK activation is required for CCK-mediated pancreatic adaptive growth in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G700–G710. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Melton, D.A. Pancreas regeneration. Nature 2018, 557, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Socorro, M.; Esni, F. Pancreatic Regeneration: Models, Mechanisms and Inconsistencies. Pancreapedia Exocrine Pancreas Knowl. Base 2020. [Google Scholar] [CrossRef]
- Douziech, N.; Calvo, E.; Laine, J.; Morisset, J. Activation of MAP kinases in growth responsive pancreatic cancer cells. Cell Signal 1999, 11, 591–602. [Google Scholar] [CrossRef]
Group I PAKs | Group II PAKs | References | |
---|---|---|---|
Members | PAK1, PAK2 and PAK3 | PAK4, PAK5 and PAK6 | [1,2,3] |
Function | Cell survival, apoptosis, cell motility, protein synthesis, glucose homeostasis, secretion, growth and cellular proliferation | Regulation of cell morphology, cytoskeletal organization, cell proliferation, cell cycle control, migration, secretion, growth and survival | [4,6,10,11,12,13,14,15,16,17,20] |
Activators | Cdc42/Rac | Cdc42 > Rac | [1,2,6,8,27,28] |
Phosphorylation site | Thr423 in PAK1 Thr402 in PAK2 Thr421 in PAK3 | Ser474 in PAK4 Ser602 in PAK5 Ser560 in PAK6 | [1,2,8,9,10,27,28,29,30] |
Methods of activation | The autoinhibitory domain (AID) overlaps with the PBD, and together they act as a dimer. Active Cdc42 or Rac binds to the PBD, disrupting the interaction between the AID and the PBD, leading to a conformational change of PAK becoming a monomer, which subsequently becomes autophosphorylated | Model I: Active Cdc42 binds to the PBD and causes a conformational change; PAK4 exists as a monomer in the inactive state and remains inactive due to the binding of the kinase domain and the AID-like sequence. Model II: Reduction in PSD autoinhibition mediated by SH3 proteins; Cdc42 binds to the PBD, reorienting it and allowing the PSD to bind to SH3 proteins, resulting in the reduction in autoinhibition and kinase activation. | [1,2,8,10,20,27,28,29,31,32] |
PAK2 | PAK4 | References | |
---|---|---|---|
Most used inhibitors | IPA-3 (allosteric) FRAX597 (ATP competitive) | PF-3758309 (ATP competitive) LCH-7749944 (ATP competitive) | [33,34,35,36,37,38,39] |
Stimulation by pancreatic secretagogues | CCK-8, carbachol, bombesin | CCK-8, carbachol, bombesin, endothelin-1, VIP, secretin | [10,14,15] |
Stimulation by pancreatic growth factors | EGF, bFGF, PDGF | EGF, IGF, HGF, EGF, bFGF, PDGF | [10,14] |
Stimulation by post-receptor activators | TPA | TPA; thapsigargin, A23187, 8-Br-cAMP, forskolin | [10,14,15] |
CCK1 receptor state: EC50 of CCK-8 (nM) EC50 of CCK-JMV (nM) | 0.44 ± 0.05 0.18 ± 0.14 | 0.052 ± 0.003 0.10 ± 0.01 | [10,14] |
Signaling pathways | PYK2, p125FAK; paxillin, p130CAS; c-Raf, Mek1/2, p44/42, JNK; p85PI3K, Akt (reversed inhibition), p70S6K (reversed inhibition); caspases 3, 8, 9; trypsin activity; LDH release; ROS generation | PYK2, p125FAK; paxillin, p130CAS; Mek1/2, p44/42, GSK3, ß-catenin; PP2A, cofilin | [10,12,14,40,41] |
Exocrine function | Growth; amylase release | Growth; amylase release; fluid secretion (Na+, K+-ATPase) | [10,14,15] |
Group I PAKs | Group II PAKs | References |
---|---|---|
Similarities with pancreatic acinar cells | [10,14,15] | |
Pancreatic hormones/secretagogues/neurotransmitters | ||
Carbachol stimulated PAK1 in Cos7 cells | No data | [92] |
Endothelin did not activate group I PAKs in myocytes | No data | [93] |
No data | Activation of some GPCRs, such as those for ß-adrenergic agents, prostaglandins and α-MSH, can stimulate PAK4 activation via cAMP in HEK293 cells, B16 melanoma cells and MCF7 | [94,95,96] |
No data | Different hormones can activate PAK4, such as thyroid-stimulating hormones in papillary thyroid cancer; C-X-C motif chemokine 12 in prostate cancer; and α-MSH in B16 melanoma cells | [96,97,98] |
Pancreatic growth factors | ||
Insulin did not stimulate PAK1/PAK2 in NIH-3T3 cells | Insulin activates PAK4 in epithelial cells | [99,100,101,102] |
No data | IGF-1 can active PAK4 | [9,29] |
No data | HGF activates PAK4 in epithelial cells | [100,101,102] |
EGF activated PAK2 in mouse skin epidermal cells and PAK1 in Cos7 cells | EGF activates PAK4 in epithelial cells | [92,100,101,102,103] |
bFGF stimulated PAK1/PAK2 phosphorylation in NIH-3T3 cells and stimulated cell growth by activating PAK1/PAK2 in PC-12 cells | No data | [99,104,105,106] |
PDGF stimulated PAK1/PAK2 phosphorylation in NIH-3T3 cells | PDGF can active PAK4 | [9,29,99] |
Group I PAKs are activated in a PLC-dependent manner by angiotensin II in vascular smooth muscle cells, gastrin in colorectal cancer cells and colorectal mucosa cells | No data | [107,108] |
Group I PAKs are activated in a PLC-dependent manner by gastrin in colorectal cancer cells and colorectal mucosa cells | [109,110] | |
Group I PAKs are activated by Rac1, which is a PAK activator in other tissues, as well as group I PAKs’ activation by muscarinic cholinergic agents in fibroblasts or neuroblastoma cells and in smooth muscle cells | No data | [16,92,111,112] |
Post-receptor activators | ||
No data | 8-Br-cAMP activated Cdc42 in human mesangial cells, which is the principal upstream activator of PAK4 | [1,2,6,8,27,28,113] |
No data | Forskolin can activate PAK4 in papillary thyroid cells and in prostate cancer cells | [97,114] |
Differences with pancreatic acinar cells | ||
Pancreatic hormones/secretagogues/neurotransmitters | ||
Not data | Not data | |
Pancreatic growth factors | ||
Group I PAKs mediate IGF-1 and insulin signaling in mesothelial cells and in mouse endocrine L cells | No data | [115,116] |
HGF regulated PAK1/PAK2 in prostate cancer and epithelial cells | No data | [117] |
Post-receptor activators | ||
No data | No data |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Alvarez, I.; Jensen, R.T. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. Biology 2025, 14, 113. https://doi.org/10.3390/biology14020113
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. Biology. 2025; 14(2):113. https://doi.org/10.3390/biology14020113
Chicago/Turabian StyleRamos-Alvarez, Irene, and Robert T. Jensen. 2025. "The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function" Biology 14, no. 2: 113. https://doi.org/10.3390/biology14020113
APA StyleRamos-Alvarez, I., & Jensen, R. T. (2025). The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. Biology, 14(2), 113. https://doi.org/10.3390/biology14020113