Comparative Metabolite Profiling Between Cordyceps sinensis and Other Cordyceps by Untargeted UHPLC-MS/MS
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Samples Collection
2.3. Quality Control Samples
2.4. UHPLC-MS/MS Analysis
2.5. Data Anlaysis
3. Results
3.1. Principal Component Analysis of C. sinensis and Other Cordyceps
3.2. Comparative Analysis of Metabolites
3.3. Screening for Significantly Different Metabolites
3.4. Relative Quantitative Analysis of Nucleotide-Related Metabolites in C. sinensis and Its Adulterants
3.5. Partial Differential Metabolic Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, C.; Guo, S.; Wang, W.; Liu, X. Cordyceps industry in China. Mycology 2015, 6, 121–129. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, H.; Li, S.; Zhong, X.; Wang, H.; Liu, X. Comparative metabolic profiling of Ophiocordyceps sinensis and its cultured mycelia using GC -MS. Food Res. Int. 2020, 134, 109241. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Jiao, L.; Jiang, Y.; Li, H.; Jiang, S.; Lhosumtseiring, N.; Fu, S.; Dong, C.; Zhan, Y.; et al. A survey of the geographic distribution of Ophiocordyceps sinensis. J. Microbiol. 2011, 49, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, S.; Chen, L.; Zhu, Y.; Cheng, Z. Effects of fungus–host associations on nucleoside differences among Ophiocordyceps sinensis populations on the Qinghai–Tibet Plateau of China. Arch. Microbiol. 2020, 202, 2323–2328. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tang, C.; He, H.; Cao, Z.; Xiao, M.; He, M.; Qi, J.; Li, Y.; Li, X. Evaluation of Cordyceps sinensis Quality in 15 Production Areas Using Metabolomics and the Membership Function Method. J. Fungi. 2024, 10, 356. [Google Scholar] [CrossRef]
- Sharma, S. Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: Conservation and biotechnological priorities. Curr. Sci. 2004, 86, 1614–1619. [Google Scholar]
- Zhang, M.; Sun, X.; Miao, Y.; Li, M.; Huang, L. Cordyceps cicadae and Cordyceps gunnii have closer species correlation with Cordyceps sinensis: From the perspective of metabonomic and MaxEnt models. Sci. Rep. 2022, 12, 20469. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Hou, D.; Zou, W.; Wang, J.; Luo, R.; Wang, M.; Yu, H. Comparison of Widely Targeted Metabolomics and Untargeted Metabolomics of Wild Ophiocordyceps sinensis. Molecules 2022, 27, 3645. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Yang, F.Q.; Tsim, K.W.K. Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J. Pharm. Biomed. Anal. 2006, 41, 1571–1584. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Ye, M.; Zhou, Z.; Sun, W.; Lin, X. The genus Cordyceps: A chemical and pharmacological review. J. Pharm. Pharmacol. 2013, 65, 474–493. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, J.; Wang, L.Y.; Li, S.P. Advanced development in chemical analysis of Cordyceps. J. Pharm. Biomed. Anal. 2014, 87, 271–289. [Google Scholar] [CrossRef]
- Olatunji, O.J.; Tang, J.; Tola, A.; Auberon, F.; Oluwaniyi, O.; Ouyang, Z. The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 2018, 129, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Shin, H.S.; Leyva-Gómez, G.; Prado-Audelo, M.L.D.; Cortes, H.; Singh, Y.D.; Panda, M.K.; Mishra, A.P.; Nigam, M.; Saklani, S.; et al. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front Pharmacol. 2021, 11, 602364. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kan, L.; Nie, S.; Chen, H.; Cui, S.W.; Phillips, A.O.; Phillips, G.O.; Li, Y.; Xie, M. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT-Food Sci. Technol. 2015, 63, 2–7. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Wang, W.; Zhang, H.; Zhang, X.; Han, C. The Chemical Constituents and Pharmacological Actions of Cordyceps sinensis. Evid. Based Complement. Altern. Med. 2015, 2015, 575063. [Google Scholar]
- Hsu, T.H.; Shiao, L.H.; Hsieh, C.; Chang, D.M. A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chem. 2002, 78, 463–469. [Google Scholar] [CrossRef]
- Ding, S.L.; Wang, M.; Fang, S.; Xu, H.B.; Fan, H.T.; Tian, Y.; Zhai, Y.D.; Lu, S.; Qi, X.; Wei, F.; et al. D-dencichine Regulates Thrombopoiesis by Promoting Megakaryocyte Adhesion, Migration and Proplatelet Formation. Front. Pharmacol. 2018, 9, 297. [Google Scholar] [CrossRef]
- Rachel, R.; Rafael, L.P.; Ângela, M.B.; Ana, L.C.M. The therapeutic potential of Cordyceps sinensis in cancer: A review of preclinical and clinical studies. Phytother. Res. 2022, 36, 32–50. [Google Scholar]
- Zhu, L.N.; Liu, Y.F.; Zhong, H.X.; Li, C.H.; Zhang, Z.; Zhou, S.; Gao, X.H.; Tang, Q.J. Effects of culture media and culture technique on the bioactive and nutrition components in Cordyceps militaris fruiting bodies. Mycosystema 2021, 40, 3034–3045. [Google Scholar]
- Xiong, C.H.; Xia, Y.L.; Zheng, P.; Wang, C. Developmental stage-specific gene expression profiling for amedicinal fungus Cordyceps militaris. Mycology 2010, 1, 25–66. [Google Scholar] [CrossRef]
- Rao, Y.K.; Fang, S.H.; Wu, W.S.; Tzeng, Y.M. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. J. Ethnopharmacol. 2010, 131, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Pao, H.Y.; Pan, B.S.; Leu, S.F.; Huang, B.M. Cordycepin stimulated steroidogenesis in MA-10 mouse Leydig tumor cells through the protein kinase C pathway. J. Agric. Food Chem. 2012, 60, 4905–4913. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, K.; Wang, Z.; Wang, S.; Xu, F. Comparison of metabolism substances in Cordyceps sinensis and Cordyceps militaris cultivated with tussah pupa based on LC-MS. J. Food Biochem. 2021, 45, e13735. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Guo, S.; Xie, D.; Li, S.; Hu, H. Lipidomic profiling of wild cordyceps and its substituents by liquid chromatography-electrospray ionization-tandem mass spectrometry. LWT-Food Sci. Technol. 2022, 163, 113497. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, P.; Le, M.; Qi, Y.; Yang, Z.; Hu, F.; Ling, T.; Bao, G. Improving flavor of summer Keemun black tea by solid-state fermentation using Cordyceps militaris revealed by LC/MS-based metabolomics and GC/ MS analysis. Food. Chem. 2023, 407, 135172. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.S.; Halpern, G.M.; Jones, K. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: Part I. J. Altern. Complement. Med. 1998, 4, 289–303. [Google Scholar]
- Li, W.J.; Wang, X.D.; Ai, Z.; Qian, Z.M.; Xiang, L.; Zhang, X.J. Advances in Identification Method of Cordyceps. Meds. Chin. Med. 2014, 16, 881–887+920. [Google Scholar]
- Tang, C.; Li, X.; Wang, T.; Wang, J.; Xiao, M.; He, M.; Chang, X.; Fan, Y.; Li, Y. Characterization of Metabolite Landscape Distinguishes Medicinal Fungus Cordyceps sinensis and other Cordyceps by UHPLC-Q Exactive HF-X Untargeted Metabolomics. Molecules 2023, 28, 7745. [Google Scholar] [CrossRef]
- Miao, Y.; Hu, G.; Sun, X.; Li, Y.; Huang, H.; Fu, Y. Comparing the Volatile and Soluble Profiles of Fermented and Integrated Chinese Bayberry Wine with HS-SPME GC–MS and UHPLC Q-TOF. Foods 2023, 12, 1546. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, X.; Li, S.; Zhang, G.; Liu, X. Metabolic characterization of natural and cultured Ophicordyceps sinensis from different origins by 1H NMR spectroscopy. J. Pharm. Biomed. Anal. 2015, 115, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Meng, Q.; Zhang, H.; Shu, R.; Zhao, Y.; Wu, P.; Li, X.; Zhou, G.; Qin, Q.; Zhang, J. Changes in transcriptomic and metabolomic profiles of morphotypes of Ophiocordyceps sinensis within the hemocoel of its host larvae, Thitarodes xiaojinensis. BMC Genom. 2020, 21, 789. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Qiu, X.; Cao, L.; Long, H.; Han, R. Stage—and Rearing-Dependent Metabolomics Profiling of Ophiocordyceps sinensis and Its Pipeline Products. Insects 2021, 12, 666. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Verpoorte, R. Sample Preparation for Plant Metabolomics. Phytochem. Anal. 2010, 21, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.Y.; Gao, R.; Gao, Y.; Xie, C.Z. Comparison of chemical components between Cordyceps sinensis and Cordyceps sinensis in Liangshan. Zhong Cao Yao. 1985, 16, 4–6. [Google Scholar]
- Zhang, N.; Xu, F.; Wang, L.; Emu, Q.; Wei, Y.; Zhang, L.; Xu, Y.; Fan, J.; Sun, Y.; Shama, S.; et al. Integrated metabolomics and transcriptomics analyses reveal the key genes regulating differential metabolites of longissimus dorsi muscle in castrated South Sichuan black goats (Capra hircus). Funct. Integr. Genom. 2023, 23, 274. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tang, C.; Xiao, M.; Cao, Z.; He, M.; Qi, J.; Li, Y.; Li, X.; Picone, G. Effect of Air Drying on the Metabolic Profile of Fresh Wild and Artificial Cordyceps sinensis. Foods 2024, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Lin, M.; Xie, D.; Zhang, W.; Zhang, M.; Zhou, L.; Li, S.; Hu, H. Comparative metabolic profiling of wild Cordyceps species and their substituents by liquid chromatography-tandem mass spectrometry. Front. Pharmacol. 2022, 13, 1036589. [Google Scholar] [CrossRef]
- Yang, F.Q.; Feng, K.; Zhao, J.; Li, S.P. Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 1172–1178. [Google Scholar] [CrossRef]
- Qiu, X.; Cao, L.; Han, R. Analysis of Volatile Components in Different Ophiocordyceps sinensis and Insect Host Products. Molecules 2020, 25, 1603. [Google Scholar] [CrossRef]
- Jin, Y.; Meng, X.; Qiu, Z.; Su, Y.; Yu, P.; Qu, P. Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi. J. Biol. Sci. 2018, 25, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tang, C.; Xiao, M.; Cao, Z.; He, H.; He, M.; Li, Y.; Li, X. Analysis of metabolic spectrum characteristics of naturally and cultivated Ophiocordyceps sinensis based on non-targeted metabolomics. Sci. Rep. 2024, 14, 17425. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.H.; Qi, Y.; Xiong, Q. Nucleosides a valuable chemical marker for quality control in traditional Chinese medicine Cordyceps. Recent Pat. Biotechnol. 2013, 7, 153–166. [Google Scholar] [CrossRef]
- Esteban, C.I. Cordyceps sinensis, un hongo usado en la medicina tradicional china. Rev. Iberoam. Micol. 2007, 24, 259–262. [Google Scholar] [CrossRef]
- Raza, M.F.; Wang, Y.; Cai, Z.; Bai, S.; Yao, Z.; Awan, U.A.; Zhang, Z.; Zheng, W.; Zhang, H. Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathog. 2020, 16, e1008441. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Xu, X.; Hong, Y.; Li, Y.; Wang, J. Stable Carbon Isotope Composition of the Lipids in Natural Ophiocordyceps sinensis from Major Habitats in China and Its Substitutes. Molecules 2017, 22, 1567. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, W.; Peng, F.; Lu, R.; Zhou, H.; Bao, G.; Wang, B.; Huang, B.; Li, Z.; Hu, F. Metabolomic variation in wild and cultured cordyceps and mycelia of Isaria cicadae. Biomed. Chromatogr. 2019, 33, e4478. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, T.; Walley, J.W.; Chehab, E.W.; Xiao, Y.; Kaspi, R.; Pye, M.F.; Mohamed, M.E.; Lazarus, C.M.; Bostock, R.M.; Dehesh, K. Arachidonic Acid: An Evolutionarily Conserved Signaling Molecule Modulates Plant Stress Signaling Networks. Plant. Cell 2010, 22, 3193–3205. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Limia, L.; Cobas, N.; Franco, I.; Martinez-Suarez, S. Fatty acid profiles and lipid quality indices in canned European eels: Effects of processing steps, filling medium and storage. Food Res. Int. 2020, 136, 109601. [Google Scholar] [CrossRef]
- Carturan, L.; De, B.F.; Dinale, R.; Dragà, G.; Gabrielli, P.; Mair, V.; Seppi, R.; Tonidandel, D.; Zanoner, T.; Zendrini, T.L.; et al. Modern air, englacial and permafrost temperatures at high altitude on Mt Ortles (3905 m a.s.l.), in the eastern European Alps. Earth Syst. Sci. Data. 2023, 15, 4661–4688. [Google Scholar] [CrossRef]
- Stanisław, B.; Mariusz, C.; Ulf, B.; Edyta, T.S. High oxidative stress despite low energy metabolism and vice versa: Insightsthrough temperature acclimation in an ectotherm. J. Therm. Biol. 2018, 78, 36–41. [Google Scholar]
- He, M.; Tang, C.-Y.; Wang, T.; Xiao, M.-J.; Li, Y.-L.; Li, X.-Z. Analysis of Metabolic Profiles and Antioxidant Activity of Chinese Cordyceps Ophiocordyceps sinensis and Paecilomyces hepiali Based on Untargeted Metabolomics. Biology 2024, 13, 683. [Google Scholar] [CrossRef]
Mode | Total Number | YS_vs_YX | YS_vs_XJ | YS_vs_GN | YS_vs_LS | XJ_vs_GN | XJ_vs_LS |
---|---|---|---|---|---|---|---|
pos | 6122 (2107) | 2259 (846) | 2895 (998) | 2607 (945) | 2254 (768) | 2845 (1063) | 2820 (920) |
neg | 6181 (1905) | 2341 (750) | 2826 (880) | 2538 (824) | 2392 (728) | 2624 (867) | 2878 (878) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Chen, Z.; Malik, K.; Li, C. Comparative Metabolite Profiling Between Cordyceps sinensis and Other Cordyceps by Untargeted UHPLC-MS/MS. Biology 2025, 14, 118. https://doi.org/10.3390/biology14020118
Ma J, Chen Z, Malik K, Li C. Comparative Metabolite Profiling Between Cordyceps sinensis and Other Cordyceps by Untargeted UHPLC-MS/MS. Biology. 2025; 14(2):118. https://doi.org/10.3390/biology14020118
Chicago/Turabian StyleMa, Jing, Zhenjiang Chen, Kamran Malik, and Chunjie Li. 2025. "Comparative Metabolite Profiling Between Cordyceps sinensis and Other Cordyceps by Untargeted UHPLC-MS/MS" Biology 14, no. 2: 118. https://doi.org/10.3390/biology14020118
APA StyleMa, J., Chen, Z., Malik, K., & Li, C. (2025). Comparative Metabolite Profiling Between Cordyceps sinensis and Other Cordyceps by Untargeted UHPLC-MS/MS. Biology, 14(2), 118. https://doi.org/10.3390/biology14020118