MicroRNA Target Identification—Experimental Approaches
Abstract
:1. Introduction
2. Mechanisms of miRNA Repression
3. Computational miRNA Target Identification
Program | Reference | Detection capacity | Seed-match | Allows mismatches | Sequence analyzed in target | Thermodynamics and/or secondary structure of the duplex | Conservation | Considers non-conservative sites | Additional features |
---|---|---|---|---|---|---|---|---|---|
DIANA-microT | [42] | mRNA targets for a given miRNA; miRNAs targeting a given mRNA; Specific miRNA/mRNA interactions | 7-9 nt long | Additional 3' pairing; single G:U wobble pair; 6 nt seed | 3' UTR | + | + | + | Signal to noise ratio and precision score for evaluation of significance |
DIANA-microT-CDS | [43] | mRNA targets for a given miRNA; miRNAs targeting a given mRNA; Specific miRNA/mRNA interactions | 7-9 nt long | Additional 3' pairing; single G:U wobble pair; 6 nt seed | 3' UTR + CDS | + | + | + | Signal to noise ratio and precision score for evaluation of significance |
microInspector | [44] | miRNAs targetting a given mRNA; Specific miRNA/mRNA interactions | 6 nt long | 4-5 nt seed with additional G:U pair | ANY (submitted by the user) | + | Allows identification of weak interactions in any reagion of the mRNA | ||
miRanda | [45] | mRNA targets for a given miRNA; miRNAs targeting a given mRNA; Specific miRNA/mRNA interactions | Positions 2-8 given higher weigth | Some mismatches allowed | 3' UTR | + | + (PhastCons score) | + | MicroRNA expression profile available. mirSVR score available |
Pictar | [46] | mRNA targets for a given miRNA; miRNAs targetting a given mRNA | 7 nt | Single G:U wobble pair allowed | 3' UTR | + | + | Accounts for synergistic effects of several miRNAs/same miRNA binding | |
RNA22 | [47] | mRNA targets for a given miRNA; miRNAs targeting a given mRNA; Specific miRNA/mRNA interactions | 6-7 nt | Optional 1-2 mismatches | ANY (submitted by the user) | + | Permits identification of binding sites even if the miRNA is unknown | ||
RNAhybrid | [48] | Specific miRNA/mRNA interactions | Optional | Optional | ANY (submitted by the user) | + | Variation of secondary structure prediction, seed is given little weigth | ||
TargetScan (v6) | [49] | mRNA targets for a given miRNA; miRNAs targeting a given mRNA; Specific miRNA/mRNA interactions | 6-7 nt (+ A in position 1) | Allowed if compensation by conserved 3' pairing | 3' UTR | + | + | + (very low scores) | Importance of the context score: local AU content, position in the 3' UTR, site abundance. |
4. Experimental miRNA Target Identification
4.1. Expression Profiling Following miRNA Overexpression/Inhibition
4.2. Polysome Profiling Following miRNA Overexpression/Inhibition
4.3. Pull-Down Assays with Members of miRISC
4.3.1. Tagged miRNA Pull-Down
4.3.2. Immunoprecipitation of miRISC Proteins
5. Experimental Validation of miRNA Targets
6. Conclusions
References and Notes
- Ambros, V. The functions of animal micrornas. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Small, E.M.; Olson, E.N. Pervasive roles of micrornas in cardiovascular biology. Nature 2011, 469, 336–342. [Google Scholar] [CrossRef]
- Lujambio, A.; Lowe, S.W. The microcosmos of cancer. Nature 2012, 482, 347–355. [Google Scholar] [CrossRef]
- Mendell, J.T.; Olson, E.N. Micrornas in stress signaling and human disease. Cell 2012, 148, 1172–1187. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. Microrna genes are transcribed by rna polymerase ii. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microrna host genes and transcription units. Genome Res. 2004, 14, 1902–1910. [Google Scholar] [CrossRef]
- Kim, V.N.; Han, J.; Siomi, M.C. Biogenesis of small rnas in animals. Nat. Rev. Mol. Cell Biol. 2009, 10, 126–139. [Google Scholar]
- Yang, J.S.; Lai, E.C. Alternative mirna biogenesis pathways and the interpretation of core mirna pathway mutants. Mol. Cell 2011, 43, 892–903. [Google Scholar]
- Chiang, H.R.; Schoenfeld, L.W.; Ruby, J.G.; Auyeung, V.C.; Spies, N.; Baek, D.; Johnston, W.K.; Russ, C.; Luo, S.; Babiarz, J.E.; et al. Mammalian micrornas: Experimental evaluation of novel and previously annotated genes. Genes Dev. 2010, 24, 992–1009. [Google Scholar] [CrossRef]
- Czech, B.; Hannon, G.J. Small RNA sorting: Matchmaking for argonautes. Nat. Rev. Genet. 2011, 12, 19–31. [Google Scholar]
- Wang, B.; Li, S.; Qi, H.H.; Chowdhury, D.; Shi, Y.; Novina, C.D. Distinct passenger strand and mrna cleavage activities of human argonaute proteins. Nat. Struct. Mol. Biol. 2009, 16, 1259–1266. [Google Scholar] [CrossRef]
- Pasquinelli, A.E. Micrornas and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 2012, 13, 271–282. [Google Scholar]
- Bartel, D.P. Micrornas: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Shin, C.; Nam, J.W.; Farh, K.K.; Chiang, H.R.; Shkumatava, A.; Bartel, D.P. Expanding the microrna targeting code: Functional sites with centered pairing. Mol. Cell 2010, 38, 789–802. [Google Scholar]
- Lal, A.; Navarro, F.; Maher, C.A.; Maliszewski, L.E.; Yan, N.; O’Day, E.; Chowdhury, D.; Dykxhoorn, D.M.; Tsai, P.; Hofmann, O.; et al. Mir-24 inhibits cell proliferation by targeting e2f2, myc, and other cell-cycle genes via binding to “seedless” 3'utr microrna recognition elements. Mol. Cell 2009, 35, 610–625. [Google Scholar] [CrossRef]
- Hafner, M.; Landthaler, M.; Burger, L.; Khorshid, M.; Hausser, J.; Berninger, P.; Rothballer, A.; Ascano, M., Jr.; Jungkamp, A.C.; Munschauer, M.; et al. Transcriptome-wide identification of rna-binding protein and microrna target sites by par-clip. Cell 2010, 141, 129–141. [Google Scholar] [CrossRef]
- Kedde, M.; Strasser, M.J.; Boldajipour, B.; Oude Vrielink, J.A.; Slanchev, K.; le Sage, C.; Nagel, R.; Voorhoeve, P.M.; van Duijse, J.; Orom, U.A.; et al. Rna-binding protein dnd1 inhibits microrna access to target mrna. Cell 2007, 131, 1273–1286. [Google Scholar] [CrossRef]
- Kundu, P.; Fabian, M.R.; Sonenberg, N.; Bhattacharyya, S.N.; Filipowicz, W. Hur protein attenuates mirna-mediated repression by promoting mirisc dissociation from the target RNA. Nucleic Acids Res. 2012, 40, 5088–5100. [Google Scholar] [CrossRef]
- Witkos, T.M.; Koscianska, E.; Krzyzosiak, W.J. Practical aspects of microrna target prediction. Curr. Mol. Med. 2011, 11, 93–109. [Google Scholar] [CrossRef]
- Alexiou, P.; Maragkakis, M.; Papadopoulos, G.L.; Reczko, M.; Hatzigeorgiou, A.G. Lost in translation: An assessment and perspective for computational microrna target identification. Bioinformatics 2009, 25, 3049–3055. [Google Scholar] [CrossRef]
- Long, J.M.; Lahiri, D.K. Advances in microrna experimental approaches to study physiological regulation of gene products implicated in cns disorders. Exp. Neurol. 2012, 235, 402–418. [Google Scholar] [CrossRef]
- Huntzinger, E.; Izaurralde, E. Gene silencing by micrornas: Contributions of translational repression and mrna decay. Nat. Rev. Genet. 2011, 12, 99–110. [Google Scholar] [CrossRef]
- Gebauer, F.; Hentze, M.W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 2004, 5, 827–835. [Google Scholar] [CrossRef]
- Pillai, R.S.; Bhattacharyya, S.N.; Artus, C.G.; Zoller, T.; Cougot, N.; Basyuk, E.; Bertrand, E.; Filipowicz, W. Inhibition of translational initiation by let-7 microrna in human cells. Science 2005, 309, 1573–1576. [Google Scholar] [CrossRef]
- Humphreys, D.T.; Westman, B.J.; Martin, D.I.; Preiss, T. Micrornas control translation initiation by inhibiting eukaryotic initiation factor 4e/cap and poly(a) tail function. Proc. Natl. Acad. Sci. USA 2005, 102, 16961–16966. [Google Scholar]
- Petersen, C.P.; Bordeleau, M.E.; Pelletier, J.; Sharp, P.A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 2006, 21, 533–542. [Google Scholar] [CrossRef]
- Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by micrornas: Are the answers in sight? Nat. Rev. Genet. 2008, 9, 102–114. [Google Scholar]
- Mathonnet, G.; Fabian, M.R.; Svitkin, Y.V.; Parsyan, A.; Huck, L.; Murata, T.; Biffo, S.; Merrick, W.C.; Darzynkiewicz, E.; Pillai, R.S.; et al. Microrna inhibition of translation initiation in vitro by targeting the cap-binding complex eif4f. Science 2007, 317, 1764–1767. [Google Scholar]
- Nottrott, S.; Simard, M.J.; Richter, J.D. Human let-7a mirna blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol. 2006, 13, 1108–1114. [Google Scholar] [CrossRef]
- Braun, J.E.; Huntzinger, E.; Fauser, M.; Izaurralde, E. Gw182 proteins directly recruit cytoplasmic deadenylase complexes to mirna targets. Mol. Cell 2011, 44, 120–133. [Google Scholar] [CrossRef]
- Fabian, M.R.; Cieplak, M.K.; Frank, F.; Morita, M.; Green, J.; Srikumar, T.; Nagar, B.; Yamamoto, T.; Raught, B.; Duchaine, T.F.; et al. Mirna-mediated deadenylation is orchestrated by gw182 through two conserved motifs that interact with ccr4-not. Nat. Struct. Mol. Biol. 2011, 18, 1211–1217. [Google Scholar]
- Baek, D.; Villen, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature 2008, 455, 64–71. [Google Scholar] [CrossRef]
- Hendrickson, D.G.; Hogan, D.J.; McCullough, H.L.; Myers, J.W.; Herschlag, D.; Ferrell, J.E.; Brown, P.O. Concordant regulation of translation and mrna abundance for hundreds of targets of a human microrna. PLoS Biol. 2009, 7, e1000238. [Google Scholar]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian micrornas predominantly act to decrease target mrna levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Selbach, M.; Schwanhausser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by micrornas. Nature 2008, 455, 58–63. [Google Scholar]
- Fabian, M.R.; Sonenberg, N. The mechanics of mirna-mediated gene silencing: A look under the hood of mirisc. Nat. Struct. Mol. Biol. 2012, 19, 586–593. [Google Scholar] [CrossRef]
- Grimson, A.; Farh, K.K.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell 2007, 27, 91–105. [Google Scholar]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef]
- Long, D.; Lee, R.; Williams, P.; Chan, C.Y.; Ambros, V.; Ding, Y. Potent effect of target structure on microrna function. Nat. Struct. Mol. Biol. 2007, 14, 287–294. [Google Scholar] [CrossRef]
- Chi, S.W.; Hannon, G.J.; Darnell, R.B. An alternative mode of microrna target recognition. Nat. Struct. Mol. Biol. 2012, 19, 321–327. [Google Scholar] [CrossRef]
- Sethupathy, P.; Megraw, M.; Hatzigeorgiou, A.G. A guide through present computational approaches for the identification of mammalian microrna targets. Nat. Methods 2006, 3, 881–886. [Google Scholar]
- DIANA-microT. Available online: http://diana.cslab.ece.ntua.gr/microT/ (accessed on 1 January 2013).
- DIANA-microT-CDS. Available online: http://diana.cslab.ece.ntua.gr/micro-CDS/ (accessed on 1 January 2013).
- MicroInspector. Available online: http://bioinfo.uni-plovdiv.bg/microinspector/ (accessed on 1 January 2013).
- MiRanda. Available online: http://www.microrna.org/ (accessed on 1 January 2013).
- Pictar. Available online: http://pictar.mdc-berlin.de/ (accessed on 1 January 2013).
- RNA22. Available online: http://cbcsrv.watson.ibm.com/rna22.html/ (accessed on 1 January 2013).
- RNAhybrid. Available online: http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ (accessed on 1 January 2013).
- TargetScan (v6). Available online: http://www.targetscan.org/ (accessed on 1 January 2013).
- Kozomara, A.; Griffiths-Jones, S. Mirbase: Integrating microrna annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39, D152–D157. [Google Scholar] [CrossRef]
- Megraw, M.; Sethupathy, P.; Corda, B.; Hatzigeorgiou, A.G. Mirgen: A database for the study of animal microrna genomic organization and function. Nucleic Acids Res. 2007, 35, D149–D155. [Google Scholar] [CrossRef]
- Vergoulis, T.; Vlachos, I.S.; Alexiou, P.; Georgakilas, G.; Maragkakis, M.; Reczko, M.; Gerangelos, S.; Koziris, N.; Dalamagas, T.; Hatzigeorgiou, A.G. 0: Capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 2012, 40, D222–D229. [Google Scholar]
- Hsu, S.D.; Chu, C.H.; Tsou, A.P.; Chen, S.J.; Chen, H.C.; Hsu, P.W.; Wong, Y.H.; Chen, Y.H.; Chen, G.H.; Huang, H.D. Mirnamap 2.0: Genomic maps of micrornas in metazoan genomes. Nucleic Acids Res. 2008, 36, D165–D169. [Google Scholar]
- Rajewsky, N. Microrna target predictions in animals. Nat. Genet. 2006, 38, S8–S13. [Google Scholar] [CrossRef]
- Ebert, M.S.; Sharp, P.A. Roles for micrornas in conferring robustness to biological processes. Cell 2012, 149, 515–524. [Google Scholar] [CrossRef]
- rom, U.A.; Lund, A.H. Experimental identification of microrna targets. Gene 2010, 451, 1–5. [Google Scholar] [CrossRef]
- Thomas, M.; Lieberman, J.; Lal, A. Desperately seeking microrna targets. Nat. Struct. Mol. Biol. 2010, 17, 1169–1174. [Google Scholar]
- Lim, L.P.; Lau, N.C.; Garrett-Engele, P.; Grimson, A.; Schelter, J.M.; Castle, J.; Bartel, D.P.; Linsley, P.S.; Johnson, J.M. Microarray analysis shows that some micrornas downregulate large numbers of target mrnas. Nature 2005, 433, 769–773. [Google Scholar]
- Linsley, P.S.; Schelter, J.; Burchard, J.; Kibukawa, M.; Martin, M.M.; Bartz, S.R.; Johnson, J.M.; Cummins, J.M.; Raymond, C.K.; Dai, H.; et al. Transcripts targeted by the microrna-16 family cooperatively regulate cell cycle progression. Mol. Cell Biol. 2007, 27, 2240–2252. [Google Scholar]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of micrornas in vivo with “antagomirs”. Nature 2005, 438, 685–689. [Google Scholar]
- Elmén, J.; Lindow, M.; Silahtaroglu, A.; Bak, M.; Christensen, M.; Lind-Thomsen, A.; Hedtjärn, M.; Hansen, J.B.; Hansen, H.F.; Straarup, E.M.; et al. Antagonism of microrna-122 in mice by systemically administered lna-antimir leads to up-regulation of a large set of predicted target mrnas in the liver. Nucleic Acids Res. 2008, 36, 1153–1162. [Google Scholar]
- Xu, G.; Fewell, C.; Taylor, C.; Deng, N.; Hedges, D.; Wang, X.; Zhang, K.; Lacey, M.; Zhang, H.; Yin, Q.; et al. Transcriptome and targetome analysis in mir155 expressing cells using rna-seq. RNA 2010, 16, 1610–1622. [Google Scholar] [CrossRef]
- Vinther, J.; Hedegaard, M.M.; Gardner, P.P.; Andersen, J.S.; Arctander, P. Identification of mirna targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res. 2006, 34, e107. [Google Scholar]
- Kaller, M.; Liffers, S.T.; Oeljeklaus, S.; Kuhlmann, K.; Röh, S.; Hoffmann, R.; Warscheid, B.; Hermeking, H. Genome-wide characterization of mir-34a induced changes in protein and mrna expression by a combined pulsed silac and microarray analysis. Mol. Cell. Proteomics 2011, 10, M111.010462. [Google Scholar] [CrossRef]
- Ingolia, N.T.; Ghaemmaghami, S.; Newman, J.R.; Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009, 324, 218–223. [Google Scholar]
- Bazzini, A.A.; Lee, M.T.; Giraldez, A.J. Ribosome profiling shows that mir-430 reduces translation before causing mrna decay in zebrafish. Science 2012, 336, 233–237. [Google Scholar]
- Landthaler, M.; Gaidatzis, D.; Rothballer, A.; Chen, P.Y.; Soll, S.J.; Dinic, L.; Ojo, T.; Hafner, M.; Zavolan, M.; Tuschl, T. Molecular characterization of human argonaute-containing ribonucleoprotein complexes and their bound target mrnas. RNA 2008, 14, 2580–2596. [Google Scholar]
- Ding, L.; Han, M. Gw182 family proteins are crucial for microrna-mediated gene silencing. Trends Cell Biol. 2007, 17, 411–416. [Google Scholar]
- rom, U.A.; Nielsen, F.C.; Lund, A.H. Microrna-10a binds the 5' utr of ribosomal protein mrnas and enhances their translation. Mol. Cell 2008, 30, 460–471. [Google Scholar]
- Hsu, R.J.; Tsai, H.J. Performing the labeled microrna pull-down (lamp) assay system: An experimental approach for high-throughput identification of microrna-target mrnas. Methods Mol. Biol. 2011, 764, 241–247. [Google Scholar]
- Baigude, H.; Ahsanullah; Li, Z.; Zhou, Y.; Rana, T.M. Mir-trap: A benchtop chemical biology strategy to identify microrna targets. Angew Chem. Int. Ed. Engl. 2012, 51, 5880–5883. [Google Scholar]
- Yoon, J.H.; Srikantan, S.; Gorospe, M. Ms2-trap (ms2-tagged rna affinity purification): Tagging rna to identify associated mirnas. Methods 2012, 58, 81–87. [Google Scholar]
- Keene, J.D.; Komisarow, J.M.; Friedersdorf, M.B. Rip-chip: The isolation and identification of mrnas, micrornas and protein components of ribonucleoprotein complexes from cell extracts. Nat. Protoc. 2006, 1, 302–307. [Google Scholar]
- Baroni, T.E.; Chittur, S.V.; George, A.D.; Tenenbaum, S.A. Advances in rip-chip analysis: Rna-binding protein immunoprecipitation-microarray profiling. Methods Mol. Biol. 2008, 419, 93–108. [Google Scholar]
- Karginov, F.V.; Conaco, C.; Xuan, Z.; Schmidt, B.H.; Parker, J.S.; Mandel, G.; Hannon, G.J. A biochemical approach to identifying microrna targets. Proc. Natl. Acad. Sci. USA 2007, 104, 19291–19296. [Google Scholar]
- Tan, L.P.; Seinen, E.; Duns, G.; de Jong, D.; Sibon, O.C.; Poppema, S.; Kroesen, B.J.; Kok, K.; van den Berg, A. A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res. 2009, 37, e137. [Google Scholar]
- Beitzinger, M.; Peters, L.; Zhu, J.Y.; Kremmer, E.; Meister, G. Identification of human microrna targets from isolated argonaute protein complexes. RNA Biol. 2007, 4, 76–84. [Google Scholar]
- Su, H.; Trombly, M.I.; Chen, J.; Wang, X. Essential and overlapping functions for mammalian argonautes in microrna silencing. Genes Dev. 2009, 23, 304–317. [Google Scholar]
- Nelson, P.T.; de Planell-Saguer, M.; Lamprinaki, S.; Kiriakidou, M.; Zhang, P.; O'Doherty, U.; Mourelatos, Z. A novel monoclonal antibody against human argonaute proteins reveals unexpected characteristics of mirnas in human blood cells. RNA 2007, 13, 1787–1792. [Google Scholar]
- Zhang, L.; Ding, L.; Cheung, T.H.; Dong, M.Q.; Chen, J.; Sewell, A.K.; Liu, X.; Yates, J.R.; Han, M. Systematic identification of C. elegans mirisc proteins, mirnas, and mrna targets by their interactions with gw182 proteins ain-1 and ain-2. Mol. Cell 2007, 28, 598–613. [Google Scholar] [CrossRef]
- Chi, S.W.; Zang, J.B.; Mele, A.; Darnell, R.B. Argonaute hits-clip decodes microRNA-mRNA interaction maps. Nature 2009, 460, 479–486. [Google Scholar]
- Licatalosi, D.D.; Mele, A.; Fak, J.J.; Ule, J.; Kayikci, M.; Chi, S.W.; Clark, T.A.; Schweitzer, A.C.; Blume, J.E.; Wang, X.; et al. Hits-clip yields genome-wide insights into brain alternative RNA processing. Nature 2008, 456, 464–469. [Google Scholar] [CrossRef]
- Hafner, M.; Lianoglou, S.; Tuschl, T.; Betel, D. Genome-wide identification of mirna targets by par-clip. Methods 2012, 58, 94–105. [Google Scholar]
- Zhang, C.; Darnell, R.B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from hits-clip data. Nat. Biotechnol. 2011, 29, 607–614. [Google Scholar] [CrossRef]
- Martinez-Sanchez, A.; Dudek, K.A.; Murphy, C.L. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator sox9 by microrna-145 (mirna-145). J. Biol. Chem. 2012, 287, 916–924. [Google Scholar]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Martinez-Sanchez, A.; Murphy, C.L. MicroRNA Target Identification—Experimental Approaches. Biology 2013, 2, 189-205. https://doi.org/10.3390/biology2010189
Martinez-Sanchez A, Murphy CL. MicroRNA Target Identification—Experimental Approaches. Biology. 2013; 2(1):189-205. https://doi.org/10.3390/biology2010189
Chicago/Turabian StyleMartinez-Sanchez, Aida, and Chris L. Murphy. 2013. "MicroRNA Target Identification—Experimental Approaches" Biology 2, no. 1: 189-205. https://doi.org/10.3390/biology2010189
APA StyleMartinez-Sanchez, A., & Murphy, C. L. (2013). MicroRNA Target Identification—Experimental Approaches. Biology, 2(1), 189-205. https://doi.org/10.3390/biology2010189