Gene Expression and Regulation in Adrenocortical Tumorigenesis
Abstract
:1. Introduction
1.1. Genetic Predisposition to Adrenocortical Tumors and Hyperplasias
1.2. Li-Fraumeni Syndrome
1.3. Beckwith-Wiedemann Syndrome
1.4. Multiple Endocrine Neoplasia Type 1 (MEN1)
1.5. Wnt Pathway
1.6. Carney Complex (CNC) & Isolated Primary Pigmented Nodular Adrenocortical Disease (PPNAD)
1.7. Gardner Syndrome
2. Molecular Markers
3. Gene Expression Analysis
Study | Samples studied | Genes with suggested alteration in expression levels |
---|---|---|
Giordano TJ (2003) | ACC (N = 11) compared to ACA (N = 4) and normal adrenal cortical tissue (N = 3) | Upregulated: IGF2, osteopontin (SPP), serine threonine kinase 15 (STK15), Angiopoietin 2 (Ang-2), ectodermal-neural cortex one (ENC-1) gene, high mobility group A2 (HMG2) gene in ACC compared to ACA |
Velázquez-Fernández D (2005) | ACC (N = 7) compared to ACA (N = 13) | Upregulated: 2 ubiquitin-related genes (
USP4 and UFD1L), insulin like growth factor-related genes (IGF2, IGF2R, IGFBP3 and IGFBP6 in ACC compared to ACA Downregulated: cytokine gene (CXCL10), several genes related to cell metabolism (RARRES2, ALDH1A1, CYBRD1 and GSTA4), and the cadherin 2 gene (CDH2) in ACC compared to ACA |
De Fraipont F (2005) | ACC (N = 24) compared to ACA (N = 33) | Upregulated: High expression of genes that encode growth factors: (IGF2 and TGFβ2), growth factor receptors: FGFR1, FGFR4,
MST1R, TGFBR1, KCNQ1OT1 and GAPDH in ACC compared to ACA Downregulated: Low expression of steroidogenesis genes: steroidogenic acute regulatory protein (StAR), CYP11A, HSD3B1, CYP11B1, CYP21A2 and CYP17 in ACA compared to ACC |
Slater EP (2006) | ACC (N = 10) compared to ACA (N = 10) and normal adrenocortical tissue (N = 10) | Upregulated:
IGF2 upregulated in ACC compared to ACA Downregulated: Chromogranin B, early growth response factor 1 (EGF1) downregulated in ACC compared to ACA |
West AN (2007) | ACC (N = 18) compared to ACA (N = 5) and normal adrenocortical tissue (N = 7) | Upregulated: Increased gene expression of FGFR4 and IGF2 in ACT compared to normal adrenocortical tissue
Downregulated: decrease in KCNQ1, CDKN1C, and HSD3B2 gene expression in ACT compared to normal adrenocortical tissue |
Fernandez-Ranvier GG (2008) | ACC (N = 11) compared to ACA (N = 43) | Downregulated: SERPING1, MRPL48, TM7SF2, DDB1, NDUSF8, PRDX5 downregulated in ACC compared to ACA |
Fernandez-Ranvier GG (2008) | ACC (N = 11) compared to ACA (N = 74) | 37 genes differentially expressed between ACC & ACA, 5 of which had high diagnostic accuracy
Upregulated: IL13RA2 and CCNB2 Downregulated: HTR2B, RARRES2, and SLC16A9 |
Giordano TJ (2009) | ACC (N = 33) compared to ACA (N = 22) and normal adrenocortical tissue (N = 10) | Cluster analysis of ACCs revealed two different prognostic subtypes that reflected tumor proliferation and survival differences
Downregulated: Decreased expression of NOV and NR4A2 in ACC compared to ACA & normal tissue |
Soon P (2009) | ACC (N = 12) compared to ACA (N = 16) and normal adrenocortical tissue (N = 6) | Upregulated:
IGF2, MAD2L1, and CCNB1 in ACC compared to ACA Downregulated: ABLIM1, NAV3, SEPT4, and RPRM in ACC compared to ACA A combination of IGF2 and Ki-67 has 96% sensitivity and 100% specificity in diagnosing ACC |
De Reynies A (2009) | 153 ACT | Combined expression of DLG7 (upregulated) and PINK1 (downregulated) was the best predictor of disease-free survival in ACT
Combined expression of BUB1B (downregulated) and PINK1 (downregulated) was the best predictor of overall survival in ACT |
4. Comprehensive Genomic Hybridization (CGH)
5. DNA Methylation Profiling
6. MicroRNA Profiling
7. Conclusions
References
- Sidhu, S.; Gicquel, C.; Bambach, C.P.; Campbell, P.; Magarey, C.; Robinson, B.G.; Delbridge, L.W. Clinical and molecular aspects of adrenocortical tumourigenesis. ANZ J. Surg. 2003, 73, 727–738. [Google Scholar] [CrossRef]
- Bovio, S.; Cataldi, A.; Reimondo, G.; Sperone, P.; Novello, S.; Berruti, A.; Borasio, P.; Fava, C.; Dogliotti, L.; Scagliotti, G.V.; et al. Prevalence of adrenal incidentaloma in a contemporary computerized tomography series. J. Endocrinol. Invest. 2006, 29, 298–302. [Google Scholar]
- Grumbach, M.M.; Biller, B.M.; Braunstein, G.D.; Campbell, K.K.; Carney, J.A.; Godley, P.A.; Harris, E.L.; Lee, J.K.; Oertel, Y.C.; Posner, M.C.; et al. Management of the clinically inapparent adrenal mass (“incidentaloma”). Ann. Intern. Med. 2003, 138, 424–429. [Google Scholar]
- Song, J.H.; Chaudhry, F.S.; Mayo-Smith, W.W. The incidental adrenal mass on ct: Prevalence of adrenal disease in 1,049 consecutive adrenal masses in patients with no known malignancy. AJR Am. J. Roentgenol. 2008, 190, 1163–1168. [Google Scholar] [CrossRef]
- De Reyniès, A.; Assié, G.; Rickman, D.S.; Tissier, F.; Groussin, L.; René-Corail, F.; Dousset, B.; Bertagna, X.; Clauser, E.; Bertherat, J. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J. Clin. Oncol. 2009, 27, 1108–1115. [Google Scholar]
- Bilimoria, K.Y.; Shen, W.T.; Elaraj, D.; Bentrem, D.J.; Winchester, D.J.; Kebebew, E.; Sturgeon, C. Adrenocortical carcinoma in the united states: Treatment utilization and prognostic factors. Cancer 2008, 113, 3130–3136. [Google Scholar] [CrossRef]
- Aubert, S.; Wacrenier, A.; Leroy, X.; Devos, P.; Carnaille, B.; Proye, C.; Wemeau, J.L.; Lecomte-Houcke, M.; Leteurtre, E. Weiss system revisited: A clinicopathologic and immunohistochemical study of 49 adrenocortical tumors. Am. J. Surg. Pathol. 2002, 26, 1612–1619. [Google Scholar] [CrossRef]
- Weiss, L.M. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am. J. Surg. Pathol. 1984, 8, 163–169. [Google Scholar] [CrossRef]
- DeLellis, R.A. Pathology and Genetics of Tumours of Endocrine Organs; IARC Press: Lyon, France, 2004; p. 320. [Google Scholar]
- Pohlink, C.; Tannapfe, A.; Eichfeld, U.; Schmidt, F.; Fuhrer, D.; Paschke, R.; Koch, C.A. Does tumor heterogeneity limit the use of the weiss criteria in the evaluation of adrenocortical tumors? J. Endocrinol. Invest. 2004, 27, 565–569. [Google Scholar]
- Soon, P.S.; McDonald, K.L.; Robinson, B.G.; Sidhu, S.B. Molecular markers and the pathogenesis of adrenocortical cancer. Oncologist 2008, 13, 548–561. [Google Scholar] [CrossRef]
- Libe, R.; Bertherat, J. Molecular genetics of adrenocortical tumours, from familial to sporadic diseases. Eur. J. Endocrinol. 2005, 153, 477–487. [Google Scholar] [CrossRef]
- Fonseca, A.L.; Kugelberg, J.; Starker, L.F.; Scholl, U.; Choi, M.; Hellman, P.; Akerstrom, G.; Westin, G.; Lifton, R.P.; Bjorklund, P.; et al. Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors. Genes Chromosomes Cancer 2012, 51, 949–960. [Google Scholar] [CrossRef]
- Patterson, E.E.; Holloway, A.K.; Weng, J.; Fojo, T.; Kebebew, E. Microrna profiling of adrenocortical tumors reveals mir-483 as a marker of malignancy. Cancer 2011, 117, 1630–1639. [Google Scholar] [CrossRef]
- Soon, P.S.; Tacon, L.J.; Gill, A.J.; Bambach, C.P.; Sywak, M.S.; Campbell, P.R.; Yeh, M.W.; Wong, S.G.; Clifton-Bligh, R.J.; Robinson, B.G.; et al. Mir-195 and mir-483-5p identified as predictors of poor prognosis in adrenocortical cancer. Clin. Cancer Res. 2009, 15, 7684–7692. [Google Scholar] [CrossRef]
- Sidhu, S.; Marsh, D.J.; Theodosopoulos, G.; Philips, J.; Bambach, C.P.; Campbell, P.; Magarey, C.J.; Russell, C.F.; Schulte, K.M.; Roher, H.D.; et al. Comparative genomic hybridization analysis of adrenocortical tumors. J. Clin. Endocrinol. Metab. 2002, 87, 3467–3474. [Google Scholar] [CrossRef]
- Gruschwitz, T.; Breza, J.; Wunderlich, H.; Junker, K. Improvement of histopathological classification of adrenal gland tumors by genetic differentiation. World J. Urol. 2010, 28, 329–334. [Google Scholar] [CrossRef]
- Pluquet, O.; Hainaut, P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett. 2001, 174, 1–15. [Google Scholar] [CrossRef]
- Hisada, M.; Garber, J.E.; Fung, C.Y.; Fraumeni, J.F., Jr.; Li, F.P. Multiple primary cancers in families with li-fraumeni syndrome. J. Natl. Cancer Inst. 1998, 90, 606–611. [Google Scholar] [CrossRef]
- Ohgaki, H.; Kleihues, P.; Heitz, P.U. P53 mutations in sporadic adrenocortical tumors. Int. J. Cancer 1993, 54, 408–410. [Google Scholar] [CrossRef]
- Reincke, M.; Karl, M.; Travis, W.H.; Mastorakos, G.; Allolio, B.; Linehan, H.M.; Chrousos, G.P. P53 mutations in human adrenocortical neoplasms: Immunohistochemical and molecular studies. J. Clin. Endocrinol. Metab. 1994, 78, 790–794. [Google Scholar] [CrossRef]
- Libe, R.; Groussin, L.; Tissier, F.; Elie, C.; Rene-Corail, F.; Fratticci, A.; Jullian, E.; Beck-Peccoz, P.; Bertagna, X.; Gicquel, C.; et al. Somatic tp53 mutations are relatively rare among adrenocortical cancers with the frequent 17p13 loss of heterozygosity. Clin. Cancer Res. 2007, 13, 844–850. [Google Scholar] [CrossRef]
- Wagner, J.; Portwine, C.; Rabin, K.; Leclerc, J.M.; Narod, S.A.; Malkin, D. High frequency of germline p53 mutations in childhood adrenocortical cancer. J. Natl. Cancer Inst. 1994, 86, 1707–1710. [Google Scholar] [CrossRef]
- Herrmann, L.J.; Heinze, B.; Fassnacht, M.; Willenberg, H.S.; Quinkler, M.; Reisch, N.; Zink, M.; Allolio, B.; Hahner, S. Tp53 germline mutations in adult patients with adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 2012, 97, E476–E485. [Google Scholar] [CrossRef]
- Ribeiro, R.C.; Sandrini, F.; Figueiredo, B.; Zambetti, G.P.; Michalkiewicz, E.; Lafferty, A.R.; DeLacerda, L.; Rabin, M.; Cadwell, C.; Sampaio, G.; et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc. Natl. Acad. Sci. USA 2001, 98, 9330–9335. [Google Scholar]
- Latronico, A.C.; Pinto, E.M.; Domenice, S.; Fragoso, M.C.; Martin, R.M.; Zerbini, M.C.; Lucon, A.M.; Mendonca, B.B. An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J. Clin. Endocrinol. Metab. 2001, 86, 4970–4973. [Google Scholar] [CrossRef]
- Gicquel, C.; Bertagna, X.; Gaston, V.; Coste, J.; Louvel, A.; Baudin, E.; Bertherat, J.; Chapuis, Y.; Duclos, J.M.; Schlumberger, M.; et al. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. Cancer Res. 2001, 61, 6762–6767. [Google Scholar]
- Ragazzon, B.; Libe, R.; Gaujoux, S.; Assie, G.; Fratticci, A.; Launay, P.; Clauser, E.; Bertagna, X.; Tissier, F.; de Reynies, A.; et al. Transcriptome analysis reveals that p53 and {beta}-catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res. 2010, 70, 8276–8281. [Google Scholar] [CrossRef]
- DeChiara, T.M.; Robertson, E.J.; Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor ii gene. Cell 1991, 64, 849–859. [Google Scholar] [CrossRef]
- Boulle, N.; Logie, A.; Gicquel, C.; Perin, L.; Le Bouc, Y. Increased levels of insulin-like growth factor ii (igf-ii) and igf-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J. Clin. Endocrinol. Metab. 1998, 83, 1713–1720. [Google Scholar] [CrossRef]
- Gicquel, C.; Raffin-Sanson, M.L.; Gaston, V.; Bertagna, X.; Plouin, P.F.; Schlumberger, M.; Louvel, A.; Luton, J.P.; Le Bouc, Y. Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: Study on a series of 82 tumors. J. Clin. Endocrinol. Metab. 1997, 82, 2559–2565. [Google Scholar] [CrossRef]
- Ilvesmaki, V.; Kahri, A.I.; Miettinen, P.J.; Voutilainen, R. Insulin-like growth factors (igfs) and their receptors in adrenal tumors: High igf-ii expression in functional adrenocortical carcinomas. J. Clin. Endocrinol. Metab. 1993, 77, 852–858. [Google Scholar] [CrossRef]
- Giordano, T.J.; Thomas, D.G.; Kuick, R.; Lizyness, M.; Misek, D.E.; Smith, A.L.; Sanders, D.; Aljundi, R.T.; Gauger, P.G.; Thompson, N.W.; et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am. J. Pathol. 2003, 162, 521–531. [Google Scholar] [CrossRef]
- De Fraipont, F.; El Atifi, M.; Cherradi, N.; Le Moigne, G.; Defaye, G.; Houlgatte, R.; Bertherat, J.; Bertagna, X.; Plouin, P.F.; Baudin, E.; et al. Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J. Clin. Endocrinol. Metab. 2005, 90, 1819–1829. [Google Scholar]
- l’Allemand, D.; Penhoat, A.; Lebrethon, M.C.; Ardevol, R.; Baehr, V.; Oelkers, W.; Saez, J.M. Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells. J. Clin. Endocrinol. Metab. 1996, 81, 3892–3897. [Google Scholar] [CrossRef]
- Rump, P.; Zeegers, M.P.; van Essen, A.J. Tumor risk in beckwith-wiedemann syndrome: A review and meta-analysis. Am. J. Med. Genet. Part A 2005, 136, 95–104. [Google Scholar]
- Lapunzina, P. Risk of tumorigenesis in overgrowth syndromes: A comprehensive review. Am. J. Med. Genet. Part C Semin. Med. Genet. 2005, 137C, 53–71. [Google Scholar] [CrossRef]
- Thakker, R.V. Multiple endocrine neoplasia—Syndromes of the twentieth century. J. Clin. Endocrinol. Metab. 1998, 83, 2617–2620. [Google Scholar] [CrossRef]
- Skogseid, B.; Larsson, C.; Lindgren, P.G.; Kvanta, E.; Rastad, J.; Theodorsson, E.; Wide, L.; Wilander, E.; Oberg, K. Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 1992, 75, 76–81. [Google Scholar] [CrossRef]
- Burgess, J.R.; Harle, R.A.; Tucker, P.; Parameswaran, V.; Davies, P.; Greenaway, T.M.; Shepherd, J.J. Adrenal lesions in a large kindred with multiple endocrine neoplasia type 1. Arch. Surg. 1996, 131, 699–702. [Google Scholar] [CrossRef]
- Heppner, C.; Reincke, M.; Agarwal, S.K.; Mora, P.; Allolio, B.; Burns, A.L.; Spiegel, A.M.; Marx, S.J. Men1 gene analysis in sporadic adrenocortical neoplasms. J. Clin. Endocrinol. Metab. 1999, 84, 216–219. [Google Scholar] [CrossRef]
- Schulte, K.M.; Mengel, M.; Heinze, M.; Simon, D.; Scheuring, S.; Kohrer, K.; Roher, H.D. Complete sequencing and messenger ribonucleic acid expression analysis of the men i gene in adrenal cancer. J. Clin. Endocrinol. Metab. 2000, 85, 441–448. [Google Scholar] [CrossRef]
- Kjellman, M.; Kallioniemi, O.P.; Karhu, R.; Hoog, A.; Farnebo, L.O.; Auer, G.; Larsson, C.; Backdahl, M. Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res. 1996, 56, 4219–4223. [Google Scholar]
- Prunier, C.; Hocevar, B.A.; Howe, P.H. Wnt signaling: Physiology and pathology. Growth Factors 2004, 22, 141–150. [Google Scholar] [CrossRef]
- Gummow, B.M.; Winnay, J.N.; Hammer, G.D. Convergence of wnt signaling and steroidogenic factor-1 (sf-1) on transcription of the rat inhibin alpha gene. J. Biol. Chem. 2003, 278, 26572–26579. [Google Scholar] [CrossRef]
- Tissier, F.; Cavard, C.; Groussin, L.; Perlemoine, K.; Fumey, G.; Hagnere, A.M.; Rene-Corail, F.; Jullian, E.; Gicquel, C.; Bertagna, X.; et al. Mutations of beta-catenin in adrenocortical tumors: Activation of the wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res. 2005, 65, 7622–7627. [Google Scholar]
- Kirschner, L.S.; Carney, J.A.; Pack, S.D.; Taymans, S.E.; Giatzakis, C.; Cho, Y.S.; Cho-Chung, Y.S.; Stratakis, C.A. Mutations of the gene encoding the protein kinase a type i-alpha regulatory subunit in patients with the carney complex. Nat. Genet. 2000, 26, 89–92. [Google Scholar] [CrossRef]
- Bertherat, J.; Groussin, L.; Sandrini, F.; Matyakhina, L.; Bei, T.; Stergiopoulos, S.; Papageorgiou, T.; Bourdeau, I.; Kirschner, L.S.; Vincent-Dejean, C.; et al. Molecular and functional analysis of prkar1a and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase a expression and activity. Cancer Res. 2003, 63, 5308–5319. [Google Scholar]
- Marchesa, P.; Fazio, V.W.; Church, J.M.; McGannon, E. Adrenal masses in patients with familial adenomatous polyposis. Dis. Colon Rectum 1997, 40, 1023–1028. [Google Scholar] [CrossRef]
- Choi, M.; Scholl, U.I.; Yue, P.; Björklund, P.; Zhao, B.; Nelson-Williams, C.; Ji, W.; Cho, Y.; Patel, A.; Men, C.J.; et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011, 331, 768–772. [Google Scholar]
- Bertherat, J.; Bertagna, X. Pathogenesis of adrenocortical cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 261–271. [Google Scholar] [CrossRef]
- Bernard, M.H.; Sidhu, S.; Berger, N.; Peix, J.L.; Marsh, D.J.; Robinson, B.G.; Gaston, V.; Le Bouc, Y.; Gicquel, C. A case report in favor of a multistep adrenocortical tumorigenesis. J. Clin. Endocrinol. Metab. 2003, 88, 998–1001. [Google Scholar] [CrossRef]
- Stephan, E.A.; Chung, T.H.; Grant, C.S.; Kim, S.; von Hoff, D.D.; Trent, J.M.; Demeure, M.J. Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol. Cancer Ther. 2008, 7, 425–431. [Google Scholar] [CrossRef]
- Kjellman, M.; Larsson, C.; Backdahl, M. Genetic background of adrenocortical tumor development. World J. Surg. 2001, 25, 948–956. [Google Scholar] [CrossRef]
- Gicquel, C.; Leblond-Francillard, M.; Bertagna, X.; Louvel, A.; Chapuis, Y.; Luton, J.P.; Girard, F.; Le Bouc, Y. Clonal analysis of human adrenocortical carcinomas and secreting adenomas. Clin. Endocrinol. 1994, 40, 465–477. [Google Scholar] [CrossRef]
- Beuschlein, F.; Reincke, M.; Karl, M.; Travis, W.D.; Jaursch-Hancke, C.; Abdelhamid, S.; Chrousos, G.P.; Allolio, B. Clonal composition of human adrenocortical neoplasms. Cancer Res. 1994, 54, 4927–4932. [Google Scholar]
- Slater, E.P.; Diehl, S.M.; Langer, P.; Samans, B.; Ramaswamy, A.; Zielke, A.; Bartsch, D.K. Analysis by cdna microarrays of gene expression patterns of human adrenocortical tumors. Eur. J. Endocrinol. 2006, 154, 587–598. [Google Scholar] [CrossRef]
- Velazquez-Fernandez, D.; Laurell, C.; Geli, J.; Hoog, A.; Odeberg, J.; Kjellman, M.; Lundeberg, J.; Hamberger, B.; Nilsson, P.; Backdahl, M. Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 2005, 138, 1087–1094. [Google Scholar] [CrossRef]
- Fernandez-Ranvier, G.G.; Weng, J.; Yeh, R.F.; Shibru, D.; Khafnashar, E.; Chung, K.W.; Hwang, J.; Duh, Q.Y.; Clark, O.H.; Kebebew, E. Candidate diagnostic markers and tumor suppressor genes for adrenocortical carcinoma by expression profile of genes on chromosome 11q13. World J. Surg. 2008, 32, 873–881. [Google Scholar] [CrossRef]
- Fernandez-Ranvier, G.G.; Weng, J.; Yeh, R.F.; Khanafshar, E.; Suh, I.; Barker, C.; Duh, Q.Y.; Clark, O.H.; Kebebew, E. Identification of biomarkers of adrenocortical carcinoma using genomewide gene expression profiling. Arch. Surg. 2008, 143, 841–846. [Google Scholar] [CrossRef]
- Giordano, T.J.; Kuick, R.; Else, T.; Gauger, P.G.; Vinco, M.; Bauersfeld, J.; Sanders, D.; Thomas, D.G.; Doherty, G.; Hammer, G. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin. Cancer Res. 2009, 15, 668–676. [Google Scholar]
- Soon, P.S.; Gill, A.J.; Benn, D.E.; Clarkson, A.; Robinson, B.G.; McDonald, K.L.; Sidhu, S.B. Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify igf2 and ki-67 as useful in differentiating carcinomas from adenomas. Endoc. Relat. Cancer 2009, 16, 573–583. [Google Scholar] [CrossRef]
- West, A.N.; Neale, G.A.; Pounds, S.; Figueredo, B.C.; Rodriguez Galindo, C.; Pianovski, M.A.; Oliveira Filho, A.G.; Malkin, D.; Lalli, E.; Ribeiro, R.; et al. Gene expression profiling of childhood adrenocortical tumors. Cancer Res. 2007, 67, 600–608. [Google Scholar]
- Almeida, M.Q.; Fragoso, M.C.; Lotfi, C.F.; Santos, M.G.; Nishi, M.Y.; Costa, M.H.; Lerario, A.M.; Maciel, C.C.; Mattos, G.E.; Jorge, A.A.; et al. Expression of insulin-like growth factor-ii and its receptor in pediatric and adult adrenocortical tumors. J. Clin. Endocrinol. Metab. 2008, 93, 3524–3531. [Google Scholar] [CrossRef]
- Fassnacht, M.; Libe, R.; Kroiss, M.; Allolio, B. Adrenocortical carcinoma: A clinician’s update. Nat. Rev. Endocrinol. 2011, 7, 323–335. [Google Scholar] [CrossRef]
- Kolomecki, K.; Stepien, H.; Bartos, M.; Kuzdak, K. Usefulness of vegf, mmp-2, mmp-3 and timp-2 serum level evaluation in patients with adrenal tumours. Endoc. Regul. 2001, 35, 9–16. [Google Scholar]
- Szabo, P.M.; Tamasi, V.; Molnar, V.; Andrasfalvy, M.; Tombol, Z.; Farkas, R.; Kovesdi, K.; Patocs, A.; Toth, M.; Szalai, C.; et al. Meta-analysis of adrenocortical tumour genomics data: Novel pathogenic pathways revealed. Oncogene 2010, 29, 3163–3172. [Google Scholar] [CrossRef]
- Schmitt, A.; Saremaslani, P.; Schmid, S.; Rousson, V.; Montani, M.; Schmid, D.M.; Heitz, P.U.; Komminoth, P.; Perren, A. Igfii and mib1 immunohistochemistry is helpful for the differentiation of benign from malignant adrenocortical tumours. Histopathology 2006, 49, 298–307. [Google Scholar] [CrossRef]
- Morimoto, R.; Satoh, F.; Murakami, O.; Suzuki, T.; Abe, T.; Tanemoto, M.; Abe, M.; Uruno, A.; Ishidoya, S.; Arai, Y.; et al. Immunohistochemistry of a proliferation marker ki67/mib1 in adrenocortical carcinomas: Ki67/mib1 labeling index is a predictor for recurrence of adrenocortical carcinomas. Endoc. J. 2008, 55, 49–55. [Google Scholar] [CrossRef]
- Sbiera, S.; Schmull, S.; Assie, G.; Voelker, H.U.; Kraus, L.; Beyer, M.; Ragazzon, B.; Beuschlein, F.; Willenberg, H.S.; Hahner, S.; et al. High diagnostic and prognostic value of steroidogenic factor-1 expression in adrenal tumors. J. Clin. Endocrinol. Metab. 2010, 95, E161–E171. [Google Scholar] [CrossRef]
- Figueiredo, B.C.; Cavalli, L.R.; Pianovski, M.A.; Lalli, E.; Sandrini, R.; Ribeiro, R.C.; Zambetti, G.; DeLacerda, L.; Rodrigues, G.A.; Haddad, B.R. Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J. Clin. Endocrinol. Metab. 2005, 90, 615–619. [Google Scholar]
- Pianovski, M.A.; Cavalli, L.R.; Figueiredo, B.C.; Santos, S.C.; Doghman, M.; Ribeiro, R.C.; Oliveira, A.G.; Michalkiewicz, E.; Rodrigues, G.A.; Zambetti, G.; et al. Sf-1 overexpression in childhood adrenocortical tumours. Eur. J. Cancer 2006, 42, 1040–1043. [Google Scholar] [CrossRef]
- Doghman, M.; Karpova, T.; Rodrigues, G.A.; Arhatte, M.; de Moura, J.; Cavalli, L.R.; Virolle, V.; Barbry, P.; Zambetti, G.P.; Figueiredo, B.C.; et al. Increased steroidogenic factor-1 dosage triggers adrenocortical cell proliferation and cancer. Mol. Endocrinol. 2007, 21, 2968–2987. [Google Scholar] [CrossRef]
- Ragazzon, B.; Assie, G.; Bertherat, J. Transcriptome analysis of adrenocortical cancers: From molecular classification to the identification of new treatments. Endoc. Relat. Cancer 2011, 18, R15–R27. [Google Scholar] [CrossRef]
- Barreau, O.; de Reynies, A.; Wilmot-Roussel, H.; Guillaud-Bataille, M.; Auzan, C.; Rene-Corail, F.; Tissier, F.; Dousset, B.; Bertagna, X.; Bertherat, J.; et al. Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumors: An integrated genomic approach. J. Clin. Endocrinol. Metab. 2012, 97, E301–E311. [Google Scholar] [CrossRef]
- Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell 2007, 128, 683–692. [Google Scholar] [CrossRef]
- Wright, K.D.; Gilbertson, R.J. To infinium, and beyond! Cancer Cell 2010, 17, 419–420. [Google Scholar] [CrossRef]
- Das, P.M.; Singal, R. DNA methylation and cancer. J. Clin. Oncol. 2004, 22, 4632–4642. [Google Scholar] [CrossRef]
- Gao, Z.H.; Suppola, S.; Liu, J.; Heikkilä, P.; Jänne, J.; Voutilainen, R. Association of h19 promoter methylation with the expression of h19 and igf-ii genes in adrenocortical tumors. J. Clin. Endocrinol. Metab. 2002, 87, 1170–1176. [Google Scholar] [CrossRef]
- Sidhu, S.; Martin, E.; Gicquel, C.; Melki, J.; Clark, S.J.; Campbell, P.; Magarey, C.J.; Schulte, K.M.; Röher, H.D.; Delbridge, L.; et al. Mutation and methylation analysis of tp53 in adrenal carcinogenesis. Eur. J. Surg. Oncol. 2005, 31, 549–554. [Google Scholar] [CrossRef]
- Rechache, N.S.; Wang, Y.; Stevenson, H.S.; Killian, J.K.; Edelman, D.C.; Merino, M.; Zhang, L.; Nilubol, N.; Stratakis, C.A.; Meltzer, P.S.; et al. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors. J. Clin. Endocrinol. Metab. 2012, 97, E1004–E1013. [Google Scholar]
- Ozata, D.M.; Caramuta, S.; Velazquez-Fernandez, D.; Akcakaya, P.; Xie, H.; Hoog, A.; Zedenius, J.; Backdahl, M.; Larsson, C.; Lui, W.O. The role of microrna deregulation in the pathogenesis of adrenocortical carcinoma. Endocr. Relat. Cancer 2011, 18, 643–655. [Google Scholar] [CrossRef]
- Doghman, M.; El Wakil, A.; Cardinaud, B.; Thomas, E.; Wang, J.; Zhao, W.; Peralta-Del Valle, M.H.; Figueiredo, B.C.; Zambetti, G.P.; Lalli, E. Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microrna in childhood adrenocortical tumors. Cancer Res. 2010, 70, 4666–4675. [Google Scholar] [CrossRef]
- Tombol, Z.; Szabo, P.M.; Molnar, V.; Wiener, Z.; Tolgyesi, G.; Horanyi, J.; Riesz, P.; Reismann, P.; Patocs, A.; Liko, I.; et al. Integrative molecular bioinformatics study of human adrenocortical tumors: Microrna, tissue-specific target prediction, and pathway analysis. Endocr. Relat. Cancer 2009, 16, 895–906. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fonseca, A.L.; Healy, J.; Kunstman, J.W.; Korah, R.; Carling, T. Gene Expression and Regulation in Adrenocortical Tumorigenesis. Biology 2013, 2, 26-39. https://doi.org/10.3390/biology2010026
Fonseca AL, Healy J, Kunstman JW, Korah R, Carling T. Gene Expression and Regulation in Adrenocortical Tumorigenesis. Biology. 2013; 2(1):26-39. https://doi.org/10.3390/biology2010026
Chicago/Turabian StyleFonseca, Annabelle L., James Healy, John W. Kunstman, Reju Korah, and Tobias Carling. 2013. "Gene Expression and Regulation in Adrenocortical Tumorigenesis" Biology 2, no. 1: 26-39. https://doi.org/10.3390/biology2010026
APA StyleFonseca, A. L., Healy, J., Kunstman, J. W., Korah, R., & Carling, T. (2013). Gene Expression and Regulation in Adrenocortical Tumorigenesis. Biology, 2(1), 26-39. https://doi.org/10.3390/biology2010026