Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Processing of Soil Samples
2.3. Heavy Metal Analysis
2.4. Fungal Isolation and Identification
2.5. Tolerance Index
2.6. Bioaccumulation
2.7. Scanning Electron Microscopy (SEM)
2.8. Statistical Analysis
3. Results
3.1. Heavy Metal Analysis
3.2. Isolation of Microbes
3.3. Tolerance Index (TI)
3.4. Morphological Changes
3.5. Bioaccumulation Capacity
3.6. Scanning Electron Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leep, N.W. Effect of Heavy Metal Pollution on Plants: Metals in the Environment; Springer: Amsterdam, The Netherlands, 1981; Volume XII, p. 352. [Google Scholar]
- Sharma, K.D.; Muehlbauer, F.J. Fusarium wilt of chickpea: Physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 2007, 157, 1–14. [Google Scholar] [CrossRef]
- Navas-Cortés, J.A.; Hau, B.; Jiménez-Díaz, R.M. Yield Loss in Chickpeas in Relation to Development of Fusarium Wilt Epidemics. Phytopathology 2000, 90, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhardt, K.E.; Huang, X.-D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Mtibaà, R.; Ezzanad, A.; Aranda, E.; Pozo, C.; Ghariani, B.; Moraga, J.; Nasri, M.; Cantoral, J.M.; Garrido, C.; Mechichi, T. Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp. HJ22: Identification of fungal metabolites and proposal of a putative pathway. Sci. Total. Environ. 2020, 708, 135129. [Google Scholar] [CrossRef]
- Kavita, B.; Keharia, H. Biosorption Potential of Trichoderma gamsii Biomass for Removal of Cr(VI) from Electroplating Industrial Effluent. Int. J. Chem. Eng. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Simonescu, C.M.; Ferdeş, M. Fungal Biomass for Cu (II) Uptake from Aqueous Systems. Pol. J. Environ. Stud. 2012, 21, 1831–1839. [Google Scholar]
- Srivastava, S.; Thakur, I.S. Biosorption Potency of Aspergillus niger for Removal of Chromium (VI). Curr. Microbiol. 2006, 53, 232–237. [Google Scholar] [CrossRef]
- Birch, L.; Bachofen, R. Complexing agents from microorganisms. Cell. Mol. Life Sci. 1990, 46, 827–834. [Google Scholar] [CrossRef]
- Vimala, R.; Das, N. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study. J. Hazard. Mater. 2009, 168, 376–382. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Neifar, M.; Maktouf, S.; Ghorbel, R.E.; Jaouani, A.; Cherif, A. Extremophiles as Source of Novel Bioactive Compounds with Industrial Potential; Wiley: Hoboken, NJ, USA, 2015; pp. 245–267. [Google Scholar]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial Services of Arbuscular Mycorrhizal Fungi—From Ecology to Application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef] [PubMed]
- Congeevaram, S.; Dhanarani, S.; Park, J.; Dexilin, M.; Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 2007, 146, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bisht, B.S.; Joshi, V.D. Bioremediation potential of three acclimated bacteria with reference to heavy metal removal from waste. Int. J. Environ. Sci. 2011, 2, 896–908. [Google Scholar]
- Nanda, M.; Sharma, D.; Kumar, A. Removal of heavy metals from industrial effluent using bacteria. Int. J. Environ. Sci. 2011, 2, 765–780. [Google Scholar]
- Gönen, F.; Aksu, Z. Single and binary dye and heavy metal bioaccumulation properties of Candida tropicalis: Use of response surface methodology (RSM) for the estimation of removal yields. J. Hazard. Mater. 2009, 172, 1512–1519. [Google Scholar] [CrossRef]
- Sim, C.S.F.; Tan, W.S.; Ting, A.S.Y. Endophytes from Phragmites for metal removal: Evaluating their metal tolerance, adaptive tolerance behaviour and biosorption efficacy. Desalin. Water Treat. 2016, 57, 6959–6966. [Google Scholar] [CrossRef]
- Puglisi, I.; Faedda, R.; Sanzaro, V.; Piero, A.R.L.; Petrone, G.; Cacciola, S.O. Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene 2012, 506, 325–330. [Google Scholar] [CrossRef]
- Iskandar, N.L.; Zainudin, N.A.I.M.; Tan, S.G. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J. Environ. Sci. 2011, 23, 824–830. [Google Scholar] [CrossRef]
- Bahafid, W.; Joutey, N.T.; Asri, M.; Sayel, N.T.H.; Tirry, N.; El Ghachtouli, N. Yeast Biomass: An Alternative for Bioremediation of Heavy Metals. Yeast Ind. Appl. 2017. [Google Scholar] [CrossRef] [Green Version]
- McGrath, S.P.; Cunliffe, C.H. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. J. Sci. Food Agric. 1985, 36, 794–798. [Google Scholar] [CrossRef]
- Hakanson, L. Stress testing and the new technetium-99m cardiac imaging agents. Am. J. Card. Imaging 1979, 5, 32–36. [Google Scholar]
- Khan, Z.; Rehman, A.; Hussain, S.Z. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. Chemosphere 2016, 159, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Valix, M.; Tang, J.; Cheung, W.H. The effects of mineralogy on the biological leaching of nickel laterite ores. Miner. Eng. 2001, 14, 1629–1635. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Kohli, S. Anti-diabetic activity and phytochemical screening of crude extracts of Pueraria tuberosa DC. (FABACEAE) grown in India on STZ-induced diabetic rats. Asian J. Med. Pharm. Res. 2013, 3, 66–73. [Google Scholar]
- Bai, R.S.; Abraham, T. Studies on chromium(VI) adsorption–desorption using immobilized fungal biomass. Bioresour. Technol. 2003, 87, 17–26. [Google Scholar] [CrossRef]
- Levinskaite, L. Effect of heavy metals on the individual development of two fungi from the genus Penicillium. Biologia 2001, 1, 25–30. [Google Scholar]
- Zafar, S.; Aqil, F.; Ahmad, I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol. 2007, 98, 2557–2561. [Google Scholar] [CrossRef]
- Iram1, S.; Arooj, A.; Parveen, K. Tolerance potential of fungi isolated from polluted soil of Multan, Pakistan. Int. J. Biosci. 2012, 2, 27–34. [Google Scholar]
- Gadd, G.M. Fungi and yeasts for metal accumulation. Microb. Miner. Recovery 1990, 249–275. [Google Scholar]
- Fourest, E.; Canal, C.; Roux, J.-C. Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol. Rev. 1994, 14, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Price, M.S.; Classen, J.J.; Payne, G.A. Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresour. Technol. 2001, 77, 41–49. [Google Scholar] [CrossRef]
- Mohammadian, E.; Ahari, A.B.; Arzanlou, M.; Oustan, S.; Khazaei, S.H. Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere 2017, 185, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gitau, M.M.; Han, S.; Fu, J.; Xie, Y. Effects of cadmium-resistant fungi Aspergillus aculeatus on metabolic profiles of bermudagrass Cynodondactylon (L.) Pers. under Cd stress. Plant Physiol. Biochem. 2017, 114, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Vankar, P.S.; Bajpai, D. Phyto-remediation of chrome-VI of tannery effluent by Trichoderma species. Desalination 2008, 222, 255–262. [Google Scholar] [CrossRef]
- Elahian, F.; Heidari, R.; Charghan, V.R.; Asadbeik, E.; Mirzaei, S.A. Genetically modified Pichia pastoris, a powerful resistant factory for gold and palladium bioleaching and nanostructure heavy metal biosynthesis. Artif. Cells Nanomed. Biotechnol. 2020, 48, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Balakumaran, P.A.; Förster, J.; Zimmermann, M.; Charumathi, J.; Schmitz, A.; Czarnotta, E.; Lehnen, M.; Sudarsan, S.; Ebert, B.E.; Blank, L.M.; et al. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris. BMC Biotechnol. 2016, 16, 20. [Google Scholar] [CrossRef] [Green Version]
- Gruhn, C.M.; Miller, O.K., Jr. Effect of copper on tyrosinase activity and polyamine content of some Ectomycorrhizal fungi. Mycol. Res. 1991, 95, 268–272. [Google Scholar] [CrossRef]
- Martino, E.; Turnau, K.; Girlanda, M.; Bonfante, P.; Perotto, S. Ericoid Mycorrhizal fungi from heavy metal polluted soils: Their identification and growth in the presence of zinc ions. Mycol. Res. 2000, 104, 338–344. [Google Scholar] [CrossRef]
- Mishra, A.; Malik, A. Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Res. 2012, 46, 4991–4998. [Google Scholar] [CrossRef]
- Khan, A.; Rashid, A.; Younas, R.; Chong, R. A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 2016, 6, 21–26. [Google Scholar] [CrossRef] [Green Version]
Cd | Cu | Pb | Zn | Cr | |
---|---|---|---|---|---|
Range | 20.99~39.80 | 9.88~22.40 | 640.00~895.00 | 1098.00~2689.30 | 300.00~330.00 |
Mean | 30.57 ± 7.06 | 15.84 ± 4.64 | 789.1 ± 116.22 | 1964.98 ± 633.22 | 308.83 ± 12.97 |
PI | 28.33 ± 27.60 | 1.03 ± 0.04 | 0.03 ± 0.02 | 1.59 ± 0.41 | 3.96 ± 3.94 |
RI | 4473.16 ± 4357.80 | 10.47 ± 0.42 | 1.93 ± 1.51 | 159.78 ± 41.52 | 25.81 ± 25.68 |
Igeo | 6.64 ± 6.60 | 1.80 ± 2.82 | −1.96 ± −2.32 | 4.41 ± 2.47 | 4.11 ± 4.10 |
Strain No. | Fungal Species Names | Accession Number |
---|---|---|
E1 | Aspergillus sclerotiorum | MT229298 |
A1 | Aspergillus aculeatus | MT229301 |
WS | Komagataella phaffi | MT229304 |
Y1 | Trichoderma harzianum | MT229305 |
G03 | Aspergillus niger | MT304812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaquat, F.; Munis, M.F.H.; Haroon, U.; Arif, S.; Saqib, S.; Zaman, W.; Khan, A.R.; Shi, J.; Che, S.; Liu, Q. Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China. Biology 2020, 9, 469. https://doi.org/10.3390/biology9120469
Liaquat F, Munis MFH, Haroon U, Arif S, Saqib S, Zaman W, Khan AR, Shi J, Che S, Liu Q. Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China. Biology. 2020; 9(12):469. https://doi.org/10.3390/biology9120469
Chicago/Turabian StyleLiaquat, Fiza, Muhammad Farooq Hussain Munis, Urooj Haroon, Samiah Arif, Saddam Saqib, Wajid Zaman, Ali Raza Khan, Jianxin Shi, Shengquan Che, and Qunlu Liu. 2020. "Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China" Biology 9, no. 12: 469. https://doi.org/10.3390/biology9120469
APA StyleLiaquat, F., Munis, M. F. H., Haroon, U., Arif, S., Saqib, S., Zaman, W., Khan, A. R., Shi, J., Che, S., & Liu, Q. (2020). Evaluation of Metal Tolerance of Fungal Strains Isolated from Contaminated Mining Soil of Nanjing, China. Biology, 9(12), 469. https://doi.org/10.3390/biology9120469