Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. Preparation of Carcinogen
2.4. Experimental Regimen
2.5. Post–Mitochondrial Supernatant (PMS) Preparation
2.6. Estimation of Carcinoembryonic Antigen (CEA)
2.7. Estimation of Aberrant Crypt Foci (ACF)
2.8. Estimation of Mucin-Depleted Foci (MDF)
2.9. Immuno-Histochemical Staining pNF-kB-p65, Nrf-2, Keap-1, HO-1 and NQO-1
2.10. Estimation of Reactive Oxygen Species (ROS)
2.11. Estimation of MDA
2.12. Estimation of Antioxidant Enzyme Armory
2.12.1. Measurement of Superoxide Dismutase Activity (SOD)
2.12.2. Measurement of Catalase Activity (CAT)
2.12.3. Measurement of Reduced Glutathione (GSH)
2.12.4. Measurement of Glutathione Reductase (GR) Activity
2.12.5. Measurement of Glutathione Peroxidase Activity (GPx)
2.13. Estimation of Nitric Oxide (NO)
2.14. Estimation of Hydrogen Peroxide
2.15. Protein Estimation
2.16. Estimation of Myeloperoxidase (MPO)
2.17. Estimation of Tumor Necrosis Factor Alpha (TNF-α), Interleukin 6 (IL-6), Cyclooxygenase-2 (Cox-2), Prostaglandin E-2 (PGE-2), and Inducible Nitric Oxide Synthase (iNOS)
2.18. Alcian Blue–Neutral Red (AB-NR) Staining for Mucin Analysis
2.19. Statistical Analysis
3. Results
3.1. Piperine Treatment Mitigates CEA Production
3.2. Piperine Treatment Mitigates ACF and MDF, Precancerous Lesion Markers
3.3. Piperine Treatment Regulates Nrf-2/Keap-1/HO-1/NQO-1 Pathway
3.4. Piperine Treatment Mitigates ROS
3.5. Piperine Treatment Alleviates MDA Levels
3.6. Piperine Treatment Alleviates Anti-Oxidant Armory
3.7. Piperine Treatment Mitigates H2O2 Levels
3.8. Piperine Treatment Regulates pNF-κB
3.9. Piperine Treatment Mitigates Cox-2 and Inflammatory Mediators
3.10. Piperine Treatment Mitigates NO and iNOS Production
3.11. Piperine Treatment Mitigates MPO Production
3.12. Piperine Treatment Attenuates Mucin Staining in Colonic Tissue
3.13. Effect of Piperine on the Colon Histology
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Available online: https://gco.iarc.fr/today/data/factsheets/populations/935-asia-fact-sheets.pdf (accessed on 3 March 2020).
- Wei, Q.; Zhang, B.; Li, P.; Wen, X.; Yang, J. Maslinic Acid Inhibits Colon Tumorigenesis by the AMPK–mTOR Signaling Pathway. J. Agric. Food Chem. 2019, 67, 4259–4272. [Google Scholar] [CrossRef] [PubMed]
- Mou, L.; Liang, B.; Liu, G.; Jiang, J.; Liu, J.; Zhou, B.; Huang, J.; Zang, N.; Liao, Y.; Ye, L.; et al. Berbamine exerts anticancer effects on human colon cancer cells via induction of autophagy and apoptosis, inhibition of cell migration and MEK/ERK signalling pathway. J. BU ON. Off. J. Balk. Union Oncol. 2019, 24, 1870–1875. [Google Scholar]
- Liu, H.; Liu, X.; Zhang, C.; Zhu, H.; Xu, Q.; Bu, Y.; Lei, Y. Redox Imbalance in the Development of Colorectal Cancer. J. Cancer 2017, 8, 1586–1597. [Google Scholar] [CrossRef] [Green Version]
- Mariani, F.; Sena, P.; Roncucci, L. Inflammatory pathways in the early steps of colorectal cancer development. World J. Gastroenterol. 2014, 20, 9716–9731. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S. Cancer and Chemoprevention: An Overview; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; p. 173. [Google Scholar]
- Ahmed, K.; Zaidi, S.F.; Cui, Z.; Zhou, D.; Saeed, S.A.; Inadera, H. Potential proapoptotic phytochemical agents for the treatment and prevention of colorectal cancer. Oncol. Lett. 2019, 18, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Klampfer, L. Cytokines, inflammation and colon cancer. Curr. Cancer Drug Targets 2011, 11, 451–464. [Google Scholar] [CrossRef]
- Senedese, J.M.; Rinaldi-Neto, F.; Furtado, R.A.; Nicollela, H.D.; De Souza, L.D.R.; Ribeiro, A.B.; Ferreira, L.S.; Magalhães, G.M.; Carlos, I.Z.; Da Silva, J.J.M.; et al. Chemopreventive role of Copaifera reticulata Ducke oleoresin in colon carcinogenesis. Biomed. Pharmacother. 2019, 111, 331–337. [Google Scholar] [CrossRef]
- Yaffe, P.B.; Coombs, M.R.P.; Doucette, C.D.; Walsh, M.; Hoskin, D. Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol. Carcinog. 2014, 54, 1070–1085. [Google Scholar] [CrossRef]
- Zadorozhna, M.; Tataranni, T.; Mangieri, D. Piperine: Role in prevention and progression of cancer. Mol. Biol. Rep. 2019, 46, 5617–5629. [Google Scholar] [CrossRef]
- Takooree, H.; Aumeeruddy, M.Z.; Rengasamy, K.R.; Venugopala, K.N.; Jeewon, R.; Dall’Acqua, S.; Mahomoodally, M.F.; Mahoomodally, M.F. A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Crit. Rev. Food Sci. Nutr. 2019, 59, 1–34. [Google Scholar] [CrossRef]
- Gorgani, L.; Mohammadi, M.; Najafpour-Darzi, G.; Nikzad, M. Piperine-The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Compr. Rev. Food Sci. Food Saf. 2016, 16, 124–140. [Google Scholar] [CrossRef]
- Yaffe, P.B.; Doucette, C.D.; Walsh, M.; Hoskin, D. Piperine impairs cell cycle progression and causes reactive oxygen species-dependent apoptosis in rectal cancer cells. Exp. Mol. Pathol. 2013, 94, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Mir, M.U.R.; Farooq, A.; Rashid, S.M.; Ahmad, B.; Ahmad, S.B.; Wali, A.F.; Hussain, I.; Masoodi, M.H.; Muzamil, S.; et al. Naringenin (4,5,7-trihydroxyflavanone) suppresses the development of precancerous lesions via controlling hyperproliferation and inflammation in the colon of Wistar rats. Environ. Toxicol. 2018, 33, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Famulski, K.; Carafoli, E. Ca2+ transporting activity of membrane fractions isolated from the post-mitochondrial supernatant of rat liver. Cell Calcium 1982, 3, 263–281. [Google Scholar] [CrossRef]
- Rashid, S.; Ali, N.; Nafees, S.; Hasan, S.K.; Sultana, S. Mitigation of 5-Fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem. Toxicol. 2014, 66, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Ma, J.-Q.; Sun, Y.-Z. Quercetin protects the rat kidney against oxidative stress-mediated DNA damage and apoptosis induced by lead. Environ. Toxicol. Pharmacol. 2010, 30, 264–271. [Google Scholar] [CrossRef]
- Wright, J.; Colby, H.; Miles, P. Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch. Biochem. Biophys. 1981, 206, 296–304. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. JBIC J. Biol. Inorg. Chem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Bonnichsen, R.K.; Chance, B.; Theorell, H.; Linnasalmi, A.; Laukkanen, P. Catalase Activity. Acta Chem. Scand. 1947, 1, 685–709. [Google Scholar] [CrossRef]
- Jollow, D.; Mitchell, J.; Zampaglione, N.; Gillette, J. Bromobenzene-Induced Liver Necrosis. Protective Role of Glutathione and Evidence for 3,4-Bromobenzene Oxide as the Hepatotoxic Metabolite. Pharmacology 1974, 11, 151–169. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 1975, 250, 5475–5480. [Google Scholar]
- Mohandas, J.; Marshall, J.J.; Duggin, G.G.; Horvath, J.S.; Tiller, D.J. Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Biochem. Pharmacol. 1984, 33, 1801–1807. [Google Scholar] [CrossRef]
- Green, L.E.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Pick, E.; Mizel, D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods 1981, 46, 211–226. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker. J. Investig. Dermatol. 1982, 78, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Su, B.-B.; Shi, H.; Wan, J. Role of serum carcinoembryonic antigen in the detection of colorectal cancer before and after surgical resection. World J. Gastroenterol. 2012, 18, 2121–2126. [Google Scholar] [CrossRef]
- Manayi, A.; Nabavi, S.F.; Setzer, W.N.; Jafari, S. Piperine as a Potential Anti-cancer Agent: A Review on Preclinical Studies. Curr. Med. Chem. 2019, 25, 4918–4928. [Google Scholar] [CrossRef]
- Lu, M.C.; Ji, J.A.; Jiang, Z.Y.; You, Q.D. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target, an update. Med. Res. Rev. 2016, 36, 924–963. [Google Scholar] [CrossRef]
- Takahashi, M.; Fujii, G.; Hamoya, T.; Kurokawa, Y.; Matsuzawa, Y.; Miki, K.; Komiya, M.; Narita, T.; Mutoh, M. Activation of NF-E2 p45-related factor-2 transcription and inhibition of intestinal tumor development by AHCC, a standardized extract of cultured Lentinula edodes mycelia. J. Clin. Biochem. Nutr. 2019, 65, 203–208. [Google Scholar] [CrossRef]
- Osburn, W.O.; Karim, B.; Dolan, P.M.; Liu, G.; Yamamoto, M.; Huso, D.L.; Kensler, T. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int. J. Cancer 2007, 121, 1883–1891. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Mejia, A.; Ortega-Pérez, L.G.; Godinez-Hernández, D.; Nateras-Marin, B.; Meléndez-Herrera, E.; Rios-Chavez, P. Chemopreventive effect of Callistemon citrinus (Curtis) Skeels against colon cancer induced by 1,2-dimethylhydrazine in rats. J. Cancer Res. Clin. Oncol. 2019, 145, 1417–1426. [Google Scholar] [CrossRef]
- Xu, L.L.; Liu, T.; Wang, L.; Li, L.; Wu, Y.F.; Li, C.C.; Di, B.; You, Q.D.; Jiang, Z.Y. 3-(1H-Benzo[d]imidazol-6-yl)-5-(4-fluorophenyl)-1,2,4- oxadiazole (DDO7232), a Novel Potent Nrf2/ARE Inducer, Ameliorates DSS-Induced Murine Colitis and Protects NCM460 Cells against Oxidative Stress via ERK1/2 Phosphorylation. Oxidative Med. Cell. Longev. 2018, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khor, T.O.; Huang, M.-T.; Prawan, A.; Liu, Y.; Hao, X.; Yu, S.; Cheung, W.K.L.; Chan, J.Y.; Reddy, B.S.; Yang, C.S.; et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev. Res. 2008, 1, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Q.; Wu, R.; Xiao, X.; Yang, C.; Yang, Y.; Wang, C.; Lin, L.-Z.; Kong, A.-N. The dietary flavone luteolin epigenetically activates the Nrf2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J. Cell. Biochem. 2018, 119, 9573–9582. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.; Wu, R.; Xiao, X.; Yang, C.; Yang, Y.; Wang, C.; Lin, L.; Kong, A.N. Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer. Oncotarget 2016, 7, 46219–46229. [Google Scholar]
- Siddiqui, S.; Ahamad, S.; Jafri, A.; Afzal, M.; Arshad, M. Piperine Triggers Apoptosis of Human Oral Squamous Carcinoma Through Cell Cycle Arrest and Mitochondrial Oxidative Stress. Nutr. Cancer 2017, 69, 791–799. [Google Scholar] [CrossRef]
- Ngo, Q.M.; Tran, P.T.; Tran, M.H.; Kim, J.A.; Rho, S.S.; Lim, C.H.; Kim, J.C.; Woo, M.H.; Choi, J.S.; Lee, J.H.; et al. Alkaloids from Piper nigrum Exhibit Antiinflammatory Activity via Activating the Nrf2/HO-1 Pathway. Phytother. Res. 2017, 31, 663–670. [Google Scholar] [CrossRef]
- Rajesh Kumar, N.V.; Kuttan, R. Modulation of carcinogenic response and antioxidant enzymes of rats administered with 1,2-dimethylhydrazine by Picroliv. Cancer Lett. 2003, 191, 137–143. [Google Scholar] [CrossRef]
- Ribas-Maynou, J.; Yeste, M. Oxidative Stress in Male Infertility: Causes, Effects in Assisted Reproductive Techniques, and Protective Support of Antioxidants. Biology 2020, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Nafees, S.; Vafa, A.; Afzal, S.M.; Ali, N.; Rehman, M.U.; Hasan, S.K.; Siddiqi, A.; Barnwal, P.; Majed, F.; et al. Inhibition of precancerous lesions development in kidneys by chrysin via regulating hyperproliferation, inflammation and apoptosis at pre clinical stage. Arch. Biochem. Biophys. 2016, 606, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Meister, A. Glutathione metabolism and its selective modification. J. Biol. Chem. 1988, 263, 17205–17208. [Google Scholar] [PubMed]
- Pandurangan, A.K.; Saadatdoust, Z.; Esa, N.M.; Hamzah, H.; Ismail, A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. BioFactors 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Iliemene, U.D.; Atawodi, S.E. Preventive potential of dietary inclusion of Brachystegia eurycoma (Harms) seeds on N-methyl-N-nitrosourea-induced colon carcinogenesis in Wistar rats. J. Ethnopharmacol. 2019, 238, 111858. [Google Scholar] [CrossRef]
- Joanna, D.; Wardyn, A.; Ponsford, H.; Christopher, M. Sanderson Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 2015, 43, 621–626. [Google Scholar]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.S.; Yu, S.; Kong, A.N. Activation of Nrf2-antioxidant signaling attenuates NF-κBinflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef] [Green Version]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; et al. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar] [CrossRef] [Green Version]
- Ying, X.; Chen, X.-W.; Cheng, S.; Shen, Y.; Peng, L.; Xu, H.Z. Piperine inhibits IL-β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. Int. Immunopharmacol. 2013, 17, 293–299. [Google Scholar] [CrossRef]
- Xia, Y.; Shen, S.; Verma, I.M. NF-B, an Active Player in Human Cancers. Cancer Immunol. Res. 2014, 2, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Mokbel, K.; Wazir, U.; Mokbel, K. Chemoprevention of Prostate Cancer by Natural Agents: Evidence from Molecular and Epidemiological Studies. Anticancer Res. 2019, 39, 5231–5259. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, G.; Zhang, B.; Sun, D.; Wu, J.; Chen, F.; Kong, F.; Luan, Y.; Jiang, W.; Wang, R.; et al. Suppression of the NF-κB signaling pathway in colon cancer cells by the natural compound Riccardin D from Dumortierahirsute. Mol. Med. Rep. 2018, 17, 5837–5843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Agnihotri, N. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed. Pharmacother. 2019, 109, 1462–1477. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, G.; Maffioli, P.; Sahebkar, A. Piperine and Its Role in Chronic Diseases. Neurotransm. Interact. Cogn. Funct. 2016, 928, 173–184. [Google Scholar] [CrossRef]
- Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015, 15, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Femia, A.P.; Luceri, C.; Toti, S.; Giannini, A.; Dolara, P.; Caderni, G. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats. BMC Cancer 2010, 10, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghareeb, E.A.; Moawed, F.S.M.; Ghareeb, D.A.; Kandil, I.E. Potential Prophylactic Effect of Berberine against Rat Colon Carcinoma Induce by 1,2-Dimethyl Hydrazine. Asian Pac. J. Cancer Prev. 2018, 19, 1685–1690. [Google Scholar] [PubMed]
- Sudjarwo, S.A.; Eraiko, K.; Sudjarwo, G.W. Koerniasari Protective effects of piperine on lead acetate induced-nephrotoxicity in rats. Iran. J. Basic Med. Sci. 2017, 20, 1227–1231. [Google Scholar] [PubMed]
- Salam, O.A.; Nofal, S.; El-Shenawy, S.; Shaffie, N. Effect of piperine on liver damage and bone changes caused by bile duct ligation in rats. Internet J. Pharmacol. 2007, 5, 2. [Google Scholar]
- Gupta, R.; Motiwala, M.N.; Dumore, N.G.; Danao, K.R.; Ganjare, A.B. Effect of piperine on inhibition of FFA induced TLR4 mediated inflammation and amelioration of acetic acid induced ulcerative colitis in mice. J. Ethnopharmacol. 2015, 164, 239–246. [Google Scholar] [CrossRef]
- Omar, A.I.; Farag, E.A.; Yousry, M.M. The possible protective effect of piperine versus vitamin C on monosodium glutamate-induced cerebellar toxicity in adult male rats. Egypt. J. Histol. 2016, 39, 362–371. [Google Scholar] [CrossRef]
Group I | Group II | Group III | Group IV | |
---|---|---|---|---|
Reduced Glutathione (GSH; nmol mg protein) | 214.72 ± 11.2 | 92.32 ± 8.31 *** | 141.39 ± 11.3 # | 197.52 ± 15.8 ### |
Oxidized Glutathione (GSSG; nmol mg protein) | 31.02 ± 3.23 | 79.86 ± 3.03 *** | 62.03 ± 4.91# | 41.52 ± 5.02 ### |
GSH/GSSG Ratio | 6.921 ± 0.82 | 1.156 ± 0.21 *** | 2.279 ± 0.33 # | 4.759 ± 0.61 ### |
GPx (nmol/ min/mg protein) | 201.23 ± 17.1 | 82.43 ± 7.25 *** | 160.28 ± 14.7 ## | 182.46 ± 17.3 ### |
GR (nmol min/min/mg protein | 201.44 ± 19.5 | 84.25 ± 9.22 *** | 139.12 ± 17.8 ## | 189.23 ± 20.9 ### |
SOD (units/ min/mg protein | 10.63 ± 1.93 | 4.01 ± 0.41 *** | 7.11 ± 0.73 ## | 9.03 ± 0.97 ### |
Catalase (nmol H2O2 consumed/min/mg protein | 10.23 ± 1.62 | 4.82 ± 0.48 *** | 5.94 ± 0.33 # | 8.32 ± 0.72 ### |
H2O2 (nmol of H2O2 /g tissue) | 185.2 ± 17.4 | 403.5 ± 32.1 *** | 256.9 ± 21.3 ## | 205.7 ± 19.3 ### |
Group-I | Group-II | Group-III | Group-IV | |
---|---|---|---|---|
IL-6 (pg/mL) | 834.12 ± 42.34 | 2023.32 ± 187.4 *** | 1342.07 ± 146.6 # | 1054.83 ± 94.50 ### |
TNF-α (pg/mL) | 522.83 ± 40.27 | 1443.62 ± 138.2 *** | 987.83 ± 105. # | 774.31 ± 55.49 ## |
Cox-2 (pg/mL) | 921.62 ± 63.11 | 1998.23 ± 92.3 *** | 1532.13 ± 144.1 ## | 1098.23 ± 68.70 ### |
iNOS (pg/mL) | 774.52 ± 87.63 | 1638.65 ± 106.1 *** | 1310.22 ± 119.4 ## | 897.35 ± 77.42 ### |
PGE-2 (pg/mL) | 814.89 ± 99.10 | 1547.86 ± 165.2 *** | 1211.17 ± 113.4 ## | 998.64 ± 94.71 ### |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.U.; Rashid, S.; Arafah, A.; Qamar, W.; Alsaffar, R.M.; Ahmad, A.; Almatroudi, N.M.; Alqahtani, S.M.A.; Rashid, S.M.; Ahmad, S.B. Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats. Biology 2020, 9, 302. https://doi.org/10.3390/biology9090302
Rehman MU, Rashid S, Arafah A, Qamar W, Alsaffar RM, Ahmad A, Almatroudi NM, Alqahtani SMA, Rashid SM, Ahmad SB. Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats. Biology. 2020; 9(9):302. https://doi.org/10.3390/biology9090302
Chicago/Turabian StyleRehman, Muneeb U., Summya Rashid, Azher Arafah, Wajhul Qamar, Rana M. Alsaffar, Ajaz Ahmad, Nada M. Almatroudi, Saeed M. A. Alqahtani, Shahzada Mudasir Rashid, and Sheikh Bilal Ahmad. 2020. "Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats" Biology 9, no. 9: 302. https://doi.org/10.3390/biology9090302
APA StyleRehman, M. U., Rashid, S., Arafah, A., Qamar, W., Alsaffar, R. M., Ahmad, A., Almatroudi, N. M., Alqahtani, S. M. A., Rashid, S. M., & Ahmad, S. B. (2020). Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats. Biology, 9(9), 302. https://doi.org/10.3390/biology9090302