An Assessment of the Effects of Food Districts on Sustainable Management of Land: The Case of Lombardia, Italy
Abstract
:1. Introduction
2. Background
2.1. Why Food Districts?
2.2. Districts and Sustainability
3. Materials and Methods
3.1. Research Design
3.2. The Outcome Variables
3.3. The Study Area
- -
- Rural districts: local production systems characterized by a homogeneous historical and territorial identity resulting from the integration of agricultural and other local activities, as well as the production of goods or services linked to traditions and natural and territorial vocations;
- -
- Quality agri-food districts: local production systems characterized by a significant economic presence of agrifood business, often enjoying some geographical denomination or listed as typical products of the region;
- -
- Supply chain districts: highly sector-oriented specialized production systems characterized by solid integration among operators and with a significant economic representativeness at the sectorial and regional levels.
3.4. The Matching Procedure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In Italian: Distretto del Cibo. |
2 | We refer to the so-called agri-food districts, the rural districts, and the bio-districts, all operating around the production of food (or organic food) in rural or peri-urban areas. Territorial and multi-actor approaches to agriculture have been recognized by a specific regulation (legislative decree no. 22801). Recently it has been emended by law n. 205/2017 establishing FDs and further specifying the type of districts that could be acknowledged by introducing the Bio-districts and the “urban and peri-urban” districts. |
3 | It is an empirical approach used to estimate the impact of an intervention on a target population without randomly assigning members of that population to experimental conditions. |
4 | The data source is the soil consumption database provided by ISPRA (2022). |
5 | DUSAF is the Italian acronym for Destinazione d’Uso del Suolo Agricolo e Forestale (Agricultural and Forest Soil Use Destination). |
6 | Bio-districts are defined as rural areas where different actors work together for the sustainable management of local resources, based on the principles and models of organic farming [54]. Bio-districts fall into the categories provided for by the law n. 205/2017 and are specifically ruled by the new national law on organic farming (n. 23/2022). |
7 | A city or town where administrative authorities responsible for each FD seat (Provincia). |
References
- Toccaceli, D. Agricultural districts in the Italian regions: Looking toward 2020. Agric. Econ. 2015, 3, 1. [Google Scholar] [CrossRef]
- Serneels, S.; Lambin, E.F. Proximate causes of land-use change in Narok district, Kenya: A spatial statistical model. Agric. Ecosyst. Environ. 2001, 85, 65–81. [Google Scholar] [CrossRef]
- Yalew, S.G.; Mul, M.L.; van Griensven, A.; Teferi, E.; Priess, J.; Schweitzer, C.; Van Der Zaag, P. Land-use change modelling in the upper blue Nile basin. Environments 2016, 3, 21. [Google Scholar] [CrossRef]
- Tewabe, D.; Fentahun, T. Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environ. Sci. 2020, 6, 309–332. [Google Scholar] [CrossRef]
- Hailu, A.; Mammo, S.; Kidane, M. Dynamics of land use, land cover change trend and its drivers in Jimma Geneti District, Western Ethiopia. Land Use Policy 2020, 99, 105011. [Google Scholar] [CrossRef]
- Fanfani, D.; Duží, B.; Mancino, M.; Rovai, M. Multiple evaluation of urban and peri-urban agriculture and its relation to spatial planning: The case of Prato territory (Italy). Sustain. City Soc. 2002, 79, 103636. [Google Scholar] [CrossRef]
- López-Estébanez, N.; Yacamán-Ochoa, C.; Mata-Olmo, R. The Multifunctionality and Territoriality of Peri-Urban Agri-Food Systems: The Metropolitan Region of Madrid, Spain. Land 2002, 11, 588. [Google Scholar] [CrossRef]
- Shaikh Shamim, H.; Lin, Z. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Belmin, R.; François Casabianca, F.; Meynard, J.M. Contribution of Transition Theory to the Study of Geographical Indications. Environ. Innov. Soc. Transit. 2018, 27, 32–47. [Google Scholar] [CrossRef]
- Shongwe, M.I.; Bezuidenhout, C.N.; Sibomana, M.S.; Workneh, T.S.; Bodhanya, S.; Dlamini, V.V. Developing a Systematic Diagnostic Model for Integrated Agricultural Supply and Processing System. Systems 2019, 7, 5. [Google Scholar] [CrossRef]
- Quiñones Ruiz, X.F.; Nigmann, T.; Schreiber, C.; Neilson, J. Collective Action Milieus and Governance Structures of Protected Geographical Indications for Coffee in Colombia, Thailand and Indonesia. Int. J. Commons 2020, 14, 329–343. [Google Scholar] [CrossRef]
- Edelmann, H.; Quiñones-Ruiz, X.; Penker, M.; Scaramuzzi, S.; Broscha, K.; Jeanneaux, P.; Belletti, G.; Marescotti, A. Social Learning in Food Quality Governance-Evidences from Geographical Indications Amendments. Int. J. Commons 2020, 14, 108–122. [Google Scholar] [CrossRef]
- Traversac, J.B. Cooperation and Governance in Wine Territories: A New Institutional Economic Analysis. In Territorial Governance, Local Development, Rural Areas and Agrofood Systems; Torre, A., Traversac, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 159–183. [Google Scholar]
- Chappuis, J.M.; Sans, P. Actors’ Coordination: Governance Structures and Institutions in Supply Chains of Protected Designation of Origin. In The Socioeconomics of Origin Labelled Products in Agro-Food Supply Chains: Spatial, Institutional and Co-Ordination Aspects; Sylvander, B., Barjolle, D., Arfini, F., Eds.; Series Actes et Communications; INRA: Paris, France, 2000; Volume 17. [Google Scholar]
- Henke, R.; Cimino, O.; Vanni, F. The role of diversification in the revenue composition of Italian farms. Ital. Rev. Agric. Econ. 2022, 77, 25–38. [Google Scholar] [CrossRef]
- Beers, P.J.; Geerling-Eiff, F. Networks as Policy Instruments for Innovation. J. Agric. Educ. Ext. 2014, 20, 363–379. [Google Scholar] [CrossRef]
- Hermans, F.; Klerkx, L.; Roep, D. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems. J. Agric. Educ. Ext. 2015, 21, 35–54. [Google Scholar] [CrossRef]
- Becattini, G. Industrial sectors and industrial districts: Tools for industrial analysis. Eur. Plan. Stud. 2002, 10, 825–846. [Google Scholar] [CrossRef]
- Consiglio Italiano per le Scienze Sociali (CSS). Tendenze e Politiche dello Sviluppo Locale in Italia; Libro Bianco; Marsilio: Venezia, Italy, 2005. [Google Scholar]
- Fabiani, G. (Ed.) Letture Territoriali dello Sviluppo Agricolo; Franco Angeli: Milano, Italy, 1991. [Google Scholar]
- Pilati, L. I Sistemi Agricoli Nelle Interdipendenze Territoriali, Progetto RAISA; Edizioni Osiride: Rovereto, Italy, 1996. [Google Scholar]
- Donati, M.; Mancini, M.C.; Menozzi, D. Il distretto del Prosciutto di Parma tra tipicità e sostenibilità. Econ. Dirit. Agroaliment. 2012, 17, 133–159. [Google Scholar]
- Lamine, C.; Renting, H.; Rossi, A.; Wiskerke, J.S.C.; Brunori, G. Agri-Food systems and territorial development: Innovations, new dynamics and changing governance mechanisms. In Farming Systems Research into the 21st Century: The New Dynamic; Springer: Dordrecht, The Netherlands, 2012; pp. 229–256. [Google Scholar] [CrossRef]
- Lamine, C.; Garçon, L.; Brunori, G. Territorial agrifood systems: A Franco-Italian contribution to the debates over alternative food networks in rural areas. J. Rural Stud. 2019, 68, 159–170. [Google Scholar] [CrossRef]
- Zezza, A.; Henke, R.; Lai, M.; Petriccione, G.; Solazzo, R.; Sturla, A.; Vagnozzi, A.; Vanino, S.; Viganò, L.; Smit, A.B.; et al. RESEARCH for AGRI Committee—Policy Support for Productivity vs. Sustainability in EU Agriculture: Towards Viable Farming and Green Growth: Study; European Parliament: Strasbourg, France, 2017; Available online: http://www.europarl.europa.eu/RegData/etudes/STUD/2017/585905/IPOL_STU(2017)585905_EN.pdf (accessed on 24 April 2023).
- Wezel, A.; Brives, H.; Casagrande, M.; Clément, C.; Dufour, A.; Vandenbroucke, P. Agroecology territories: Places for sustainable agricultural and food systems and biodiversity conservation. Agroecol. Sustain. Food Syst. 2016, 40, 132–144. [Google Scholar] [CrossRef]
- Swagemakers, P.; Domínguez García, M.D.; Milone, P.; Ventura, F.; Wiskerke, J.S.C. Exploring cooperative place-based approaches to restorative agriculture. J. Rural Stud. 2019, 68, 191–199. [Google Scholar] [CrossRef]
- González-Romero, G.; Silva-Pérez, R.; Cánovas-García, F. Territorialised Agrifood Systems and Sustainability: Methodological Approach on the Spanish State Scale. Sustainability 2022, 14, 11900. [Google Scholar] [CrossRef]
- Michel-Villarreal, R.; Hingley, M.; Canavari, M.; Bregoli, I. Sustainability in Alternative Food Networks: A Systematic Literature Review. Sustainability 2019, 11, 859. [Google Scholar] [CrossRef]
- CIRAD-SAR. Systèmes Agroalimentaires Localisés: Organisations, Innovations et Développement Local; Rapport ATP; CIRAD-SAR: Montpellier, France, 1996. [Google Scholar]
- Cortes, C.; Mohri, M.; Riley, M.; Rostamizadeh, A. Sample Selection Bias Correction Theory. In Proceedings of the Algorithmic Learning Theory: 19th International Conference, ALT 2008, Budapest, Hungary, 13–16 October 2008. [Google Scholar] [CrossRef]
- Abadie, A.; Imbens, G.W. Bias-corrected matching estimators for average treatment effects. J. Bus. Econ. Stat. 2011, 29, 1–11. [Google Scholar] [CrossRef]
- Huang, J.; Gretton, A.; Borgwardt, K.; Schölkopf, B.; Smola, A. Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems in Advances in Neural Information Processing Systems, Proceedings of the 2006 Conference (NIPS 2006), Vancouver, BC, Canada, 4–7 December 2006; Schölkopf, B., Platt, B., Hoffman, T., Eds.; MIT Press: Boston, MA, USA, 2007. [Google Scholar] [CrossRef]
- Gertler, P.J.; Martinez, S.; Premand, P.; Rawlings, L.B.; Vermeersch, C.M. Impact Evaluation in Practice, 2nd ed.; World Bank: Washinton, DC, USA, 2016. [Google Scholar] [CrossRef]
- Khandker, S.R.; Koolwal, G.B.; Samad, H.A. Handbook on Impact Evaluation: Quantitative Methods ad Practices; World Bank: Washinton, DC, USA, 2010. [Google Scholar]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Kuchma, T.; Tarariko, O.; Syrotenko, O. Landscape diversity indexes application for agricultural land use optimization. Procedia Technol. 2013, 8, 566–569. [Google Scholar] [CrossRef]
- Surya, B.; Ahmad, D.N.A.; Sakti, H.H.; Sahban, H. Land use change, spatial interaction, and sustainable development in the metropolitan urban areas, South Sulawesi Province, Indonesia. Land 2020, 9, 95. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape metrics and indices: An overview of their use in landscape research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- ISPRA—Consumo del Suolo. Available online: https://www.isprambiente.gov.it/it/attivita/suolo-e-territorio/suolo/il-consumo-di-suolo/i-dati-sul-consumo-di-suolo (accessed on 22 April 2023).
- Couch, C.; Petschel-Held, G.; Leontidou, L. Urban Sprawl in Europe: Landscape, Land-Use Change and Policy; Blackwell: London, UK, 2007. [Google Scholar]
- Johnson, M.P. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ. Plan. A 2001, 33, 717–735. [Google Scholar] [CrossRef]
- Genske, D.D. Urban Land—Degradation, Investigation, Remediation; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Hough, M. Cities and Natural Process; Routledge: Abingdon-on-Thames, UK, 2004. [Google Scholar]
- Salvati, L.; Bajocco, L.; Ceccarelli, T.; Zitti, M.; Perini, L. Towards a process-based evaluation of land vulnerability to soil degradation in Italy. Ecol. Indic. 2011, 11, 1216–1227. [Google Scholar] [CrossRef]
- DUSAF. Uso e Copertura del Suolo in Regione Lombardia. Available online: https://www.regione.lombardia.it/wps/portal/istituzionale/HP/DettaglioServizio/servizi-e-informazioni/Enti-e-Operatori/Territorio/sistema-informativo-territoriale-sit/uso-suolo-dusaf/uso-suolo-dusaf (accessed on 22 April 2023).
- Zhang, Y.; Li, Y.; Jiang, L.; Tian, C.; Li, J.; Xiao, Z. Potential of perennial crop on environmental sustainability of agriculture. Procedia Environ. Sci. 2011, 10, 1141–1147. [Google Scholar] [CrossRef]
- Burel, F.; Butet, A.; Delettre, Y.R.; De La Peña, N.M. Differential response of selected taxa to landscape context and agricultural intensification. Landsc. Urban Plan. 2004, 67, 195–204. [Google Scholar] [CrossRef]
- Michel, N.; Burel, F.; Butet, A. How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes? Acta Oecologica 2006, 30, 11–20. [Google Scholar] [CrossRef]
- Batáry, P.; Holzschuh, A.; Orci, K.M.; Samu, F.; Tscharntke, T. Responses of plant, insect and spider biodiversity to local and landscape scale management intensity in cereal crops and grasslands. Agric. Ecosyst. Environ. 2012, 146, 130–136. [Google Scholar] [CrossRef]
- Nelson, K.S.; Burchfield, E.K. Landscape complexity and US crop production. Nat. Food 2021, 2, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Zymaroieva, A.; Zhukov, O.; Fedoniuk, T.; Pinkina, T.; Hurelia, V. The relationship between landscape diversity and crops productivity: Landscape scale study. J. Landsc. Ecol. 2021, 14, 39–58. [Google Scholar] [CrossRef]
- ISTAT. Conti e Aggregate Economici Territoriali. Available online: http://dati.istat.it/Index.aspx?QueryId=11451 (accessed on 22 April 2023).
- Hasan, S.; Shi, W.; Zhu, X. Impact of land use land cover changes on ecosystem service value—A case study of Guangdong, Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e0231259. [Google Scholar] [CrossRef] [PubMed]
- Stotten, R.; Bui, S.; Pugliese, P.; Schermer, M.; Lamine, C. Organic Values-Based Supply Chains as a Tool for Territorial Development: A Comparative Analysis of Three European Organic Regions. Int. J. Sociol. Agric. Food 2011, 24, 135–154. [Google Scholar] [CrossRef]
- ISTAT. Basi Territoriali. Available online: https://www.istat.it/it/archivio/104317#accordions (accessed on 22 April 2023).
- Thoemmes, F.J.; Kim, E.S. A Systematic Review of Propensity Score Methods in the Social Sciences. Multivar. Behav. Res. 2011, 46, 90–118. [Google Scholar] [CrossRef]
- Zakrison, T.L.; Austin, P.C.; McCredie, V.A. A systematic review of propensity score methods in the acute care surgery literature: Avoiding the pitfalls and proposing a set of reporting guidelines. Eur. J. Trauma Emerg. Surg. 2018, 44, 385–395. [Google Scholar] [CrossRef]
- Ledo, A.; Smith, P.; Zerihun, A.; Whitaker, J.; Vicente-Vicente, J.L.; Qin, Z.; McNamara, N.P.; Zinn, Y.L.; Llorente, M.; Liebig, M.; et al. Changes in soil organic carbon under perennial crops. Glob. Chang. Biol. 2020, 26, 4158–4168. [Google Scholar] [CrossRef]
- Laganiere, J.; Angers, D.A.; Pare, D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob. Chang. Biol. 2010, 16, 439–453. [Google Scholar] [CrossRef]
- Cardarelli, E.; Meriggi, A.; Brangi, A.; Vidus-Rosin, A. Effects of arboriculture stands on European hare Lepus europaeus spring habitat use in an agricultural area of northern Italy. Acta Theriol. 2011, 56, 229–238. [Google Scholar] [CrossRef]
- Kuo, F.E. The role of arboriculture in a healthy social ecology. J. Arboric. 2003, 29, 148–155. [Google Scholar] [CrossRef]
- Willis, K.G.; Garrod, G.; Scarpa, R.; Powe, N.; Lovett, A.; Bateman, I.J.; Hanley, N.; Macmillan, D.C. The Social and Environmental Benefits of Forests in Great Britain; Social & Environmental Benefits of Forestry Phase 2; Forestry Commission: Edinburgh, UK, 2003; pp. 2–4.
- Montgomery, I.; Caruso, T.; Reid, N. Hedgerows as Ecosystems: Service Delivery, Management, and Restoration. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 81–102. [Google Scholar] [CrossRef]
- Garcia-Feced, C.; Weissteiner, C.J.; Baraldi, A.; Paracchini, M.L.; Maes, J. Semi-natural vegetation in agricultural land: European map and links to ecosystem service supply. Agron. Sustain. Dev. 2015, 35, 273–283. [Google Scholar] [CrossRef]
Territorial Approach to Food System | Definition | Organization | Territorial Extension |
---|---|---|---|
Alternative food networks [29] | Any food-provisioning practice which is different from the mainstream food systems | Formal/ informal | Undefined |
Localized agro-food systems [30] | Production and service organizations (agricultural and agri-food production units, marketing, services, gastronomic enterprises, etc.) linked by their characteristics and operational ways to a specific territory | Formal/ informal | Undefined |
Agroecology territories [26] | Territories where (a) a transition toward sustainable agriculture based on agro-ecological practices exists, (b) biodiversity and resource conservation is considered, (c) territory-linked embedded food systems exist, and (d) stakeholders support the transition toward sustainable agricultural and food systems | Formal/ informal | Defined/undefined |
Food districts | Strategic tool aimed at fostering sustainable territorial development, cohesion, and social inclusion, favouring the integration of activities characterized by territorial proximity. | Formal | Defined |
Outcome Variables | Treated | Controls | ATT | Statistical Significance 1 |
---|---|---|---|---|
SI total | 0.24 | −0.04 | 0.28 | *** |
SI arable crops | 0.01 | 0.00 | 0.01 | *** |
SI permanent crops | 0.39 | 0.05 | −0.34 | *** |
SI wood arboriculture | 0.00 | −0.01 | 0.00 | |
SI woods and forests | 0.06 | 0.16 | −0.10 | *** |
EDI | −176.47 | −360.80 | 184.33 | *** |
HDI | 0.66 | −0.01 | 0.67 | *** |
HDN total | −0.62 | −0.38 | −0.24 | *** |
HDN agriculture | 0.18 | 0.27 | −0.08 | |
SSI | 0.73 | 0.59 | 0.14 | *** |
SDI total | 0.13 | 0.11 | 0.01 | |
SDI agriculture | 0.15 | 0.06 | 0.10 | * |
Outcome Variables | Treated | Controls | ATT | Statistical Significance 1 |
---|---|---|---|---|
SI total | 0.24 | −0.03 | 0.26 | *** |
SI arable crops | 0.01 | 0.01 | 0.00 | ** |
SI permanent crops | 0.39 | 0.03 | 0.36 | *** |
SI wood arboriculture | 0.00 | −0.02 | 0.01 | * |
SI woods and forests | 0.06 | 0.15 | −0.09 | *** |
EDI | −176.47 | −326.69 | 150.21 | ** |
HDI | 0.19 | −0.08 | 0.26 | |
HDN total | −0.62 | −0.46 | −0.16 | * |
HDN agriculture | 0.18 | 0.21 | −0.02 | |
SSI | 0.73 | 0.54 | 0.19 | *** |
SDI total | 0.13 | 0.11 | 0.01 | |
SDI agriculture | 0.15 | 0.06 | 0.10 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carillo, F.; Henke, R.; Sturla, A. An Assessment of the Effects of Food Districts on Sustainable Management of Land: The Case of Lombardia, Italy. Systems 2023, 11, 283. https://doi.org/10.3390/systems11060283
Carillo F, Henke R, Sturla A. An Assessment of the Effects of Food Districts on Sustainable Management of Land: The Case of Lombardia, Italy. Systems. 2023; 11(6):283. https://doi.org/10.3390/systems11060283
Chicago/Turabian StyleCarillo, Felicetta, Roberto Henke, and Alberto Sturla. 2023. "An Assessment of the Effects of Food Districts on Sustainable Management of Land: The Case of Lombardia, Italy" Systems 11, no. 6: 283. https://doi.org/10.3390/systems11060283
APA StyleCarillo, F., Henke, R., & Sturla, A. (2023). An Assessment of the Effects of Food Districts on Sustainable Management of Land: The Case of Lombardia, Italy. Systems, 11(6), 283. https://doi.org/10.3390/systems11060283