Leading Role of Big Data Analytic Capability in Innovation Performance: Role of Organizational Readiness and Digital Orientation
Abstract
:1. Introduction
2. Materials and Methods
2.1. BDAC and IP
2.2. BDAC and Organizational Readiness
2.3. Mediating Role of Organizational Readiness
2.4. Moderating Role of Digital Orientation
2.5. Methodology
Sample and Procedure
2.6. Study Measurements
3. Results
3.1. Constructs’ Reliability and Validity
3.2. Hypothesis Testing
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The future of healthcare internet of things: A survey of emerging technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [Google Scholar] [CrossRef]
- Ciampi, F.; Demi, S.; Magrini, A.; Marzi, G.; Papa, A. Exploring the impact of big data analytics capabilities on business model innovation: The mediating role of entrepreneurial orientation. J. Bus. Res. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Qiu, C.; Li, Y.; He, W. Research on opinion polarization by big data analytics capabilities in online social networks. Technol. Soc. 2022, 68, 101902. [Google Scholar] [CrossRef]
- Cetindamar, D.; Shdifat, B.; Erfani, E. Understanding big data analytics capability and sustainable supply chains. Inf. Syst. Manag. 2022, 39, 19–33. [Google Scholar] [CrossRef]
- Davenport, T.H.; Harris, J.G.; Jones, G.L.; Lemon, K.N.; Norton, D.; McCallister, M.B. The dark side of customer analytics. Harv. Bus. Rev. 2007, 85, 37. [Google Scholar]
- Orlikowski, W.J.; Scott, S.V. 10 sociomateriality: Challenging the separation of technology, work and organization. Acad. Manag. Ann. 2008, 2, 433–474. [Google Scholar] [CrossRef]
- Trabucchi, D.; Buganza, T. Data-driven innovation: Switching the perspective on Big Data. Eur. J. Innov. Manag. 2019, 22, 23–40. [Google Scholar] [CrossRef]
- Barton, D.; Court, D. Making advanced analytics work for you. Harv. Bus. Rev. 2012, 90, 78–83. [Google Scholar]
- Wright, L.T.; Robin, R.; Stone, M.; Aravopoulou, D.E. Adoption of big data technology for innovation in B2B marketing. J. Bus. -Bus. Mark. 2019, 26, 281–293. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.J.; Barton, D. Big data: The management revolution. Harv. Bus. Rev. 2012, 90, 60–68. [Google Scholar] [PubMed]
- Gobble, M.M. Big data: The next big thing in innovation. Res. -Technol. Manag. 2013, 56, 64–67. [Google Scholar] [CrossRef]
- Chan, V.S.; Costley, A.E.; Wan, B.N.; Garofalo, A.M.; Leuer, J.A. Evaluation of CFETR as a fusion nuclear science facility using multiple system codes. Nucl. Fusion 2015, 55, 023017. [Google Scholar] [CrossRef]
- Li, J.; Galley, M.; Brockett, C.; Spithourakis, G.P.; Gao, J.; Dolan, B. A persona-based neural conversation model. arXiv 2016, arXiv:1603.06155. [Google Scholar]
- Kiron, D.; Prentice, P.K.; Ferguson, R.B. The analytics mandate. MIT Sloan Manag. Rev. 2014, 55, 1–11. [Google Scholar]
- Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big Data: The Next Frontier for Innovation, Competition and Productivity; Technical report; McKinsey Global Institute: New York, NY, USA, 2011. [Google Scholar]
- Baig, M.I.; Shuib, L.; Yadegaridehkordi, E. Big data adoption: State of the art and research challenges. Inf. Process Manag. 2019, 56, 102095. [Google Scholar] [CrossRef]
- Dehning, B.; Richardson, V.J. Returns on investments in information technology: A research synthesis. J. Inf. Syst. 2002, 16, 7–30. [Google Scholar]
- Melville, N.; Kraemer, K.; Gurbaxani, V. Information technology and organizational performance: An integrative model of IT business value. MIS Q. 2004, 28, 283–322. [Google Scholar] [CrossRef] [Green Version]
- Davenport, T. Big Data at Work: Dispelling the Myths, Uncovering the Opportunities; Harvard Business Review Press: Brighton, MA, USA, 2014. [Google Scholar]
- Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.; Kavukcuoglu, K.; de Freitas, N. Sample efficient actor-critic with experience replay. arXiv 2016, arXiv:1611.01224. [Google Scholar]
- Wamba, S.F.; Akter, S.; Edwards, A.; Chopin, G.; Gnanzou, D. How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 2015, 165, 234–246. [Google Scholar] [CrossRef]
- Sigala, M. Social CRM capabilities and readiness: Findings from Greek tourism firms. In Information and Communication Technologies in Tourism; Springer: Cham, Switzerland, 2016; pp. 309–322. [Google Scholar]
- Covin, J.G.; Wales, W.J. The measurement of entrepreneurial orientation. Entrep. Theory Pract. 2012, 36, 677–702. [Google Scholar] [CrossRef]
- Covin, J.G.; Lumpkin, G.T. Entrepreneurial orientation theory and research: Reflections on a needed construct. Entrep. Theory Pract. 2011, 35, 855–872. [Google Scholar] [CrossRef]
- Madhoushi, M.; Sadati, A.; Delavari, H.; Mehdivand, M.; Mihandost, R. Entrepreneurial orientation and innovation performance: The mediating role of knowledge management. Asian J. Bus. Manag. 2011, 3, 310–316. [Google Scholar]
- Freixanet, J.; Braojos, J.; Rialp-Criado, A.; Rialp-Criado, J. Does international entrepreneurial orientation foster innovation performance? The mediating role of social media and open innovation. Int. J. Entrep. Innov. 2021, 22, 33–44. [Google Scholar] [CrossRef]
- Schroeck, M.; Shockley, R.; Smart, J.; Romero, D.; Tufano, P. Analytics: El Uso De Big Data En El Mundo Real; IBM Institute for Business Value: Oxford, UK, 2012. [Google Scholar]
- Cordero, R. The measurement of innovation performance in the firm: An overview. Res. Policy 1990, 19, 185–192. [Google Scholar] [CrossRef]
- Shan, S.; Luo, Y.; Zhou, Y.; Wei, Y. Big data analysis adaptation and enterprises’ competitive advantages: The perspective of dynamic capability and resource-based theories. Technol. Anal. Strateg. Manag. 2019, 31, 406–420. [Google Scholar] [CrossRef]
- Kiron, D. Organizational alignment is key to big data success. MIT Sloan Manag. Rev. 2013, 54, 1–12. [Google Scholar]
- Zhang, H.; Yuan, S. How and When Does Big Data Analytics Capability Boost Innovation Performance? Sustainability 2023, 15, 4036. [Google Scholar] [CrossRef]
- Al-Khatib, A.W. Intellectual capital and innovation performance: The moderating role of big data analytics: Evidence from the banking sector in Jordan. EuroMed J. Bus. 2022, 17, 391–423. [Google Scholar] [CrossRef]
- Miake-Lye, I.M.; Delevan, D.M.; Ganz, D.A.; Mittman, B.S.; Finley, E.P. Unpacking organizational readiness for change: An updated systematic review and content analysis of assessments. BMC Health Serv. Res. 2020, 20, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Najran, N.; Dahanayake, A. A requirements specification framework for big data collection and capture. In East European Conference on Advances in Databases and Information Systems; Springer: Cham, Switzerland, 2015; pp. 12–19. [Google Scholar]
- Olszak, C.M.; Mach-Król, M. A conceptual framework for assessing an organization’s readiness to adopt big data. Sustainability 2018, 10, 3734. [Google Scholar] [CrossRef] [Green Version]
- Kambatla, K.; Kollias, G.; Kumar, V.; Grama, A. Trends in big data analytics. J. Parallel Distrib. Comput. 2014, 74, 2561–2573. [Google Scholar] [CrossRef]
- Haddad, A.; Ameen, A.A.; Mukred, M. The impact of intention of use on the success of big data adoption via organization readiness factor. Int. J. Manag. Hum. Sci. (IJMHS) 2018, 2, 43–51. [Google Scholar]
- Klievink, B.; Romijn, B.J.; Cunningham, S.; de Bruijn, H. Big data in the public sector: Uncertainties and readiness. Inf. Syst. Front. 2017, 19, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Chatzoglou, P.D.; Michailidou, V.N. A survey on the 3D printing technology readiness to use. Int. J. Prod. Res. 2019, 57, 2585–2599. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Ramezani, J. A model to evaluate the organizational readiness for big data adoption. Int. J. Comput. Commun. Control 2020, 15, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Irani, Z.; Sharif, A.M. Big data in an HR context: Exploring organizational change readiness, employee attitudes and behaviors. J. Bus. Res. 2017, 70, 366–378. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Tao, M.; Li, C. Knowledge absorption capacity′s efficacy to enhance innovation performance through big data analytics and digital platform capability. J. Innov. Knowl. 2022, 7, 100201. [Google Scholar] [CrossRef]
- Ur Rehman, M.H.; Chang, V.; Batool, A.; Wah, T.Y. Big data reduction framework for value creation in sustainable enterprises. Int. J. Inf. Manag. 2016, 36, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Goss, R.G.; Veeramuthu, K. Heading towards big data building a better data warehouse for more data, more speed, and more usersv. In Proceedings of the ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, USA, 14–16 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 220–225. [Google Scholar]
- Banjongprasert, J. An Assessment of Change-Readiness Capabilities and Service Innovation Readiness and Innovation Performance: Empirical Evidence from MICE Venues. Int. J. Econ. Manag. 2017, 11, 45–58. [Google Scholar]
- Hussain, M.; Papastathopoulos, A. Organizational readiness for digital financial innovation and financial resilience. Int. J. Prod. Econ. 2022, 243, 108326. [Google Scholar] [CrossRef]
- Motwani, J.; Mirchandani, D.; Madan, M.; Gunasekaran, A. Successful implementation of ERP projects: Evidence from two case studies. Int. J. Prod. Rconomics 2002, 75, 83–96. [Google Scholar] [CrossRef]
- Shahrasbi, N.; Paré, G. Inside the Black Box: Investigating the Link between Organizational Readiness and IT Implementation Success 2015. Research in Progress, AIS Electronic Library (AISeL), UK. Available online: https://core.ac.uk/download/pdf/301367494.pdf (accessed on 1 May 2023).
- Kasasih, K.; Wibowo, W.; Saparuddin, S. The influence of ambidextrous organization and authentic followership on innovative performance: The mediating role of change readiness. Manag. Sci. Lett. 2020, 10, 1513–1520. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Calic, G. Assessing the impact of big data on firm innovation performance: Big data is not always better data. J. Bus. Res. 2020, 108, 147–162. [Google Scholar] [CrossRef]
- Giacumo, L.A.; Villachica, S.W.; Breman, J. Workplace Learning, Big Data, and Organizational Readiness: Where to Start? In Digital Workplace Learning; Springer: Cham, Switzerland, 2018; pp. 107–127. [Google Scholar]
- Zhen, Z.; Yousaf, Z.; Radulescu, M.; Yasir, M. Nexus of digital organizational culture, capabilities, organizational readiness, and innovation: Investigation of SMEs operating in the digital economy. Sustainability 2021, 13, 720. [Google Scholar] [CrossRef]
- Popovič, A.; Hackney, R.; Tassabehji, R.; Castelli, M. The impact of big data analytics on firms’ high value business performance. Inf. Syst. Front. 2018, 20, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Mubarak, M.F.; Petraite, M. Industry 4.0 technologies, digital trust and technological orientation, What matters in open innovation? Technol. Forecast. Soc. Chang. 2020, 161, 120332. [Google Scholar] [CrossRef]
- Yin, D.; Ming, X.; Zhang, X. Sustainable and Smart Product Innovation Ecosystem, An integrative status review and future perspectives. J. Clean. Prod. 2020, 274, 123005. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics capabilities and innovation: The mediating role of dynamic capabilities and moderating effect of the environment. Br. J. Manag. 2019, 30, 272–298. [Google Scholar] [CrossRef]
- Kim, G.; Shin, B.; Kwon, O. Investigating the value of socio materialism in conceptualizing IT capability of a fifirm. J. Manag. Inf. Syst. 2012, 29, 327–362. [Google Scholar] [CrossRef]
- Karimi, J.; Somers, T.M.; Gupta, Y.P. Impact of information technology management practices on customer service. J. Manag. Inf. Syst. 2001, 17, 125–158. [Google Scholar] [CrossRef]
- Claiborne, N.; Auerbach, C.; Lawrence, C.; Schudrich, W.Z. Organizational change: The role of climate and job satisfaction in child welfare workers′ perception of readiness for change. Child. Youth Serv. Rev. 2013, 35, 56–69. [Google Scholar] [CrossRef]
- Alegre, J.; Chiva, R. Assessing the impact of organizational learning capability on product innovation performance: An empirical test. Technovation 2008, 28, 315–326. [Google Scholar] [CrossRef]
- Khin, S.; Ho, T.C. Digital technology, digital capability and organizational performance. Int. J. Innov. Sci. 2019, 11, 177–195. [Google Scholar] [CrossRef]
- Muhammad, A.; Yu, C.K.; Qadir, A.; Ahmed, W.; Yousuf, Z.; Fan, G. Big data analytics capability as a major antecedent of firm innovation performance. Int. J. Entrep. Innov. 2022, 23, 268–279. [Google Scholar] [CrossRef]
N | % | ||
---|---|---|---|
Age (in years) | 20–25 | 91 | 18.42 |
26–30 | 129 | 26.11 | |
31–35 | 141 | 28.54 | |
35–40 | 96 | 19.43 | |
Above 40 | 37 | 7.48 | |
Experience | 5–10 | 97 | 19.64 |
11–15 | 112 | 22.67 | |
16–20 | 163 | 32.99 | |
More than 20 | 122 | 24.70 | |
Education | 10 years | 22 | 4.53 |
12 years | 67 | 13.56 | |
14 years | 111 | 22.47 | |
16 years | 143 | 28.95 | |
More than 16 years | 151 | 30.57 |
Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|---|---|
Gender | 0.9 | 0.81 | 1 | |||||||
Respondent age | 34 | --- | 0.09 | 1 | ||||||
Work experience | 2.7 | 0.84 | 0.08 | 0.03 | 1 | |||||
Education level | 2.8 | 0.91 | 0.06 | 0.05 | 0.04 | 1 | ||||
Big data analytic capability | 3.8 | 0.93 | 0.09 | 0.12 * | 0.08 | 0.07 | 1 | |||
Organizational readiness | 3.5 | 0.91 | 0.05 | 0.09 | 0.04 | 0.05 | 0.35 ** | 1 | ||
Digital orientation | 3.9 | 0.95 | 0.03 | 0.07 | 0.06 | 0.09 | 0.23 ** | 0.32 ** | 1 | |
Innovation performance | 3.7 | 0.90 | 0.08 | 0.03 | 0.04 | 0.09 | 0.29 ** | 0.27 ** | 0.19 ** | 1 |
Items | Alpha | FL | CR | AVE | |
---|---|---|---|---|---|
Big Data Analytic Capability | 10 | 0.81 | 0.72–0.92 | 0.83 | 0.69 |
Organizational Readiness | 07 | 0.79 | 0.74–0.89 | 0.81 | 0.72 |
Innovation Performance | 04 | 0.84 | 0.71–0.91 | 0.86 | 0.70 |
Digital Orientation | 06 | 0.78 | 0.70–0.94 | 0.82 | 0.68 |
Specification | Estimate | LL | UP |
---|---|---|---|
Direct impact | |||
BDAC → IP | 0.26 * | 0.13 | 0.18 |
BDAC → Organizational Readiness | 0.41 * | 0.22 | 0.34 |
Organizational Readiness → IP | 0.33 * | 0.25 | 0.40 |
Specification | Estimate | LL | UP |
---|---|---|---|
Standardized direct impact | |||
Big Data Analytic Capability → IP | 0.13 | −0.05 | 0.27 |
Big Data Analytic Capability → Organizational Readiness | 0.44 * | 0.39 | 0.58 |
Organizational Readiness → IP | 0.33 * | 0.19 | 0.50 |
Standardized indirect effects | |||
Big Data Analytic Capability → Organizational Readiness → IP | 0.19 * | 0.07 | 0.27 |
Step 1 | Step 2 | Step 3 | |
---|---|---|---|
Moderation of Digital Orientation | |||
Organizational Readiness | 0.32 ** | 0.36 ** | |
Digital Orientation | 0.25 ** | 0.29 ** | |
Organizational Readiness × Digital Orientation | 0.26 ** | ||
R2 | 0.009 | 0.191 | 0.198 |
Adjusted R2 | 0.003 | 0.159 | 0.175 |
∆ R2 | 0.007 | 0.163 | 0.028 |
∆ F | 4.172 | 79.63 | 17.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binsaeed, R.H.; Grigorescu, A.; Yousaf, Z.; Condrea, E.; Nassani, A.A. Leading Role of Big Data Analytic Capability in Innovation Performance: Role of Organizational Readiness and Digital Orientation. Systems 2023, 11, 284. https://doi.org/10.3390/systems11060284
Binsaeed RH, Grigorescu A, Yousaf Z, Condrea E, Nassani AA. Leading Role of Big Data Analytic Capability in Innovation Performance: Role of Organizational Readiness and Digital Orientation. Systems. 2023; 11(6):284. https://doi.org/10.3390/systems11060284
Chicago/Turabian StyleBinsaeed, Rima H., Adriana Grigorescu, Zahid Yousaf, Elena Condrea, and Abdelmohsen A. Nassani. 2023. "Leading Role of Big Data Analytic Capability in Innovation Performance: Role of Organizational Readiness and Digital Orientation" Systems 11, no. 6: 284. https://doi.org/10.3390/systems11060284
APA StyleBinsaeed, R. H., Grigorescu, A., Yousaf, Z., Condrea, E., & Nassani, A. A. (2023). Leading Role of Big Data Analytic Capability in Innovation Performance: Role of Organizational Readiness and Digital Orientation. Systems, 11(6), 284. https://doi.org/10.3390/systems11060284