How Explainable Machine Learning Enhances Intelligence in Explaining Consumer Purchase Behavior: A Random Forest Model with Anchoring Effects
Abstract
:1. Introduction
2. Literature Review
2.1. Anchoring Effect of Consumer Decision
2.2. Research on Explainable Machine Learning Models
3. Explainable Modeling of Consumer Purchase Behavior
3.1. Characteristics of Product Information
3.2. Characteristics of Merchant Information
3.3. User Characteristics of Consumers
3.4. SHAP Explanation Method
4. Empirical Study
4.1. Descriptive Analysis of Data
4.2. Model Stability Test
4.3. Machine−Learning−Based Consumer Purchase Behavior Model
4.4. Explainable Analysis of Consumer Purchase Behavior
4.4.1. Importance of Model Features
4.4.2. Specific Effects of Features on Consumer Purchase Behavior
4.4.3. Explainable Analysis of Consumer Purchase Behavior
5. Discussion
5.1. Theoretical Implications and Contributions
5.2. Practical Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brands, M. The Blossoming of global advertisement market compared to before epidemic the prediction of global advertisement by MAGNA. China Advert. 2022, 2, 83–88. [Google Scholar]
- Bucklin, R.E.; Sismeiro, C. Click here for Internet insight: Advances in clickstream data analysis in marketing. J. Interact. Mark. 2009, 23, 35–48. [Google Scholar] [CrossRef]
- Gong, J.; Abhishek, V.; Li, B. Examining the impact of keyword ambiguity on search advertising performance: A topic model approach. MIS Q. Manag. Inf. Syst. 2018, 42, 805–829. [Google Scholar] [CrossRef]
- Chan, T.Y.; Park, Y. Consumer search activities and the value of ad positions in sponsored search advertising. Mark. Sci. 2015, 34, 606–623. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Wang, F.; Zeng, D. Competitive analysis of bidding behavior on sponsored search advertising markets. IEEE Trans. Comput. Soc. Syst. 2017, 4, 179–190. [Google Scholar] [CrossRef]
- Simon, H.A. A behavioral model of rational choice. Q. J. Econ. 1955, 69, 99–118. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science 1974, 185, 1124–1131. [Google Scholar] [CrossRef]
- Lee, J.; Jung, O.; Lee, Y.; Kim, O.; Park, C. A Comparison and Interpretation of Machine Learning Algorithm for the Prediction of Online Purchase Conversion. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1472–1491. [Google Scholar] [CrossRef]
- Kaustia, M.; Alho, E.; Puttonen, V. How much does expertise reduce behavioral biases? The case of anchoring effects in stock return estimates. Financ. Manag. 2008, 37, 391–412. [Google Scholar] [CrossRef]
- Hardesty, D.M.; Suter, T.A. E-tail and retail reference price effects. J. Prod. Brand Manag. 2005, 14, 129–136. [Google Scholar] [CrossRef]
- Zhang, J.; Chiang, W.K. Durable goods pricing with reference price effects. Omega 2020, 91, 102018. [Google Scholar] [CrossRef]
- Chen, K.; Zha, Y.; Alwan, L.C.; Zhang, L. Dynamic pricing in the presence of reference price effect and consumer strategic behaviour. Int. J. Prod. Res. 2019, 58, 546–561. [Google Scholar] [CrossRef]
- Leonidou, L.C.; Eteokleous, P.P.; Christofi, A.-M.; Korfiatis, N. Drivers, outcomes, and moderators of consumer intention to buy organic goods: Meta-analysis, implications, and future agenda. J. Bus. Res. 2022, 151, 339–354. [Google Scholar] [CrossRef]
- Ye, Q.; Fang, B. Learning from other buyers: The effect of purchase history records in online marketplaces. Decis. Support Syst. 2013, 56, 502–512. [Google Scholar] [CrossRef]
- Chaudhary, K.; Alam, M.; Al-Rakhami, M.S.; Gumaei, A. Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics. J. Big Data 2021, 8, 1–20. [Google Scholar] [CrossRef]
- Xiahou, X.; Harada, Y. B2C E-commerce customer churn prediction based on K-means and SVM. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 458–475. [Google Scholar] [CrossRef]
- Shrirame, V.; Sabade, J.; Soneta, H.; Vijayalakshmi, M. Consumer Behavior Analytics using Machine Learning Algorithms. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020. [Google Scholar] [CrossRef]
- Ping, Y.; Buoye, A.; Vakil, A. Enhanced review facilitation service for C2C support: Machine learning approaches. J. Serv. Mark. 2023, 37, 620–635. [Google Scholar] [CrossRef]
- Baati, K.; Mohsil, M. Real-Time prediction of online shoppers’ purchasing intention using random forest. In Artificial Intelligence Applications and Innovations, Proceedings of the 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, 5–7 June 2020; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Doornenbal, B.M.; Spisak, B.R.; van der Laken, P.A. Opening the black box: Uncovering the leader trait paradigm through machine learning. Leadersh. Q. 2022, 33, 101515. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system: KDD’16. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016. [Google Scholar]
- Athey, S.; Imbens, G. Recursive partitioning for heterogeneous causal effects. Proc. Natl. Acad. Sci. USA 2016, 113, 7353–7360. [Google Scholar] [CrossRef] [Green Version]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning important features through propagating activation differences. arXiv 2017, arXiv:1704.02685. [Google Scholar] [CrossRef]
- Gunning, D.; Aha, D. DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 2019, 40, 44–58. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Demajo, L.M.; Vella, V.; Dingli, A. Explainable ai for interpretable credit scoring. arXiv 2020, arXiv:2012.03749. [Google Scholar] [CrossRef]
- Hakkoum, H.; Abnane, I.; Idri, A. Interpretability in the medical field: A systematic mapping and review study. Appl. Soft Comput. 2022, 117, 108391. [Google Scholar] [CrossRef]
- Lampridis, O.; Guidotti, R.; Ruggieri, S. Explaining sentiment classification with synthetic exemplars and Counter-Exemplars. In Discovery Science, Proceedings of the 23rd International Conference, DS 2020, Thessaloniki, Greece, 19–21 October 2020; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Haque, A.K.M.B.; Islam, N.; Mikalef, P. Notion of Explainable Artificial Intelligence—An Empirical Investigation from a User’s Perspective. In Proceedings of the European Conference on Information Systems (ECIS), Kristiansand, Norway, 5–8 June 2023. [Google Scholar]
- Ullah, I.; Liu, K.; Yamamoto, T.; Zahid, M.; Jamal, A. Modeling of machine learning with SHAP approach for electric vehicle charging station choice behavior prediction. Travel Behav. Soc. 2023, 31, 78–92. [Google Scholar] [CrossRef]
- Oldenburg, F.; Han, Q.; Kaiser, M. Interpretable deep learning for forecasting online advertising costs: Insights from the competitive bidding landscape. arXiv 2023, arXiv:2302.05762. [Google Scholar] [CrossRef]
- An, J.; Do, D.K.X.; Ngo, L.V.; Quan, T.H.M. Turning brand credibility into positive word-of-mouth: Integrating the signaling and social identity perspectives. J. Brand Manag. 2019, 26, 157–175. [Google Scholar] [CrossRef]
- Biswas, M.; Tania, M.H.; Kaiser, M.S.; Kabir, R.; Mahmud, M.; Kemal, A.A. ACCU3RATE: A mobile health application rating scale based on user reviews. PLoS ONE 2021, 16, e0258050. [Google Scholar] [CrossRef]
- Bergh, D.D.; Ketchen, J.D.J.; Orlandi, I.; Heugens, P.P.M.A.R.; Boyd, B.K. Information asymmetry in management research: Past Accomplishments and future opportunities. J. Manag. 2019, 45, 122–158. [Google Scholar] [CrossRef]
- Bagwell, K. The economic analysis of advertising. Handb. Ind. Organ. 2007, 3, 1701–1844. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.J.; Chen, Y. Time is money: Dynamic-model-based time series data-mining for correlation analysis of commodity sales. J. Comput. Appl. Math. 2020, 370, 112659. [Google Scholar] [CrossRef]
- Wang, Y.; Shang, W.; Li, Z. The application of factorization machines in user behavior prediction. In Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, 26–29 June 2016. [Google Scholar] [CrossRef]
Advertising Information | Variable | Mean Value | Standard Deviation | Minimum Value | 25% Quantile | Median | 75% Quantile | Maximum Value |
---|---|---|---|---|---|---|---|---|
Product Information | Product display granularity | 28.5894 | 11.0326 | 11 | 22 | 26 | 32 | 105 |
Price level | 6.5588 | 1.2590 | 0 | 6 | 7 | 7 | 12 | |
Sales level | 9.7837 | 2.6785 | 1 | 8 | 10 | 12 | 17 | |
Favorite level | 11.2260 | 2.5328 | 0 | 10 | 12 | 13 | 18 | |
Display priority | 4.2178 | 4.4625 | 1 | 1 | 2 | 6 | 20 | |
Display frequency | 16.3301 | 2.1694 | 1 | 15 | 17 | 18 | 22 | |
Merchant Information | Store star rating | 14.5210 | 3.0033 | 1 | 13 | 15 | 16 | 21 |
Number of reviews rating | 16.1543 | 3.2826 | 1 | 14 | 16 | 18 | 25 | |
Store positive rating | 0.9944 | 0.0084 | 0.7500 | 0.9916 | 0.9978 | 1 | 1 | |
Service attitude rating | 0.9728 | 0.0097 | 0.3600 | 0.9666 | 0.9733 | 0.9791 | 1 | |
Logistics service rating | 0.9723 | 0.0098 | 0.5200 | 0.9659 | 0.9728 | 0.9796 | 1 | |
Description rating | 0.9735 | 0.0125 | 0.3600 | 0.9655 | 0.9759 | 0.9827 | 1 | |
User Information | Gender | 0.2197 | 0.4141 | 0 | 0 | 0 | 0 | 1 |
Age | 4.5328 | 1.2343 | 1 | 4 | 4 | 5 | 8 | |
User star | 5.4733 | 2.1349 | 1 | 4 | 6 | 7 | 11 |
Model Verification 1 | Model Verification 2 | Model Verification 3 | Model Verification 4 | ||
---|---|---|---|---|---|
Constant of preference for variety | 0 *** | 0 *** | 0 *** | 0 *** | |
Product Information | Product display granularity | / | / | 0 *** | 0 *** |
Price level | / | / | 0 *** | 0 *** | |
Sales level | / | / | 0 *** | 0 *** | |
Favorite level | / | / | 0 *** | 0 *** | |
Display priority | / | / | 0 *** | 0 *** | |
Display frequency | / | / | 0 *** | 0 *** | |
Merchant Information | Store star rating | / | 0 *** | / | 0 *** |
Number of reviews rating | / | 0 *** | / | 0 *** | |
Store positive rating | / | 0 *** | / | 0 *** | |
Service attitude rating | / | 0 *** | / | 0 *** | |
Logistics service rating | / | 0 *** | / | 0.01 * | |
Description rating | / | 0.042 | / | 0.01 * | |
User Information | Gender | 0 *** | 0 *** | 0 *** | 0 *** |
Age | 0 *** | 0 *** | 0 *** | 0 *** | |
User star | 0 *** | 0.019 | 0 *** | 0 *** | |
Log−Likelihood | −581,930 | −578,610 | −544,850 | −539,530 | |
LL−Null | −582,720 | ||||
LLR p−value | 0 | 0 | 0 | 0 |
Model 4−cv1 | Model 4−cv2 | Model 4−cv3 | Model 4−cv4 | Model 4−cv5 | ||
---|---|---|---|---|---|---|
Constant of preference for variety | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Product Information | Product display granularity | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** |
Price level | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Sales level | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Favorite level | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Display priority | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Display frequency | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Merchant Information | Store star rating | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** |
Number of reviews rating | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Store positive rating | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Service attitude rating | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Logistics service rating | 0.061 | 0.028 * | 0.02 * | 0.03 * | 0.009 ** | |
Description rating | 0.018 * | 0.036 * | 0.014 * | 0.015 * | 0.012 * | |
User Information | Gender | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** |
Age | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
User star | 0 *** | 0 *** | 0 *** | 0 *** | 0 *** | |
Log−Likelihood | −431,110 | −431,280 | −431,100 | −432,560 | −432,050 | |
LL−Null | −465,420 | −465,870 | −465,850 | −467,000 | −466,740 | |
LLR p−value | 0 | 0 | 0 | 0 | 0 |
Dimension | Variables | VIF |
---|---|---|
Product Information | Product display granularity | 1.2057 |
Price level | 1.4919 | |
Sales level | 3.5342 | |
Favorite level | 3.0699 | |
Display priority | 1.0119 | |
Display frequency | 1.8554 | |
Merchant Information | Store star rating | 1.4020 |
Number of reviews rating | 1.0868 | |
Store positive rating | 1.5322 | |
Service attitude rating | 3.8984 | |
Logistics service rating | 3.7150 | |
Description rating | 2.1626 | |
User Information | Gender | 1.0111 |
Age | 1.0363 | |
User star | 1.0347 |
LR | ADA | XGB | MLP | NB | RF | |
---|---|---|---|---|---|---|
Accuracy | 0.6575 | 0.6676 | 0.6605 | 0.6625 | 0.6105 | 0.7783 |
Precision | 0.9730 | 0.9730 | 0.9735 | 0.9735 | 0.9706 | 0.9725 |
F1_score | 0.7765 | 0.7838 | 0.7787 | 0.7800 | 0.7414 | 0.8590 |
Roc_auc | 0.7362 | 0.7410 | 0.7503 | 0.7502 | 0.6599 | 0.7730 |
LR | ADA | XGB | MLP | NB | RF | |
---|---|---|---|---|---|---|
Accuracy | 0.6581 | 0.6663 | 0.6593 | 0.6565 | 0.6112 | 0.7777 |
Precision | 0.9730 | 0.9730 | 0.9735 | 0.9737 | 0.9706 | 0.9727 |
F1_score | 0.7769 | 0.7829 | 0.7778 | 0.7757 | 0.7419 | 0.8586 |
Roc_auc | 0.7359 | 0.7394 | 0.7495 | 0.7513 | 0.6600 | 0.7748 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, H.; Wen, Z.; Lin, W. How Explainable Machine Learning Enhances Intelligence in Explaining Consumer Purchase Behavior: A Random Forest Model with Anchoring Effects. Systems 2023, 11, 312. https://doi.org/10.3390/systems11060312
Chen Y, Liu H, Wen Z, Lin W. How Explainable Machine Learning Enhances Intelligence in Explaining Consumer Purchase Behavior: A Random Forest Model with Anchoring Effects. Systems. 2023; 11(6):312. https://doi.org/10.3390/systems11060312
Chicago/Turabian StyleChen, Yanjun, Hongwei Liu, Zhanming Wen, and Weizhen Lin. 2023. "How Explainable Machine Learning Enhances Intelligence in Explaining Consumer Purchase Behavior: A Random Forest Model with Anchoring Effects" Systems 11, no. 6: 312. https://doi.org/10.3390/systems11060312
APA StyleChen, Y., Liu, H., Wen, Z., & Lin, W. (2023). How Explainable Machine Learning Enhances Intelligence in Explaining Consumer Purchase Behavior: A Random Forest Model with Anchoring Effects. Systems, 11(6), 312. https://doi.org/10.3390/systems11060312