Dynamical Systems Research (DSR) in Psychotherapy: A Comprehensive Review of Empirical Results and Their Clinical Implications
Abstract
:1. Introduction
2. Preliminary Requirements for Dynamical Systems Research (DSR)
3. Preliminary Concepts
4. High–Low Synchronization
5. Stability–Flexibility Oscillations
5.1. Macro-Parameters
- Indices that quantify stability or rigidity. The most used are the sum of Pearson coefficients in absolute value, calculated on each pair of process variables; the percentage of variance explained by the first principal component (see Gorban and colleagues for a review). If applied within a network, they are called connectivity indices as they measure the strength of connections within the network. Clinically, we can associate the increase in these indices with an increase in coherence of the patient’s narratives. In fact, as psychotherapy progresses, we can observe how the patient’s dysfunctional relational pattern becomes similar in the different domains of his life: professional, emotional, and familial. Achieving such a high coherence of the patient’s narratives allows the therapist to intervene to promote the emergence of a new and more functional psychic organization.
- Indices that quantify flexibility or dispersion. The most used are dynamic complexity, obtained by multiplying the fluctuation and distribution of the scores of process variables; the standard deviation, a classic measure of dispersion of the scores of a time series; the Shannon entropy, often applied on eigenvalues (see de Felice and colleagues, and Gorban and colleagues for a review). Clinically, we can associate these indices with the variability of the patient’s narratives. Often, in the moment before a change, the patient does completely new things such as looking at old photographs from his childhood, asking his family members things he had never talked about before, organizing his life differently, with new hobbies and new relationships whose diversity he previously would not have been able to manage. The oscillation between periods of high and low stability and flexibility (i.e., S–F oscillations) in the psychotherapy process promotes the good outcome of treatment (see Section 5.2).
5.2. S–F Oscillations
- High and low physiological or bodily synchronization;
- S–F oscillations of relational process variables;
- Cycles of emotional and abstract language and their semantic contents;
6. Mathematical Modeling
7. Conclusions and Future Directions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In this article, the author only uses the masculine pronoun to refer to the patient to make reading easier. It is intended that in each sentence the pronoun encompasses any gender. |
References
- Giuliani, A. Why systems biology can promote a new way of thinking. Syst. Synth. Biol. 2015, 25–41. [Google Scholar] [CrossRef]
- Sadri, A. Is Target-Based Drug Discovery Efficient? Discovery and “Off-Target” Mechanisms of All Drugs. J. Med. Chem. 2023, 66, 12651–12677. [Google Scholar] [CrossRef] [PubMed]
- Spadafora, C. The epigenetic basis of evolution. Prog. Biophys. Mol. Biol. 2023, 178, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Schiepek, G.; Fricke, B.; Kaimer, P. Synergetics of psychotherapy. In Self-Organization and Clinical Psychology: Empirical Approaches to Synergetics in Psychology; Springer: Berlin/Heidelberg, Germany, 1992; pp. 239–267. [Google Scholar]
- Schiepek, G.; Tschacher, W. Application of synergetics to clinical psychology. In Self-Organization and Clinical Psychology: Empirical Approaches to Synergetics in Psychology; Springer: Berlin/Heidelberg, Germany, 1992; pp. 3–31. [Google Scholar]
- Watzlawick, P. (Ed.) The Invented Reality: How Do We Know What We Believe We Know? W. W. Norton & Company: London, UK, 1984. [Google Scholar]
- Gelo, O.C.G.; Salvatore, S. A dynamic systems approach to psychotherapy: A meta-theoretical framework for explaining psychotherapy change processes. J. Couns. Psychol. 2016, 63, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Linardon, J.; de la Piedad Garcia, X.; Brennan, L. Predictors, moderators, and mediators of treatment outcome following manualised cognitive-behavioural therapy for eating disorders: A systematic review. Eur. Eat. Disord. Rev. 2017, 25, 3–12. [Google Scholar] [CrossRef]
- de Felice, G.; Giuliani, A.; Halfon, S.; Andreassi, S.; Paoloni, G.; Orsucci, F.F. The misleading Dodo Bird verdict. How much of the outcome variance is explained by common and specific factors? New Ideas Psychol. 2019, 54, 50–55. [Google Scholar] [CrossRef]
- de Felice, G.; Orsucci, F.F.; Scozzari, A.; Gelo, O.; Serafini, G.; Andreassi, S.; Vegni, N.; Paoloni, G.; Lagetto, G.; Mergenthaler, E.; et al. What differentiates poor and good outcome psychotherapy? A statistical-mechanics-inspired approach to psychotherapy research. Systems 2019, 7, 22. [Google Scholar] [CrossRef]
- de Felice, G.; Giuliani, A.; Gelo, O.C.; Mergenthaler, E.; De Smet, M.M.; Meganck, R.; Paoloni, G.; Andreassi, S.; Schiepek, G.K.; Scozzari, A.; et al. What differentiates poor-and good-outcome psychotherapy? a statistical-mechanics-inspired approach to psychotherapy research, part two: Network analyses. Front. Psychol. 2020, 11, 788. [Google Scholar] [CrossRef]
- Schiepek, G.; Kowalik, Z.; Schütz, A.; Köhler, M.; Richter, K.; Strunk, G.; Mühlnickel, W.; Elbert, T. Psychotherapy as a chaotic process I. Coding the client-therapist interaction by means of Sequential Plan Analysis and the search for chaos: A stationary approach. Psychother. Res. 1997, 7, 173–194. [Google Scholar] [CrossRef]
- Gorban, A.N.; Tyukina, T.A.; Pokidysheva, L.I.; Smirnova, E.V. Dynamic and thermodynamic models of adaptation. Phys. Life Rev. 2021, 37, 17–64. [Google Scholar] [CrossRef]
- Olthof, M.; Hasselman, F.; Oude Maatman, F.; Bosman, A.M.; Lichtwarck-Aschoff, A. Complexity theory of psychopathology. J. Psychopathol. Clin. Sci. 2023, 132, 314. [Google Scholar] [PubMed]
- Greenberg, L.S. Integrating an emotion-focused approach to treatment into psychotherapy integration. J. Psychother. Integr. 2002, 12, 154. [Google Scholar] [CrossRef]
- Stern, D.B. Comments on the clinical material presented by Jill Scharff. Psychoanal. Inq. 2001, 21, 499–507. [Google Scholar] [CrossRef]
- Lingiardi, V.; McWilliams, N. (Eds.) Psychodynamic Diagnostic Manual: PDM-2; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Kleinbub, J.R.; Talia, A.; Palmieri, A. Physiological synchronization in the clinical process: A research primer. J. Couns. Psychol. 2020, 67, 420. [Google Scholar] [CrossRef] [PubMed]
- Koole, S.L.; Tschacher, W. Synchrony in psychotherapy: A review and an integrative framework for the therapeutic alliance. Front. Psychol. 2016, 7, 862. [Google Scholar] [CrossRef]
- Orsucci, F.F.; Musmeci, N.; Aas, B.; Schiepek, G.; Reda, M.A.; Canestri, L.; Giuliani, A.; De Felice, G. Synchronization analysis of language and physiology in human dyads. Nonlinear Dyn. Psychol. Life Sci. 2016, 20, 167–191. [Google Scholar]
- Scheidt, C.E.; Pfänder, S.; Ballati, A.; Schmidt, S.; Lahmann, C. Language and movement synchronization in dyadic psychotherapeutic interaction–a qualitative review and a proposal for a classification. Front. Psychol. 2021, 12, 696448. [Google Scholar] [CrossRef] [PubMed]
- Paulick, J.; Deisenhofer, A.K.; Ramseyer, F.; Tschacher, W.; Boyle, K.; Rubel, J.; Lutz, W. Nonverbal synchrony: A new approach to better understand psychotherapeutic processes and drop-out. J. Psychother. Integr. 2018, 28, 367. [Google Scholar]
- Mayo, O.; Gordon, I. In and out of synchrony—Behavioral and physiological dynamics of dyadic interpersonal coordination. Psychophysiology 2020, 57, e13574. [Google Scholar] [CrossRef]
- Safran, J.D.; Muran, J.C. Resolving therapeutic alliance ruptures: Diversity and integration. J. Clin. Psychol. 2000, 56, 233–243. [Google Scholar] [CrossRef]
- Villmann, T.; Liebers, C.; Bergmann, B.; Gumz, A.; Geyer, M. Investigation of psycho-physiological interactions between patient and therapist during a psychodynamic therapy and their relation to speech using in terms of entropy analysis using a neural network approach. New Ideas Psychol. 2008, 26, 309–325. [Google Scholar] [CrossRef]
- Stukenbrock, A.; Deppermann, A.; Scheidt, C.E. The art of tentativity: Delivering interpretations in psychodynamic psychotherapy. J. Pragmat. 2021, 176, 76–96. [Google Scholar] [CrossRef]
- Schiepek, G.; Schöller, H.; de Felice, G.; Steffensen, S.V.; Bloch, M.S.; Fartacek, C.; Aichhorn, W.; Viol, K. Convergent validation of methods for the identification of psychotherapeutic phase transitions in time series of empirical and model systems. Front. Psychol. 2020, 11, 1970. [Google Scholar] [CrossRef] [PubMed]
- Helmich, M.A.; Olthof, M.; Oldehinkel, A.J.; Wichers, M.; Bringmann, L.F.; Smit, A.C. Early warning signals and critical transitions in psychopathology: Challenges and recommendations. Curr. Opin. Psychol. 2021, 41, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Dablander, F.; Pichler, A.; Cika, A.; Bacilieri, A. Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations. Psychol. Methods 2023, 28, 765–790. [Google Scholar] [CrossRef]
- Gumz, A.; Kästner, D.; Geyer, M.; Wutzler, U.; Villmann, T.; Brähler, E. Instability and discontinuous change in the experience of therapeutic interaction: An extended single-case study of psychodynamic therapy processes. Psychother. Res. 2010, 20, 398–412. [Google Scholar] [CrossRef] [PubMed]
- de Felice, G.; Giuliani, A.; Pincus, D.; Scozzari, A.; Berardi, V.; Kratzer, L.; Aichhorn, W.; Schöller, H.; Viol, K.; Schiepek, G. Stability and flexibility in psychotherapy process predict outcome. Acta Psychol. 2022, 227, 103604. [Google Scholar] [CrossRef] [PubMed]
- Schiepek, G.; Strunk, G. The identification of critical fluctuations and phase transitions in short term and coarse-grained time series—A method for the real-time monitoring of human change processes. Biol. Cybern. 2010, 102, 197–207. [Google Scholar] [CrossRef]
- Viol, K.; Schöller, H.; Kaiser, A.; Fartacek, C.; Aichhorn, W.; Schiepek, G. Detecting pattern transitions in psychological time series–A validation study on the Pattern Transition Detection Algorithm (PTDA). PLoS ONE 2022, 17, e0265335. [Google Scholar] [CrossRef]
- Olthof, M.; Hasselman, F.; Strunk, G.; Aas, B.; Schiepek, G.; Lichtwarck-Aschoff, A. Destabilization in self-ratings of the psychotherapeutic process is associated with better treatment outcome in patients with mood disorders. Psychother. Res. 2020, 30, 520–531. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R.; Lenton, T.M.; Bascompte, J.; Brock, W.; Dakos, V.; Van de Koppel, J.; Van de Leemput, I.A.; Levin, S.A.; Van Nes, E.H.; et al. Anticipating critical transitions. Science 2012, 338, 344–348. [Google Scholar] [CrossRef]
- Mergenthaler, E. Resonating minds: A school-independent theoretical conception and its empirical application to psychotherapeutic processes. Psychother. Res. 2008, 18, 109–126. [Google Scholar] [CrossRef]
- Caro Gabalda, I.; Stiles, W.B. Why setbacks are compatible with progress in assimilating problematic themes: Illustrations from the case of Alicia. Psychother. Res. 2021, 31, 386–401. [Google Scholar] [CrossRef]
- Salvatore, S.; Gelo, O.C.G.; Gennaro, A.; Metrangolo, R.; Terrone, G.; Pace, V.; Venuleo, C.; Venezia, A.; Ciavolino, E. An automated method of content analysis for psychotherapy research: A further validation. Psychother. Res. 2017, 27, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.P.; Kenett, Y.N. Semantic network analysis (SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks. Psychol. Methods 2023, 28, 860–879. [Google Scholar] [CrossRef] [PubMed]
- Christian, C.; Barzilai, E.; Nyman, J.; Negri, A. Assessing key linguistic dimensions of ruptures in the therapeutic alliance. J. Psycholinguist. Res. 2021, 50, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Zimatore, G.; Tsuchiya, M.; Hashimoto, M.; Kasperski, A.; Giuliani, A. Self-organization of whole-gene expression through coordinated chromatin structural transition. Biophys. Rev. 2021, 2, 031303. [Google Scholar] [CrossRef]
- Keul, N.D.; Oruganty, K.; Schaper Bergman, E.T.; Beattie, N.R.; McDonald, W.E.; Kadirvelraj, R.; Gross, M.L.; Phillips, R.S.; Harvey, S.C.; Wood, Z.A. The entropic force generated by intrinsically disordered segments tunes protein function. Nature 2018, 563, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Po, A.; Giuliani, A.; Masiello, M.G.; Cucina, A.; Catizone, A.; Ricci, G.; Chiacchiarini, M.; Tafani, M.; Ferretti, E.; Bizzarri, M. Phenotypic transitions enacted by simulated microgravity do not alter coherence in gene transcription profile. NPJ Microgravity 2019, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Hartkamp, N.; Schmitz, N. Structures of introject and therapist–patient interaction in a single case study of inpatient psychotherapy. Psychother. Res. 1999, 9, 199–215. [Google Scholar]
- Hayes, A.M.; Laurenceau, J.P.; Feldman, G.; Strauss, J.L.; Cardaciotto, L. Change is not always linear: The study of nonlinear and discontinuous patterns of change in psychotherapy. Clin. Psychol. Rev. 2007, 27, 715–723. [Google Scholar] [CrossRef]
- Salvatore, S.; Gelo, O.; Gennaro, A.; Manzo, S.; Al Radaideh, A. Looking at the psychotherapy process as an intersubjective dynamic of meaning-making: A case study with discourse flow analysis. J. Constr. Psychol. 2010, 23, 195–230. [Google Scholar] [CrossRef]
- Gumz, A.; Bauer, K.; Brähler, E. Corresponding instability of patient and therapist process ratings in psychodynamic psychotherapies. Psychother. Res. 2012, 22, 26–39. [Google Scholar] [CrossRef]
- Polman, A.; Bouman, T.K.; van Geert, P.L.; de Jong, P.J.; den Boer, J.A. Dysfunctional beliefs in the process of change of cognitive treatment in obsessive compulsive checkers. Clin. Psychol. Psychother. 2011, 18, 256–273. [Google Scholar] [CrossRef]
- Gonçalves, M.M.; Mendes, I.; Cruz, G.; Ribeiro, A.P.; Sousa, I.; Angus, L.; Greenberg, L.S. Innovative moments and change in client-centered therapy. Psychother. Res. 2012, 22, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.M.; Ribeiro, A.P.; Stiles, W.B.; Conde, T.; Matos, M.; Martins, C.; Santos, A. The role of mutual in-feeding in maintaining problematic self-narratives: Exploring one path to therapeutic failure. Psychother. Res. 2011, 21, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.M.; Yasinski, C. Pattern destabilization and emotional processing in cognitive therapy for personality disorders. Front. Psychol. 2015, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Schiepek, G.; Eckert, H.; Weihrauch, S. Critical Fluctuations and Clinical Change: Data-Based Assessment in Dynamic Systems. Constr. Hum. Sci. 2003, 8, 57–84. [Google Scholar]
- Schiepek, G.K.; Tominschek, I.; Heinzel, S. Self-organization in psychotherapy: Testing the synergetic model of change processes. Front. Psychol. 2014, 5, 1089. [Google Scholar] [CrossRef] [PubMed]
- Heinzel, S.; Tominschek, I.; Schiepek, G. Dynamic patterns in psychotherapy-discontinuous changes and critical instabilities during the treatment of obsessive-compulsive disorder. Nonlinear Dyn. Psychol. Life Sci. 2014, 18, 155–176. [Google Scholar]
- Halfon, S.; Çavdar, A.; Orsucci, F.; Schiepek, G.K.; Andreassi, S.; Giuliani, A.; de Felice, G. The non-linear trajectory of change in play profiles of three children in psychodynamic play therapy. Front. Psychol. 2016, 7, 1494. [Google Scholar] [CrossRef]
- Halfon, S.; Cavdar, A.; Paoloni, G.; Andreassi, S.; Giuliani, A.; Orsucci, F.; de Felice, G. Monitoring non-linear dynamics of change in psychodynamic play therapy. Nonlinear Dyn. Psychol. Life Sci. 2019, 23, 113–135. [Google Scholar]
- Cornell, W.F.; Bucci, W. Emotional Communication and Therapeutic Change: Understanding Psychotherapy through Multiple Code Theory; Routledge: Oxford, UK, 2020. [Google Scholar]
- Li, X.; Kivlighan, D.M., Jr. Examining therapy dynamics and session outcome using differential equations model and multilevel data disaggregation. Psychother. Res. 2020, 30, 604–621. [Google Scholar]
- Paz, A.; Rafaeli, E.; Bar-Kalifa, E.; Gilboa-Schectman, E.; Gannot, S.; Laufer-Goldshtein, B.; Narayanan, S.; Keshet, J.; Atzil-Slonim, D. Intrapersonal and interpersonal vocal affect dynamics during psychotherapy. J. Consult. Clin. Psychol. 2021, 89, 227. [Google Scholar] [CrossRef]
- Tschacher, W.; Haken, H. Causation and chance: Detection of deterministic and stochastic ingredients in psychotherapy processes. Psychother. Res. 2020, 30, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Schiepek, G.K.; Viol, K.; Aichhorn, W.; Hütt, M.T.; Sungler, K.; Pincus, D.; Schöller, H.J. Psychotherapy is chaotic—(not only) in a computational world. Front. Psychol. 2017, 8, 379. [Google Scholar] [CrossRef] [PubMed]
- Schöller, H.; Viol, K.; Aichhorn, W.; Hütt, M.T.; Schiepek, G. Personality development in psychotherapy: A synergetic model of state-trait dynamics. Cogn. Neurodynamics 2018, 12, 441–459. [Google Scholar] [CrossRef]
- Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. Nature 2007, 450, 964–972. [Google Scholar] [CrossRef]
- Malaney, P.; Pathak, R.R.; Xue, B.; Uversky, V.N.; Davé, V. Intrinsic disorder in PTEN and its interactome confers structural plasticity and functional versatility. Sci. Rep. 2013, 3, 2035. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felice, G.d. Dynamical Systems Research (DSR) in Psychotherapy: A Comprehensive Review of Empirical Results and Their Clinical Implications. Systems 2024, 12, 54. https://doi.org/10.3390/systems12020054
Felice Gd. Dynamical Systems Research (DSR) in Psychotherapy: A Comprehensive Review of Empirical Results and Their Clinical Implications. Systems. 2024; 12(2):54. https://doi.org/10.3390/systems12020054
Chicago/Turabian StyleFelice, Giulio de. 2024. "Dynamical Systems Research (DSR) in Psychotherapy: A Comprehensive Review of Empirical Results and Their Clinical Implications" Systems 12, no. 2: 54. https://doi.org/10.3390/systems12020054
APA StyleFelice, G. d. (2024). Dynamical Systems Research (DSR) in Psychotherapy: A Comprehensive Review of Empirical Results and Their Clinical Implications. Systems, 12(2), 54. https://doi.org/10.3390/systems12020054