Blue Sky Protection Campaign: Assessing the Role of Digital Technology in Reducing Air Pollution
Abstract
:1. Introduction
- Can DT based on modern electronic information technology bring ecological welfare in preventing and controlling AP? In the context of enterprise digital transformation and digital industrialization, can DT become the golden key to ecological protection of the environment and harmonious coexistence between man and nature? In other words, whether digital technology can reduce the concentration of pollutants in the air is what this paper will focus on.
- If DT contributes to blue sky goals, what are the indirect economic mechanisms and is there heterogeneity based on urban factor endowments?
2. Literature Review
2.1. Does DT Have a Positive Effect on Reducing AP?
2.2. Literature Gap
3. Theoretical Mechanism and Research Hypothesis
3.1. The Direct Impact of DT on AP
3.2. Indirect Channels for Digital Technologies to Reduce AP
3.2.1. The Role of Green Technology Innovation
3.2.2. The Role of Energy Efficiency
3.2.3. The Role of Market Integration
4. Study Design and Data Sources
4.1. Variable Setting
4.1.1. Explained Variable
4.1.2. Core Explanatory Variable
4.1.3. Mediating Variables
4.1.4. Control Variables
4.2. Identification Strategy
4.3. Data Sources
5. Result
5.1. The Result of Baseline Regression
5.2. Robustness Test
5.2.1. Method 1
5.2.2. Method 2
5.2.3. Method 3
5.3. Causal Recognitional
6. Mechanism Test and Heterogeneity Analysis
6.1. The Results of Mechanism Test
6.2. Heterogeneity
6.2.1. Heterogeneity of Resource Endowments
6.2.2. Heterogeneity of Supply Chain Modernization Degree
6.2.3. Analysis of the COVID-19 Outbreak
7. Conclusions and Policy Implications
7.1. Conclusions
7.2. Research Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | EPCI: https://epic.uchicago.edu/insights/the-global-decline-in-pollution-in-recent-years-is-due-entirely-to-china-2/ (accessed on 20 October 2023). |
2 | Ministry of Ecology and Environment of the People’s Republic of China: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/ (accessed on 21 October 2023). |
References
- Li, C.; van Donkelaar, A.; Hammer, M.S.; McDuffie, E.E.; Burnett, R.T.; Spadaro, J.V.; Chatterjee, D.; Cohen, A.J.; Apte, J.S.; Southerland, V.A.; et al. Reversal of trends in global fine particulate matter air pollution. Nat. Commun. 2023, 14, 5349. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, Y.; Meng, Y.; Zhao, W. Research on the nexus between the digital economy and carbon emissions -Evidence at China’s province level. J. Clean. Prod. 2023, 413, 137484. [Google Scholar] [CrossRef]
- Bianchini, S.; Damioli, G.; Ghisetti, C. The environmental effects of the “twin” green and digital transition in European regions. Environ. Resour. Econ. 2023, 84, 877–918. [Google Scholar] [CrossRef]
- Hynes, M. Virtual consumption: A review of digitalization’s “green” credentials. Front. Sustain. 2023, 3, 969329. [Google Scholar] [CrossRef]
- Lefèvre, T.; Déméné, C.; Arpin, M.; Elzein, H.; Genois-Lefrançois, P.; Morin, J.; Cheriet, M. Trends characterizing technological innovations that increase environmental pressure: A typology to support action for sustainable consumption. Front. Sustain. 2023, 3, 901383. [Google Scholar] [CrossRef]
- Lange, S.; Frick, V.; Gossen, M.; Pohl, J.; Rohde, F.; Santarius, T. The induction effect: Why the rebound effect is only half the story of technology’s failure to achieve sustainability. Front. Sustain. 2023, 4, 1178089. [Google Scholar] [CrossRef]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. arXiv 2019. [Google Scholar] [CrossRef]
- Ishida, H. The effect of ICT development on economic growth and energy consumption in Japan. Telemat. Inform. 2015, 32, 79–88. [Google Scholar] [CrossRef]
- Ansari, M.A. Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions. Renew. Sustain. Energy Rev. 2022, 168, 112867. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, R.; Yang, Y.; Chen, J.; Yang, S. Has enterprise digital transformation facilitated the carbon performance in Industry 4.0 era? Evidence from Chinese industrial enterprises. Comput. Ind. Eng. 2023, 184, 109576. [Google Scholar] [CrossRef]
- Yi, Y.; Cheng, R.; Wang, H.; Yi, M.; Huang, Y. Industrial digitization and synergy between pollution and carbon emissions control: New empirical evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 36127–36142. [Google Scholar] [CrossRef]
- Luo, H.; Li, W.; Cai, Z.; Luo, H. The environmental effects of digital economy: Evidence from province-level empirical data in China. Environ. Sci. Pollut. Res. 2023, 30, 63272–63288. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Q.; Dong, Z.; Cheng, L. The role of industrial intelligence in peaking carbon emissions in China. Technol. Forecast. Soc. Change 2024, 199, 123005. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Lu, S.; Taghizadeh-Hesary, F. Digital finance and air pollution in China: Evolution characteristics, impact mechanism and regional differences. Resour. Policy 2023, 86, 104073. [Google Scholar] [CrossRef]
- Li, G.; Zhang, R.; Feng, S.; Wang, Y. Digital finance and sustainable development: Evidence from environmental inequality in China. Bus. Strategy Environ. 2022, 31, 3574–3594. [Google Scholar] [CrossRef]
- Ali, K.; Du, J.; Kirikkaleli, D.; Mentel, G.; Altuntaş, M. Testing the role of digital financial inclusion in energy transition and diversification towards COP26 targets and sustainable development goals. Gondwana Res. 2023, 121, 293–306. [Google Scholar] [CrossRef]
- Xu, S.; Yang, C.; Huang, Z.; Failler, P. Interaction between digital economy and environmental pollution: New evidence from a spatial perspective. Int. J. Environ. Res. Public Health 2022, 19, 5074. [Google Scholar] [CrossRef]
- Wan, Q.; Shi, D. Smarter and cleaner: The digital economy and environmental pollution. China World Econ. 2022, 30, 59–85. [Google Scholar] [CrossRef]
- Bai, L.; Guo, T.; Xu, W.; Liu, Y.; Kuang, M.; Jiang, L. Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model. Energy Policy 2023, 183, 113792. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Wu, H. Digitalization and environment governance: Does internet development reduce environmental pollution? J. Environ. Plan. Manag. 2023, 66, 1533–1562. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Liang, F.H. The effects of digital economy on breakthrough innovations: Evidence from Chinese listed companies. Technol. Forecast. Soc. Chang. 2023, 196, 122866. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X. Intelligent manufacturing, green technological innovation and environmental pollution. J. Innov. Knowl. 2023, 8(3), 100384. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Zhong, K. Impact of digital economy on urban sustainable development: Evidence from Chinese cities. Sustain. Dev. 2023. [Google Scholar] [CrossRef]
- Li, G.; Zhou, X.; Bao, Z. A win–win opportunity: The industrial pollution reduction effect of digital economy development—A quasi-natural experiment based on the “broadband China” strategy. Sustainability 2022, 14, 5583. [Google Scholar] [CrossRef]
- Zhu, D.; Li, Y. Digital supply Chain reform and firm labor investment efficiency: Empirical evidence from supply chain innovation and application pilot. Commer. Res. 2023, 539, 49–57. [Google Scholar] [CrossRef]
- Guo, K.; Yuan, Y. Is the sky of smart city bluer? Evidence from satellite monitoring data. J. Environ. Manag. 2022, 317, 115483. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Hu, S. The effect of smart city policy on urban haze pollution in China: Empirical evidence from a quasi-natural experiment. Pol. J. Environ. Stud. 2022, 31, 2083–2092. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Q.; Xue, F.; Li, Z. Does smart city construction reduce haze pollution? Int. J. Environ. Res. Public Health 2022, 19, 16421. [Google Scholar] [CrossRef] [PubMed]
- Geng, W.; Liu, X.; Liao, X. Mechanism analysis of the influence of intelligent manufacturing on carbon emission intensity: Evidence from cross country and industry. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Chen, H.; Yan, X.; Zhu, B. The impact of robot use on pollution discharge: A theoretical mechanism and empirical research. China Econ. Stud. 2021, 328, 126–138. [Google Scholar] [CrossRef]
- Thanh, T.T.; Ha, L.T.; Dung, H.P.; Huong, T.T.L. Impacts of digitalization on energy security: Evidence from European countries. Environ. Dev. Sustain. 2023, 25, 11599–11644. [Google Scholar] [CrossRef]
- Hou, S.; Song, L.; He, J. Greening the digital revolution: Assessing the impact of digital transformation on green total factor productivity in Chinese enterprises. Environ. Sci. Pollut. Res. 2023, 30, 101585–101598. [Google Scholar] [CrossRef] [PubMed]
- Sheng, D.; Bu, W. The usage of robots and enterprises’ pollution emission in China. J. Quant. Technol. Econ. 2022, 39, 157–176. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ullah, S.; Kartal, M.T.; Ali, K.; Pata, U.K.; Ağa, M. Endorsing sustainable development in BRICS: The role of technological innovation, renewable energy consumption, and natural resources in limiting carbon emission. Sci. Total Environ. 2023, 859, 160181. [Google Scholar] [CrossRef] [PubMed]
- Sakariyahu, R.; Lawal, R.; Etudaiye-Muhtar, O.F.; Ajide, F.M. Reflections on COP27: How do technological innovations and economic freedom affect environmental quality in Africa? Technol. Forecast. Soc. Chang. 2023, 195, 122782. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, L.; Meng, Y. How does science and technology innovation improve carbon productivity?—Evidence at China’s province level. Environ. Sci. Pollut. Res. 2023, 30, 101296–101316. [Google Scholar] [CrossRef] [PubMed]
- Schoenecker, T.; Swanson, L. Indicators of firm technological capability: Validity and performance implications. IEEE Trans. Eng. Manag. 2002, 49, 36–44. [Google Scholar] [CrossRef]
- Yin, W. Does digital transformation matter to green innovation: Based on TOE framework and configuration perspective. Environ. Sci. Pollut. Res. 2023, 30, 100046–100057. [Google Scholar] [CrossRef]
- Chen, S.; Tan, Z.; Mu, S.; Wang, J.; Chen, Y.; He, X. Synergy level of pollution and carbon reduction in the Yangtze River Economic Belt: Spatial-temporal evolution characteristics and driving factors. Sustain. Cities Soc. 2023, 98, 104859. [Google Scholar] [CrossRef]
- Schumpeter, J.A. The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Wang, X.; Qin, C.; Liu, Y.; Tanasescu, C.; Bao, J. Emerging enablers of green low-carbon development: Do digital economy and open innovation matter? Energy Econ. 2023, 127, 107065. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, Y.; Wu, G.; Wang, W.; Zhang, J. Digitalization and energy: How could digital economy eliminate energy poverty in China? Environ. Impact Assess. Rev. 2023, 103, 107243. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J. Digital economy development and haze pollution: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 73210–73226. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, L.; Gao, Y.; Wu, H. The inducing factors of environmental emergencies: Do environmental decentralization and regional corruption matter? J. Environ. Manag. 2022, 302, 114098. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Zhang, K.; Dou, J. Effects of economic agglomeration on energy saving and emission reduction:Theory and empirical evidence from China. J. Manag. World 2019, 35, 36–60. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Roberts, J.J.; Johnson, J.; Smith, D.J.; Bond, C.E.; Knipe, R.; Haszeldine, S.; Gordon, S.; O’donnell, M. Geosciences and the energy transition. Earth Sci. Syst. Soc. 2023, 3, 10072. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, D. Digitalization of the economy for fossil fuels efficiency and carbon neutrality. Resour. Policy 2023, 86, 104133. [Google Scholar] [CrossRef]
- Wu, J.; Lin, K.; Sun, J. Improving urban energy efficiency: What role does the digital economy play? J. Clean. Prod. 2023, 418, 138104. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, S.; Yang, F. The barrier to domestic economic cycle: Efficiency loss of regional market segmentation. China Ind. Econ. 2022, 417, 108–126. [Google Scholar] [CrossRef]
- Bian, Y.; Song, K.; Bai, J. Market segmentation, resource misallocation and environmental pollution. J. Clean. Prod. 2019, 228, 376–387. [Google Scholar] [CrossRef]
- Zhang, K.; Shao, S.; Fan, S. Market integration and environmental quality: Evidence from the Yangtze river delta region of China. J. Environ. Manag. 2020, 261, 110208. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, N.; Zhao, Z. On the impact and mechanism of market integration in Yangtze River Delta on industrial air pollution reduction and its mechanism. J. Nantong Univ. (Soc. Sci. Ed.) 2022, 38, 44–55. [Google Scholar] [CrossRef]
- Qin, Q.; Yu, Y.; Liu, Y.; Zhou, J.; Chen, X. Industrial agglomeration and energy efficiency: A new perspective from market integration. Energy Policy 2023, 183, 113793. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, X.; Hu, H.; Du, J.; Xu, B. Market integration and urban air quality: Evidence from the Yangtze river economic belt of China. Econ. Anal. Policy 2023, 80, 910–928. [Google Scholar] [CrossRef]
- Stevens, M.; Yang-Huang, J.; Nieboer, D.; Zhou, S.; Osman, K.A.; Raat, H.; van Grieken, A. Multidimensional energy poverty and acute respiratory infection in children under 5 years of age: Evidence from 22 low-income and middle-income countries. J. Epidemiol. Community Health 2023, 77, 687–693. [Google Scholar] [CrossRef]
- Odo, D.B.; Yang, I.A.; Dey, S.; Hammer, M.S.; van Donkelaar, A.; Martin, R.V.; Dong, G. Ambient air pollution and acute respiratory infection in children aged under 5 years living in 35 developing countries. Environ. Int. 2022, 159, 107019. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Liu, T.; Zhou, M. Straw burning, PM2.5, and death: Evidence from China. J. Dev. Econ. 2020, 145, 102468. [Google Scholar] [CrossRef]
- Tan, J.; Chen, N.; Bai, J.; Yan, P.; Ma, X.; Ren, M.; Maitland, E.; Nicholas, S.; Cheng, W.; Leng, X.; et al. Ambient air pollution and the health-related quality of life of older adults: Evidence from Shandong China. J. Environ. Manag. 2023, 336, 117619. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhang, Q.; Niu, Y.; Kan, H.; Chen, R. Fine particulate matter and cardiorespiratory health in China: A systematic review and meta-analysis of epidemiological studies. J. Environ. Sci. 2023, 123, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, T.; Liu, C. Beyond the modern productivity paradox: The effect of robotics technology on firm-level total factor productivity in China. J. Asian Econ. 2024, 90, 101692. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, Z.; Zhang, X. Impact of digital technology on carbon emissions: Evidence from Chinese cities. Front. Ecol. Evol. 2023, 11, 1166376. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, Y. The impact of intelligent manufacturing on industrial green total factor productivity and its multiple mechanisms. Front. Env. Sci. 2023, 10, 1058664. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X. The impact of artificial intelligence on employment: The role of virtual agglomeration. Humanit. Soc. Sci. Commun. 2024, 11, 122. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management – An exploratory literature review. R D Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y. Inter-city environmental regulation heterogeneity and green innovation quality: A knowledge influence perspective. Sci. Technol. Prog. Policy 2022, 39, 33–44. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Wu, H. Government corruption, market segmentation and renewable energy technology innovation: Evidence from China. J. Environ. Manag. 2021, 300, 113686. [Google Scholar] [CrossRef] [PubMed]
- Parsley, D.C.; Wei, S. Limiting Currency Volatility to Stimulate Goods Market Integration: A Price-Based Approach; National Bureau of Economic Research: Cambridge, MA, USA, 2021. [Google Scholar]
- Gui, Q.; Chen, M.; Chen, Z. China’s domestic commodity market tends to be segmented or integrated: An analysis based on the relative price method. J. World Econ. 2006, 2, 20–30. [Google Scholar]
- Lai, A.; Wang, Q.; Cui, L. Can market segmentation lead to green paradox? Evidence from China. Energy 2022, 254(Part C), 124390. [Google Scholar] [CrossRef]
- Gan, Q.; Chen, S. Effect of market integration on green economic growth: Evidence from 30 Chinese provinces. J. Southeast Univ. (Engl. Ed.) 2023, 39, 256–268. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, K. Has the domestic product market transferred from segmentation to integration?—Empirical evidence from the Chinese city level. Economist 2023, 298, 98–108. [Google Scholar] [CrossRef]
- Hu, C.; Huang, J.; Gao, Y.; Lin, R. Can high-speed railway promote regional market integration? Evidence from China. Res. Transp. Bus. Manag. 2023, 51, 101057. [Google Scholar] [CrossRef]
- Broner, F.; Bustos, P.; Carvalho, V.M. Sources of Comparative Advantage in Polluting Industries; NBER Working Paper; National Bureau of Economic Research: Cambridge, MA, USA, 2012; No. 18337. [Google Scholar] [CrossRef]
- Giuli, A.D.; Laux, P.A. The effect of media-linked directors on financing and external governance. J. Financ. Econ. 2022, 145, 103–131. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, L.; Meng, J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, P.; Hu, D. Influences of the ongoing digital transformation of the Chinese economy on innovation of sustainable green technologies. Sci. Total Environ. 2023, 875, 162708. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, Y. How does coordinated regional digital economy development improve air quality? New evidence from the spatial simultaneous equation analysis. J. Environ. Manag. 2023, 342, 118235. [Google Scholar] [CrossRef]
- Hammer, M.S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A.M.; Hsu, N.C.; Levy, R.C.; Garay, M.J.; Kalashnikova, O.V.; Kahn, R.A.; et al. Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environ. Sci. Technol. 2020, 54, 7879–7890. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.; Song, Z. Digitalization and environment: How does ICT affect enterprise environmental performance? Environ. Sci. Pollut. Res. 2021, 28, 54826–54841. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, S.; Yuan, S. How does the digitization of government environmental governance affect environmental pollution? spatial and threshold effects. J. Clean. Prod. 2023, 415, 137670. [Google Scholar] [CrossRef]
- Lu, J.; Xiao, Q.; Wang, T. Does the digital economy generate a gender dividend for female employment? Evidence from China. Telecommun. Policy 2023, 47, 102545. [Google Scholar] [CrossRef]
- Bu, H.; Li, G.; Yu, X.; Xun, Z. Is smart carbon emission reduction justified in China? Evidence from national big data comprehensive pilot zones. Heliyon 2023, 9, e17744. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Sun, Z.; Wang, L.; Zhao, J.; Wu, F. Can digital policy improve corporate sustainability? Empirical evidence from China’s national comprehensive big data pilot zones. Telecommun. Policy 2023, 47, 102617. [Google Scholar] [CrossRef]
- Bai, J. Panel data models with interactive fixed effects. Econometrica 2009, 77, 1229–1279. [Google Scholar] [CrossRef]
- Valizadeh, P.; Fischer, B.; Bryant, H.L. SNAP enrollment cycles: New insights from heterogeneous panel models with cross-sectional dependence. Am. J. Agric. Econ. 2023. [Google Scholar] [CrossRef]
- Wen, J.; Yin, H.T.; Jang, C.L.; Uchida, H.; Chang, C.P. Does corruption hurt green innovation? Yes – Global evidence from cross-validation. Technol. Forecast. Soc. Chang. 2023, 188, 122313. [Google Scholar] [CrossRef]
- Bai, F.; Huang, Y.; Shang, M.; Ahmad, M. Modeling the impact of digital economy on urban environmental pollution: Empirical evidence from 277 prefecture-level cities in China. Front. Environ. Sci. 2023, 10, 991022. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, R.; Ma, S.; Chen, W. How does digital technology empower urban green development efficiency in the Beijing-Tianjin-Hebei region—Mechanism analysis and spatial effects. Environ. Sci. Pollut. Res. 2023, 30, 31471–31488. [Google Scholar] [CrossRef] [PubMed]
- You, Z.; Feng, Z.; Yang, Y. China Terrain Fluctuation Kilometer Grid Dataset. Electron. J. Glob. Chang. Data Warehous. (Chin. Engl.) 2018. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US food aid and civil conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Dimitrakopoulos, S. Accounting for persistence in panel count data models. An application to the number of patents awarded. Econ. Lett. 2018, 171, 245–248. [Google Scholar] [CrossRef]
- Tang, Y.; Li, F.; Liang, W. The theoretical logic, policy and path of how digital economy promoting the construction of a national unified market. Bus. Econ. Rev. 2022, 23, 37–50. [Google Scholar] [CrossRef]
- Zhu, M.; Lu, S. Effects of ICT diffusion on environmental pollution: Analysis of industrial reallocation effects in China. Environ. Sci. Pollut. Res. 2023, 30, 7358–7379. [Google Scholar] [CrossRef] [PubMed]
- Kou, D.; Zhang, C. Impact of digital economy on industrial agglomeration mode: Based on specialization and diversity perspective. J. Shandong Univ. Financ. Econ. 2023, 35, 75–87. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, F.; Fang, D.; Wang, Q.; Liu, M. Spatial characteristics of change trends of air pollutants in Chinese urban areas during 2016–2020: The impact of air pollution controls and the COVID-19 pandemic. Atmos. Res. 2023, 281, 106539. [Google Scholar] [CrossRef] [PubMed]
Variable | Code | Mean | Standard Error | Min | Max |
---|---|---|---|---|---|
Atmospheric pollution | AP | 3.7649 | 0.3801 | 2.3336 | 4.6606 |
Digital technology | DT | 0.5929 | 1.5977 | 0.0002 | 26.4768 |
Population density | PD | 5.8172 | 0.8918 | 1.5475 | 8.0805 |
Economic development level | EDL | 10.5081 | 0.7086 | 4.5951 | 13.0557 |
Financial development level | FDE | 10.2831 | 1.1269 | 7.5835 | 14.1371 |
Industrialization | Ind | 3.8139 | 0.2572 | 2.3684 | 4.4502 |
Foreign direct investment | FDI | 9.9428 | 1.8619 | 1.0986 | 14.9413 |
Macroeconomic regulation | MR | −1.8379 | 0.4925 | −13.5833 | 1.7562 |
Energy efficiency | EE | 4.4032 | 1.2038 | 0.2088 | 8.4948 |
Green technology innovation | GTI | 4.3006 | 1.5088 | 2.3026 | 10.1828 |
Market segmentation | MS | −8.5771 | 0.5833 | −10.3972 | −5.7632 |
Air ventilation coefficient | AVC | 7.0679 | 0.3886 | 5.6723 | 8.2591 |
Variable | POLS | FE | TWFE |
---|---|---|---|
DT | −0.0355 *** | −0.0319 *** | −0.0126 *** |
(−10.57) | (−6.07) | (−4.65) | |
Control variables | Yes | Yes | Yes |
Individual effect | No | Yes | Yes |
Time effect | No | No | Yes |
R-sq | 0.4276 | 0.4711 | 0.6999 |
Hausman test | 146.20 *** | 231.79 *** | |
F-test | 137.16 *** | 409.50 *** | |
N | 4304 | 4304 | 4304 |
Year | Pilot Zone |
---|---|
2015 | Guizhou |
2016 | Beijing, Tianjin, Hebei, Guangdong, Shanghai, Henan, Chongqing, Shenyang, Inner Mongolia |
Variable | Method 1 | Method 2 | Method 3 | 2SLS | |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
DT | −0.0203 ** | −0.0116 *** | −0.0088 *** | −0.1372 *** | |
(−2.66) | (−4.41) | (−5.03) | (−4.98) | ||
IV | −0.0099 *** (−6.05) | ||||
Control variables | Yes | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes | Yes | Yes |
LM statistic | 36.501 *** | ||||
F statistic | 36.625 |
Variable | EE | GTI | MS |
---|---|---|---|
DT | −0.0119 *** | 0.0196 *** | −0.0279 ** |
(−4.09) | (8.33) | (−2.36) | |
Control variables | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes |
Variable | Resource-Based City | Non-Resource-Based City | Pilot City | Non-Pilot City |
---|---|---|---|---|
DT | −0.0821 *** | −0.0085 *** | −0.0221 *** | −0.0068 *** |
(−4.97) | (−4.87) | (−7.00) | (−3.82) | |
Coefficient difference test | −0.0732 ** | −0.0142 * | ||
(−2.30) | (−1.68) | |||
Control variables | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes | Yes |
Variable | 2006–2019 | 2020–2021 |
---|---|---|
DT | −0.0134 *** (−3.54) | 0.0082 ** (−2.12) |
Control variables | Yes | Yes |
Individual effect | Yes | Yes |
Time effect | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zhang, X. Blue Sky Protection Campaign: Assessing the Role of Digital Technology in Reducing Air Pollution. Systems 2024, 12, 55. https://doi.org/10.3390/systems12020055
Shen Y, Zhang X. Blue Sky Protection Campaign: Assessing the Role of Digital Technology in Reducing Air Pollution. Systems. 2024; 12(2):55. https://doi.org/10.3390/systems12020055
Chicago/Turabian StyleShen, Yang, and Xiuwu Zhang. 2024. "Blue Sky Protection Campaign: Assessing the Role of Digital Technology in Reducing Air Pollution" Systems 12, no. 2: 55. https://doi.org/10.3390/systems12020055
APA StyleShen, Y., & Zhang, X. (2024). Blue Sky Protection Campaign: Assessing the Role of Digital Technology in Reducing Air Pollution. Systems, 12(2), 55. https://doi.org/10.3390/systems12020055