Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. The Role of Digital Transformation in Enhancing Innovation Performance
2.2. The Influence of Digital Technologies on Types of Innovation
2.3. The Relationship among Digital Technologies, Innovation Expenditures and Revenues, and the Percentage of Innovating Enterprises in the EU
2.3.1. Internet of Things
2.3.2. Cloud Computing
2.3.3. Artificial Intelligence
2.3.4. Big Data
2.3.5. Industrial and Service Robots
3. Materials and Methods
3.1. Research Design
3.2. Selected Variables
3.3. Methods
4. Results
5. Discussion
5.1. Theoretical Implications
5.2. Practical and Managerial Implications
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parida, V.; Sjödin, D.; Reim, W. Reviewing Literature on Digitalization, Business Model Innovation, and Sustainable Industry: Past Achievements and Future Promises. Sustainability 2019, 11, 391. [Google Scholar] [CrossRef]
- Cenamor, J.; Sjodin, D.R.; Parida, V. Adopting a platform approach in servitization: Leveraging the value of digitalization. Int. J. Prod. Econ. 2017, 192, 54–65. [Google Scholar] [CrossRef]
- Sjodin, D.R.; Parida, V.; Leksell, M.; Petrovic, A. Smart Factory Implementation and Process Innovation: A Preliminary Maturity Model for Leveraging Digitalization in Manufacturing. Moving to smart factories presents specific challenges that can be addressed through a structured approach focused on people, processes, and technologies. Res. Technol. Manag. 2018, 61, 22–31. [Google Scholar] [CrossRef]
- Urbinati, A.; Chiaroni, D.; Chiesa, V.; Frattini, F. The role of digital technologies in open innovation processes: An exploratory multiple case study analysis. RD Manag. 2020, 50, 136–160. [Google Scholar] [CrossRef]
- Mulgan, G. The Process of Social Innovation. Innov. Technol. Gov. Glob. 2006, 1, 145–162. [Google Scholar] [CrossRef]
- Bianchi, M.; Croce, A.; Dell’era, C.; Di Benedetto, C.A.; Frattini, F. Organizing for inbound open innovation: How external consultants and a dedicated R&D unit influence product innovation performance. J. Prod. Innov. Manag. 2016, 33, 492–510. [Google Scholar] [CrossRef]
- Sikimic, U.; Chiesa, V.; Frattini, F.; Scalera, V.G. Investigating the influence of technology inflows on technology outflows in open innovation processes: A longitudinal analysis. J. Prod. Innov. Manag. 2016, 33, 652–669. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Lu, X. Digital Transformation Drives Sustainable Innovation Capability Improvement in Manufacturing Enterprises: Based on FsQCA and NCA Approaches. Sustainability 2023, 15, 542. [Google Scholar] [CrossRef]
- Westerman, G.; Bonnet, D.; McAfee, A. Leading Digital: Turning Technology into Business Transformation; Harvard Business Review Press: Boston, MA, USA, 2014. [Google Scholar]
- Porter, M.E. Competitive Advantage: Creating and Sustaining Superior Performance; Free Press: New York, NY, USA, 1985. [Google Scholar]
- Ponsignon, F.; Kleinhans, S.; Bressolles, G. The contribution of quality management to an organisation’s digital transformation: A qualitative study. Total Qual. Manag. Bus. Excel 2019, 30, S17–S34. [Google Scholar] [CrossRef]
- Zaki, M. Digital transformation: Harnessing digital technologies for the next generation of services. J. Serv. Mark. 2019, 33, 429–435. [Google Scholar] [CrossRef]
- Porter, M.E.; Heppelmann, J.E. How smart, connected products are transforming companies. Harv. Bus. Rev. 2015, 93, 96–114. [Google Scholar]
- Iansiti, M.; Lakhani, K. Digital ubiquity: How connections, sensors, and data are revolutionizing business. Harv. Bus. Rev. 2014, 92, 90–99. [Google Scholar]
- Lenka, S.; Parida, V.; Wincent, J. Digitalization capabilities as enablers of value co-creation in servitizing firms. Psychol. Mark. 2017, 34, 92–100. [Google Scholar] [CrossRef]
- Grubic, T.; Jennions, I. Remote monitoring technology and servitised strategies-factors characterising the organisational application. Int. J. Prod. Res. 2017, 56, 2133–2149. [Google Scholar] [CrossRef]
- Visnjic, I.; Neely, A.; Jovanovic, M. The path to outcome delivery: Interplay of service market strategy and open business models. Technovation 2018, 72–73, 46–59. [Google Scholar] [CrossRef]
- Luz Martín-Peña, M.; Díaz-Garrido, E.; Sánchez-López, J.M. The digitalization and servitization of manufacturing: A review on digital business models. Strateg. Chang. 2018, 27, 91–99. [Google Scholar] [CrossRef]
- Laudien, S.M.; Daxböck, B. The influence of the industrial Internet of things on business model design: A qualitative-empirical analysis. Int. J. Innov. Manag. 2016, 20, 1640014. [Google Scholar] [CrossRef]
- Bouwman, H.; Nikou, S.; Molina-Castillo, F.J.; de Reuver, M. The impact of digitalization on business models. Dig. Policy Regul. Gov. 2018, 20, 105–124. [Google Scholar] [CrossRef]
- Rachinger, M.; Rauter, R.; Müller, C.; Vorraber, W.; Schirgi, E. Digitalization and its influence on business model innovation. J. Manuf. Technol. Manag. 2018, 30, 1143–1160. [Google Scholar] [CrossRef]
- Kroll, H.; Horvat, D.; Jäger, A. Effects of Automatisation and Digitalisation on Manufacturing Companies’ Production Efficiency and Innovation Performance; Fraunhofer ISI: Karlsruhe, Germany, 2018; Available online: https://publica-rest.fraunhofer.de/server/api/core/bitstreams/30e793ad-693a-4fba-891b-491fa1337131/content (accessed on 18 June 2024).
- Schumpeter, J.A. The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Drucker, P.F. Innovation and Entrepreneurship: Practice and Principles; Harper & Row: New York, NY, USA, 1985. [Google Scholar]
- Bessant, J.R.; Tidd, J. Managing Innovation: Integrating Technological, Market and Organizational Change; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Ferreira, J.J.; Fernandes, C.I.; Ferreira, F.A. To be or not to be digital that is the question: Firm innovation and performance. J. Bus. Res. 2018, 101, 583–590. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, J.; Li, S.; Zhang, Y. Digital transformation of incumbent firms from the perspective of portfolios of innovation. Technol. Soc. 2023, 72, 102149. [Google Scholar] [CrossRef]
- Yaqub, M.Z.; Alsabban, A. Industry-4.0-Enabled Digital Transformation: Prospects, Instruments, Challenges, and Implications for Business Strategies. Sustainability 2023, 15, 8553. [Google Scholar] [CrossRef]
- Hughes, L.; Dwivedi, Y.K.; Rana, N.P.; Williams, M.D.; Raghavan, V. Perspectives on the future of manufacturing within the Industry 4.0 era. Prod. Plan. Control 2022, 33, 138–158. [Google Scholar] [CrossRef]
- Schumpeter, J.A. Entrepreneurship as Innovation. Champaign: University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship. 2000. Available online: https://ssrn.com/abstract=1512266 (accessed on 18 June 2024).
- Sánchez Ramírez, S.; Guadamillas Gómez, F.; González Ramos, M.I.; Grieva, O. The Effect of Digitalization on Innovation Capabilities through the Lenses of the Knowledge Management Strategy. Adm. Sci. 2022, 12, 144. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Pezzi, A.; Kalisz, D.E. The role of digital innovation in knowledge management systems: A systematic literature review. J. Bus. Res. 2021, 123, 220–231. [Google Scholar] [CrossRef]
- Eisenhardt, K.M.; Martin, J.A. Dynamic capabilities: What are they? Strateg. Manag. J. 2000, 21, 1105–1121. [Google Scholar] [CrossRef]
- Lynn, T.; Rosati, P.; Conway, E.; Curran, D.; Fox, G.; O’Gorman, C. (Eds.) The digital economy and digital business. In Digital Towns; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 69–89. [Google Scholar] [CrossRef]
- Soni, G.; Kumar, S.; Mahto, R.V.; Mangla, S.K.; Mittal, M.L.; Lim, W.M. A decision-making framework for Industry 4.0 technology implementation: The case of FinTech and sustainable supply chain finance for SMEs. Technol. Forecast. Soc. Chang. 2022, 180, 121686. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, X.; Venkatesh, V.G.; Humdan, E.A.; Paul, S.K. The impact of digitalization on supply chain resilience: An empirical study of the Chinese manufacturing industry. J. Bus. Ind. Mark. 2023, 38, 1–11. [Google Scholar] [CrossRef]
- Ben Arfi, W.; Hikkerova, L. Corporate entrepreneurship, product innovation, and knowledge conversion: The role of digital platforms. Small Bus Econ. 2021, 56, 1191–1204. [Google Scholar] [CrossRef]
- Saunila, M. Innovation capability in SMEs: A systematic review of the literature. J. Innov. Knowl. 2020, 5, 260–265. [Google Scholar] [CrossRef]
- Burmeister, C.; Luttgens, D.; Piller, F.T. Business model innovation for industry 4.0: Why the ‘industrial internet’ mandates a new perspective on innovation. Die Unternehm. 2016, 72, 124–152. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R. Influence of industry 4.0 projects on business operations: Literature and empirical pilot studies based on case studies in Poland. J. Open Innov. Technol. Mark. Complex. 2022, 8, 44. [Google Scholar] [CrossRef]
- Kelly, G. Management Theory and Practice, 9th ed.; CENGAGE: Singapore, 2020. [Google Scholar]
- Bresciani, S.; Ciampi, F.; Meli, F.; Ferraris, A. Using big data for co-innovation processes: Mapping the field of data-driven innovation, proposing theoretical developments and providing a research agenda. Int. J. Inf. Manag. 2021, 60, 102347. [Google Scholar] [CrossRef]
- Hinings, B.; Gegenhuber, T.; Greenwood, R. Digital innovation and transformation: An institutional perspective. Inf. Organ. 2018, 28, 52–61. [Google Scholar] [CrossRef]
- Isaksson, A.J.; Harjunkoski, I.; Sand, G. The impact of digitalization on the future of control and operations. Comput. Chem. Eng. 2018, 114, 122–129. [Google Scholar] [CrossRef]
- Akter, S.; Fosso Wamba, S.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef]
- Annarelli, A.; Battistella, C.; Nonino, F.; Parida, V.; Pessot, E. Literature review on digitalization capabilities: Co-citation analysis of antecedents, conceptualization and consequences. Technol. Forecast. Soc. Chang. 2021, 166, 120635. [Google Scholar] [CrossRef]
- Gunasilan, U. Entrepreneurship as a Driver of the Digital Transformation. Int. Rev. Manag. Mark. 2019, 9, 23–29. [Google Scholar] [CrossRef]
- Santos-Pereira, C.; Duräo, N.; Moreira, F.; Veloso, B. The importance of digital transformation in international business. Sustainability 2022, 14, 834. [Google Scholar] [CrossRef]
- Feliciano-Cestero, M.M.; Ameen, N.; Kotabe, M.; Paul, J.; Signoret, M. Is digital transformation threatened? A systematic literature review of the factors influencing firms’ digital transformation and internationalization. J. Bus. Res. 2023, 157, 113546. [Google Scholar] [CrossRef]
- Gazová, A.; Papulová, Z.; Smolka, D. Effect of Business Process Management on Level of Automation and Technologies Connected to Industry 4.G. Procedia Comput. Sci. 2022, 200, 1498–1507. [Google Scholar] [CrossRef]
- Gil-Gomez, H.; Guerola-Navarro, V.; Oltra-Badenes, R.; Lozano-Quilis, J.A. Customer relationship management: Digital transformation and sustainable business model innovation. Econ. Res.-Ekon. Istraživanja 2020, 33, 2733–2750. [Google Scholar] [CrossRef]
- Gaviria-Marin, M.; Merigó, J.M.; Baier-Fuentes, H. Knowledge management: A global examination based on bibliometric analysis. Technol. Forecast. Soc. Chang. 2019, 140, 194–220. [Google Scholar] [CrossRef]
- Leiting, A.K.; De Cuyper, L.; Kauffmann, C. The Internet of Things and the case of Bosch: Changing business models while staying true to yourself. Technovation 2022, 118, 102497. [Google Scholar] [CrossRef]
- Ardito, L.; D’Adda, D.; Messeni Petruzzelli, A. Mapping innovation dynamics in the Internet of Things domain: A patent analysis. Technol. Forecast. Soc. Chang. 2017, 136, 317–330. [Google Scholar] [CrossRef]
- Caputo, A.; Marzi, G.; Pellegrini, M.M. The internet of things in manufacturing innovation processes: Development and application of a conceptual framework. Bus. Process Manag. J. 2016, 22, 383–402. [Google Scholar] [CrossRef]
- Fisher, O.; Watson, N.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R.L. Cloud manufacturing as a sustainable process manufacturing route. J. Manuf. Syst. 2018, 47, 53–68. [Google Scholar] [CrossRef]
- Obermayer, N.; Csizmadia, T.; Hargitai, D.M. Influence of Industry 4.0 technologies on corporate operation and performance management from human aspects. Meditari Account. Res. 2022, 30, 1027–1049. [Google Scholar] [CrossRef]
- Lian, J.W.; Yen, D.C.; Wang, Y.T. An exploratory study to understand the critical factors affecting the decision to adopt cloud computing in Taiwan hospital. Int. J. Inf. Manag. 2014, 34, 28–36. [Google Scholar] [CrossRef]
- Chowdhury, S.; Budhwar, P.; Dey, P.K.; Joel-Edgar, S.; Abadie, A. AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework. J. Bus. Res. 2022, 144, 31–49. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, Z.; Hyman, M.R.; Li, G.; Munim, Z.H. Guest editorial: Impact of artificial intelligence on business strategy in emerging markets: A conceptual framework and future research directions. Int. J. Emerg. Mark. 2022, 17, 917–929. [Google Scholar] [CrossRef]
- Ritter, T.; Lettl, C. The wider implications of business-model research. Long Range Plan. 2018, 51, 1–8. [Google Scholar] [CrossRef]
- Dai, B.; Liang, W. The Impact of Big Data Technical Skills on Novel Business Model Innovation Based on the Role of Resource Integration and Environmental Uncertainty. Sustainability 2022, 14, 2670. [Google Scholar] [CrossRef]
- O’Donovan, P.; Leahy, K.; Bruton, K.; O’Sullivan, D.T. Big data in manufacturing: A systematic mapping study. J. Big Data 2015, 2, 20. [Google Scholar] [CrossRef]
- Hilbert, M. Big Data for development: A review of promises and challenges. Dev. Policy Rev. 2016, 34, 135–174. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N.A. Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- Duong Linh, N.K.; Al-Fadhli, M.; Jagtap, S.; Bader, F.; Martindale, W.; Swainson, M.; Paoli, A.; Andrea, P. A review of robotics and autonomous systems in the food industry: From the supply chains perspective. Trends Food Sci. Technol. 2020, 106, 355–364. [Google Scholar] [CrossRef]
- Santos-Pereira, C.; Veloso, B.; Durào, N.; Moreira, F. The influence of technological innovations on international business strategy before and during COVID-19 pandemic. Procedia Comput. Sci. 2022, 196, 44–51. [Google Scholar] [CrossRef]
- Capello, R.; Lenzi, C. Territorial patterns of innovation and economic growth in European regions. Growth Chang. 2013, 44, 195–227. [Google Scholar] [CrossRef]
- Szopik-Depczyńska, K.; Kędzierska-Szczepaniak, A.; Szczepaniak, K.; Cheba, K.; Gajda, W.; Ioppolo, G. Innovation in sustainable development: An investigation of the EU context using 2030 agenda indicators. Land Use Policy 2018, 79, 251–262. [Google Scholar] [CrossRef]
- Żelazny, R.; Pietrucha, J. Measuring innovation and institution: The creative economy index. Equilibrium 2017, 12, 43–62. [Google Scholar] [CrossRef]
- Hollanders, H.; Es-Sadki, N. European Innovation Scoreboard 2017; Publications Office of the European Union: Luxembourg, 2017; Available online: https://op.europa.eu/en/publication-detail/-/publication/5b916ff4-523d-11e7-a5ca-01aa75ed71a1 (accessed on 18 June 2024).
- Eurostat. Turnover of Enterprises from New or Significantly Improved Products, by NACE Rev. 2 Activity and Size Class (2020). Available online: https://ec.europa.eu/eurostat/databrowser/view/inn_cis12_prodt__custom_10195915/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. Artificial Intelligence by Size Class of Enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_ai__custom_11964281/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. Big Data Analysis by Size Class of Enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_bd__custom_11349669/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. Cloud Computing Services by Size Class of Enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_cicce_use__custom_11349708/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. 3D Printing and Robotics by Size Class of Enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_p3d__custom_11350117/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. Internet of Things by Size Class of Enterprise. Available online: https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_iot__custom_11349731/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. Enterprises That Introduced New or Improved Processes by Type of Innovation, NACE Rev. 2 Activity and Size Class (2020). Available online: https://ec.europa.eu/eurostat/databrowser/view/inn_cis12_spec__custom_10195863/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. Enterprises and Expenditure of Enterprises on Innovation Activities by Area of Expenditure, NACE Rev. 2 Activity and Size Class (2020). Available online: https://ec.europa.eu/eurostat/databrowser/view/inn_cis12_exp__custom_10195969/default/table?lang=en (accessed on 25 June 2024).
- Eurostat. Enterprises with Innovation Activities during 2018 and 2020 by NACE Rev. 2 Activity and Size Class (2020). Available online: https://ec.europa.eu/eurostat/databrowser/view/inn_cis12_inact__custom_11963520/default/table?lang=en (accessed on 25 June 2024).
- I.B.M. SPSS—Neural Networks. 2012. Available online: https://www.ibm.com/downloads/cas/N7LLA2LB (accessed on 30 June 2024).
- Aggarwal, C. Neural Networks and Deep Learning: A Textbook; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Pearson Educational: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Hu, Y.; Li, K.; Meng, A. Agglomerative Hierarchical Clustering Using Ward Linkage. Available online: https://jbhender.github.io/Stats506/F18/GP/Group10.html (accessed on 1 July 2024).
- Attalah, M.; Blanton, M. (Eds.) Algorithms and Theory of Computation Handbook, 2nd ed.; Taylor and Francis, CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Penn State, Eberly College of Science. Agglomerative Hierarchical Clustering. Available online: https://online.stat.psu.edu/stat505/lesson/14/14.4 (accessed on 30 June 2024).
- Ketchen, D.J.; Shook, C.L. The application of cluster analysis in strategic management research: An analysis and critique. Strateg. Manag. J. 1996, 17, 441–458. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science+Business Media, LLC: Singapore, 2006. [Google Scholar]
- Foss, N.J.; Saebi, T. Fifteen years of research on business model innovation: How far have we come, and where should we go? J. Manag. 2017, 43, 200–227. [Google Scholar] [CrossRef]
- Horvath, K.; Szerb, L. Managerial practices and the productivity of knowledge-intensive service businesses: An analysis of digital/IT and cash management practices. Strateg. Chang. 2018, 27, 161–172. [Google Scholar] [CrossRef]
- Ribeiro-Navarrete, S.; Botella-Carrubi, D.; Palacios-Marqués, D.; Orero-Blat, M. The effect of digitalization on business performance: An applied study of KIBS. J. Bus. Res. 2021, 126, 319–326. [Google Scholar] [CrossRef]
- Wamba, S.F.; Akter, S.; Edwards, A.; Chopin, G.; Gnanzou, D. How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 2015, 165, 234–246. [Google Scholar] [CrossRef]
- Marcon, É.; Le Dain, M.A.; Frank, A.G. Designing business models for Industry 4.0 technologies provision: Changes in business dimensions through digital transformation. Technol. Forecast. Soc. Chang. 2022, 185, 122078. [Google Scholar] [CrossRef]
- Martinez, F. Process excellence the key for digitalisation. Bus. Process Manag. J. 2019, 25, 1716–1733. [Google Scholar] [CrossRef]
- Verhoef, P.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Qi, D.J.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Binsaeed, R.H.; Grigorescu, A.; Yousaf, Z.; Radu, F.; Nassani, A.A.; Tabirca, A.I. Harnessing Big Data Analytics to Accelerate Innovation: An Empirical Study on Sport-Based Entrepreneurs. Sustainability 2023, 15, 10090. [Google Scholar] [CrossRef]
- Tiron-Tudor, A.; Kolisnyk, M.; Savrina, B. Digital sustainable development as an emerging concept. Manag. Chall. Contemp. Soc. Proc. 2024, 14, 1–6. [Google Scholar]
- Gbadegeshin, S.A. The effect of digitalization on the commercialization process of high-technology companies in the life sciences industry. Technol. Innov. Manag. Rev. 2019, 9, 49–63. [Google Scholar] [CrossRef]
- Criveanu, M.M. Investigating Digital Intensity and E-Commerce as Drivers for Sustainability and Economic Growth in the EU Countries. Electronics 2023, 12, 2318. [Google Scholar] [CrossRef]
Variable | Dataset | Measures | Sources |
---|---|---|---|
TIA | Turnover from innovation activities | Percentage of total turnover | [72] |
AI | Artificial intelligence | Percentage of total enterprises | [73] |
BD | Big Data | Percentage of total enterprises | [74] |
CC | Cloud computing | Percentage of total enterprises | [75] |
ISR | Industrial or service robots | Percentage of total enterprises | [76] |
IoT | Internet of Things | Percentage of total enterprises | [77] |
BPI | Business process innovation | Percentage of total enterprises | [78] |
MPGS | New or improved methods for producing goods or providing services | Percentage of total enterprises | [78] |
INOL | Innovations in logistics | Percentage of total enterprises | [78] |
NBP | New business practices for organizing procedures or external relations | Percentage of total enterprises | [78] |
DMHR | New methods of organizing work responsibility, decision making or human resource management | Percentage of total enterprises | [78] |
IPC | New or improved methods for information processing or communication | Percentage of total enterprises | [78] |
AAO | New methods for accounting or other administrative operations | Percentage of total enterprises | [78] |
NMM | New marketing methods for promotion, packaging, pricing, product placement, or after-sales services | Percentage of total enterprises | [78] |
EXPIA | Expenditure on innovation activities | Percentage of spending on innovation (excluding R&D) | [79] |
ENTIA | Enterprises engaging in innovation activities | Percentage of total enterprises | [80] |
N | Minimum | Maximum | Mean | Std. Deviation | Statistic | Kurtosis | |
---|---|---|---|---|---|---|---|
TIA | 27 | 3.8 | 42.4 | 13.019 | 7.4551 | 2.401 | 8.783 |
AI | 27 | 0.5 | 8.8 | 2.696 | 2.0259 | 1.320 | 1.779 |
BD | 27 | 2.7 | 28.7 | 12.367 | 7.4369 | 0.743 | −0.655 |
CC | 27 | 10.9 | 75.5 | 38.167 | 17.4141 | 0.580 | −0.587 |
ISR | 27 | 1.7 | 12.8 | 6.348 | 2.6523 | 0.258 | −0.081 |
IoT | 27 | 10.5 | 50.8 | 27.904 | 9.6311 | 0.734 | 0.552 |
BPI | 27 | 5.7 | 67.5 | 43.333 | 14.6021 | −0.567 | −0.232 |
MPGS | 27 | 2.9 | 39.4 | 22.596 | 8.7142 | 0.127 | −0.111 |
INOL | 27 | 2.8 | 37.7 | 14.507 | 7.4059 | 1.375 | 2.912 |
NBP | 27 | 2.2 | 38.6 | 17.893 | 9.6370 | 0.758 | 0.199 |
DMHR | 27 | 3.6 | 43.9 | 20.070 | 9.2456 | 0.639 | 0.556 |
IPC | 27 | 3.6 | 62.0 | 25.126 | 11.7954 | 1.130 | 2.655 |
AAO | 27 | 2.0 | 57.5 | 19.859 | 11.3124 | 1.665 | 4.038 |
NMM | 27 | 3.3 | 34.8 | 17.274 | 7.7203 | 0.599 | 0.240 |
EXPIA | 27 | 6.5 | 80.6 | 38.270 | 20.2318 | 0.007 | −0.770 |
ENTIA | 27 | 10.7 | 72.6 | 51.581 | 14.9758 | −0.813 | 0.476 |
Predictor | Predicted | ||||
---|---|---|---|---|---|
Hidden Layer 1 | Output Layer | ||||
H (1:1) | TIA | Importance | Normalized Importance | ||
Input Layer | (Bias) | −0.376 | |||
AI | 0.190 | 0.126 | 30.0% | ||
BD | 0.046 | 0.031 | 7.3% | ||
CC | 0.553 | 0.379 | 90.0% | ||
ISR | 0.066 | 0.043 | 10.3% | ||
IoT | 0.633 | 0.421 | 100.0% | ||
Hidden Layer 1 | (Bias) | −0.650 | |||
H (1:1) | 0.408 |
Predictor | Predicted | Importance | Normalized Importance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hidden Layer 1 | Output Layer | |||||||||||
H (1:1) | BPI | MPGS | INOL | NBP | DMHR | IPC | AAO | NMM | ||||
Input Layer | (Bias) | −1.272 | ||||||||||
AI | 0.586 | 0.102 | 35.2% | |||||||||
BD | 1.549 | 0.252 | 86.5% | |||||||||
CC | 1.882 | 0.291 | 100.0% | |||||||||
ISR | 0.621 | 0.112 | 38.4% | |||||||||
IoT | 1.263 | 0.243 | 83.6% | |||||||||
Hidden Layer 1 | (Bias) | −0.001 | −0.574 | 0.034 | 0.193 | −0.553 | −0.537 | −0.140 | −0.624 | |||
H (1:1) | 2.552 | 1.120 | 1.493 | 0.080 | 0.605 | 1.441 | 1.324 | 1.255 |
EXPIA | ENTIA | TIA | AI | BD | CC | ISR | IoT | |
---|---|---|---|---|---|---|---|---|
Hungary | 40.4 | 32.7 | 7.8 | 0.7 | 6.4 | 25.2 | 4.3 | 22.3 |
Poland | 47.4 | 34.9 | 7.5 | 0.7 | 7.9 | 24.4 | 7.1 | 18.6 |
Bulgaria | 47.9 | 36.2 | 7.4 | 0.9 | 5.7 | 10.9 | 5.5 | 15.0 |
Spain | 39.6 | 33.4 | 21.7 | 2.3 | 6.5 | 26.2 | 8.8 | 27.5 |
Latvia | 60.4 | 32.0 | 6.3 | 1.1 | 7.4 | 21.3 | 3.4 | 28.4 |
Slovakia | 60.8 | 36.6 | 14.9 | 0.9 | 4.6 | 25.6 | 7.4 | 27.4 |
Romania | 9.1 | 10.7 | 5.2 | 0.5 | 4.3 | 15.7 | 3.6 | 10.5 |
Cluster 1 mean | 43.66 | 30.93 | 10.11 | 1.01 | 6.11 | 21.33 | 5.73 | 21.39 |
Czechia | 63.8 | 56.9 | 14.4 | 1.4 | 9.1 | 28.9 | 6.9 | 31.4 |
Cyprus | 65.0 | 65.8 | 13.8 | 1.4 | 2.7 | 34.6 | 2.7 | 33.3 |
Lithuania | 80.6 | 53.0 | 11.5 | 1.2 | 8.7 | 30.8 | 4.6 | 28.4 |
Malta | 39.3 | 41.1 | 6.5 | 4.5 | 28.7 | 52.2 | 6.4 | 28.0 |
Netherlands | 52.4 | 55.8 | 8.9 | 6.1 | 25.9 | 52.6 | 6.9 | 20.7 |
Estonia | 58.4 | 64.2 | 10.4 | 1.1 | 8.0 | 56.3 | 3.3 | 17.4 |
Italy | 39.1 | 55.7 | 13.5 | 1.4 | 7.4 | 59.1 | 8.8 | 32.3 |
Germany | 39.1 | 68.8 | 14.0 | 2.9 | 16.6 | 33.3 | 5.7 | 35.6 |
Greece | 51.9 | 72.6 | 20.3 | 1.2 | 12.2 | 16.7 | 2.3 | 22.8 |
Croatia | 39.3 | 54.9 | 13.1 | 2.5 | 13.0 | 39.0 | 7.4 | 23.2 |
Portugal | 28.6 | 51.1 | 14.5 | 2.0 | 10.2 | 29.0 | 9.1 | 23.1 |
Luxembourg | 43.3 | 45.9 | 3.8 | 3.5 | 16.8 | 29.1 | 5.5 | 22.2 |
France | 10.1 | 54.8 | 6.2 | 2.4 | 19.5 | 26.9 | 8.1 | 22.0 |
Cluster 2 mean | 46.99 | 56.97 | 11.61 | 2.43 | 13.75 | 37.58 | 5.98 | 26.18 |
Austria | 16.3 | 60.0 | 13.0 | 3.7 | 7.0 | 38.1 | 5.5 | 50.8 |
Slovenia | 6.5 | 55.2 | 12.3 | 3.2 | 5.1 | 38.6 | 8.3 | 49.5 |
Finland | 18.4 | 68.6 | 19.3 | 6.1 | 19.2 | 75.5 | 10.3 | 40.5 |
Sweden | 13.2 | 65.2 | 12.7 | 4.4 | 13.0 | 69.5 | 5.7 | 40.3 |
Belgium | 22.4 | 71.3 | 15.1 | 4.4 | 21.9 | 53.2 | 9.3 | 28.2 |
Denmark | 32.5 | 57.7 | 15.0 | 8.8 | 23.7 | 66.9 | 12.8 | 20.0 |
Ireland | 7.5 | 57.6 | 42.4 | 3.5 | 22.4 | 50.9 | 1.7 | 34.0 |
Cluster 3 mean | 16.69 | 62.23 | 18.54 | 4.87 | 16.04 | 56.10 | 7.66 | 37.61 |
EU means | 38.27 | 51.58 | 13.02 | 2.70 | 12.37 | 38.17 | 6.35 | 27.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vărzaru, A.A.; Bocean, C.G. Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation. Systems 2024, 12, 359. https://doi.org/10.3390/systems12090359
Vărzaru AA, Bocean CG. Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation. Systems. 2024; 12(9):359. https://doi.org/10.3390/systems12090359
Chicago/Turabian StyleVărzaru, Anca Antoaneta, and Claudiu George Bocean. 2024. "Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation" Systems 12, no. 9: 359. https://doi.org/10.3390/systems12090359
APA StyleVărzaru, A. A., & Bocean, C. G. (2024). Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation. Systems, 12(9), 359. https://doi.org/10.3390/systems12090359