Electoral Districts in Chile: Optimizing Socio-Economic Homogeneity and Demographic Balance
Abstract
:1. Introduction
2. Methods
Electoral System, (Re)Districting and Socio-Economic Homogeneity
- (a)
- Contiguity: It should be possible to go from any point in the district to another without leaving the district;
- (b)
- Compactness: The shape of the district must have a regular form;
- (c)
- Demographic balance: The population or number of voters per seat must be balanced between districts;
- (d)
- Respect for boundaries: Natural or administrative boundaries or constrictions must be respected;
- (e)
- Geographical units: Consideration should be given to the administrative units of the region to be districted;
- (f)
- Socio-economic homogeneity: Districts should be as homogeneous as possible for better representation of the population
- (a)
- The choice of variables depends on the knowledge of the researcher, the available data and the references consulted.
- (b)
- At larger scales of analysis (e.g., at the national level), the availability of data is greater than that at smaller scales (e.g., at the community level). This may influence the SED.
- (c)
- The multidimensionality of socio-economic variables, such as those that make up the multidimensional poverty rate in Chile and their constant changes, makes it difficult to measure them accurately.
3. Methodology
- Hierarchical cluster analysis: Ward’s method with the squared Euclidean distance is used to obtain the optimal number of clusters (k) in each region;
- Non-hierarchical cluster analysis (k-means): This is applied using the number of clusters (k) obtained in the previous step to identify the segmenting variables in each region;
- Calculation of the SED: A new cluster analysis (hierarchical and k-means) is performed using only the segmenting variables to obtain the distances between the communes and the clusters to which they belong.
- Incorporation of the SED into the model: The SED is included as a constraint in the model of districting and seat allocation, limiting the value of the TSED;
- Model resolution: The model is solved with different limits for the TSED, seeking a balance between socio-economic homogeneity and other districting criteria;
- Analysis of the results: The results obtained are evaluated in terms of TSED, demographic balance (MALR) and other relevant indicators.
3.1. Formulation of the Mathematical Programming Model
4. Results and Discussion
4.1. The Number of Optimal Clusters and Segmenting Variables by Region
4.2. Results of the Cluster Analysis for the Santiago Metropolitan Region
4.3. Results of Applying the Mathematical Programming Model to the Santiago Metropolitan Region
- (a)
- Base case: Current district design of the Metropolitan Region;
- (b)
- Case 1: Solution of the model without restricting the TSED value;
- (c)
- Case 2: Solution of the model restricting the TSED value to be less than or equal to 420;
- (d)
- Case 3: Solution of the model restricting the TSED value to be less than or equal to 380;
- (e)
- Case 4: Solution of the model restricting the TSED value to be less than or equal to 360;
- (f)
- Case 5: Solution of the model restricting the TSED value to be less than or equal to 348.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guevara, G. Proporcionalidad Territorial en el Mapa Electoral Chileno: Una Aproximación a la Geografía de la Representación a Partir de la Elección Parlamentaria 2005 (Tesis de Pregrado); Universidad de Chile: Santiago, Chile, 2007. [Google Scholar]
- Soto, M.P. Sistematización de Factores Socioeconómicos en el Proceso de Generación de Escenarios de Redistritación Electoral (Tesis de Postgrado); Universidad de Quintana Roo: Quintana Roo, Mexico, 2017. [Google Scholar]
- Garg, N.; Gurnee, W.; Rothschild, D.; Shmoys, D. Combatting gerrymandering with social choice: The design of multi-member districts. In Proceedings of the 23rd ACM Conference on Economics and Computation, Boulder, CO, USA, 11–15 July 2022; pp. 560–561. [Google Scholar]
- Borodin, A.; Lev, O.; Shah, N.; Strangway, T. Big City vs. the Great Outdoors: Voter Distribution and How It Affects Gerrymandering. IJCAI 2018, 98–104. [Google Scholar]
- Chen, J.; Cottrell, D. Evaluating partisan gains from Congressional gerrymandering: Using computer simulations to estimate the effect of gerrymandering in the US House. Elect. Stud. 2016, 44, 329–340. [Google Scholar] [CrossRef]
- Duque, J.C.; Anselin, L.; Rey, S.J. El problema de las regiones max-p. Rev. Cienc. Reg. 2012, 52, 397–419. [Google Scholar]
- Legendre, P. Constrained clustering. Dev. Numer. Ecol. 1987, 289–307. [Google Scholar]
- Maravalle, M.; Simeone, B. A spanning tree heuristic for regional clustering. Commun. Stat. Theory Methods 1995, 24, 625–639. [Google Scholar] [CrossRef]
- Byfuglien, J.; Nordgard, A. Region-building—A comparison of methods. Nor. J. Geogr. 1973, 27, 127–151. [Google Scholar] [CrossRef]
- Chávez, G. Aplicación del Districting Problem Para la Reforma al Sistema Binominal (Tesis de Pregrado); Universidad Católica de la Santísima Concepción: Concepción, Chile, 2016. [Google Scholar]
- Escandón, M.; López, L. Integridad de comunidades y redistritación urbana. Política Cult. 2003, 19, 45–63. [Google Scholar]
- Reynoso, V. Notas para una geografía electoral del estado de Sonora. Rev. Cienc. Soc. Humanidades 1991, 11, 87–116. [Google Scholar]
- Fernández, O. El análisis de Clúster: Aplicación, interpretación y validación. Rev. Sociol. 1991, 37, 65–76. [Google Scholar] [CrossRef]
- Rebolledo, R.; Ulloa, A.; Cornejo, Ó.; Obreque, C.; Baesler, F. Optimizing Districting and Seat Allocation for Enhanced Representativeness in Chile’s Chamber of Deputies. Mathematics 2024, 12, 3878. [Google Scholar] [CrossRef]
- Celemín, J. Asociación espacial entre fragmentación socioeconómica y ambiental en la ciudad de mar del plata, Argentina. EURE 2012, 38, 33–51. [Google Scholar] [CrossRef]
- Aguirre, P. Sistemas Políticos y Electorales Contemporáneos Canadá. 2001. Available online: https://portalanterior.ine.mx/documentos/DECEYEC/canada.htm (accessed on 18 September 2024).
- Navia, P.; Rojas, P. Representación y tamaño de los distritos electorales en Chile, 1988–2002. Rev. De Cienc. Política 2005, 25, 91–116. [Google Scholar] [CrossRef]
- López, L.; Soto, E. Federalismo y redistritación electoral en México. Política Cult. 2008, 29, 125–147. [Google Scholar]
- Baños, M.; Palacios, C. Evolución territorial de los distritos electorales federales uninominales, 1977–2010. Investig. Geográficas 2014, 84, 81–95. [Google Scholar]
- Loosemore, J.; Hanby, V. The Theoretical Limits of Maximum Distortion: Some Analytic Expressions for Electoral Systems. Br. J. Political Sci. 1971, 1, 467–477. [Google Scholar] [CrossRef]
- Reynoso, D. Distritos y escaños en Brasil: Antecedentes, diagnóstico y consecuencias partidarias del malaporcionamiento. Política Gob. 2001, 8, 167–191. Available online: http://repositorio-digital.cide.edu/handle/11651/1954 (accessed on 18 September 2024).
- López, L. Redistritación electoral en México: Logros pasados y restos futuros. Investig. Geográficas 2006, 61, 99–113. [Google Scholar] [CrossRef]
- Vilalta, C. Los procesos de distritación electoral y el uso del criterio de comunidad de interés. Estud. Demográficos Urbanos 2002, 49, 151–173. [Google Scholar] [CrossRef]
- Gurnee, W.; Shmoys, D.B. Fairmandering: A column generation heuristic for fairness-optimized political districting. In SIAM Conference on Applied and Computational Discrete Algorithms (ACDA21); Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001; pp. 88–99. [Google Scholar]
- Lewenberg, Y.; Lev, O.; Rosenschein, J.S. Divide and conquer: Using geographic manipulation to win district-based elections. In Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, Sao Paulo, Brazil, 8–12 May 2017; pp. 624–632. [Google Scholar]
- Levin, H.A.; Friedler, S.A. Automated congressional redistricting. ACM J. Exp. Algorithmics 2019, 24, 1–24. [Google Scholar] [CrossRef]
- Fischer, M. Taxonomía regional. Una comparación de algunos jerárquicos y estrategias no jerárquicas. Cienc. Reg. Econ. Urbana 1980, 10, 503–537. [Google Scholar] [CrossRef]
- Orr, D. Congressional Redistricting: The North Carolina Experience. 1970. Available online: https://arizona-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01UA_ALMA21436993870003843&context=L&vid=01UA (accessed on 18 September 2024).
- Fragoso, R.; Rego, C.; Bushenkov, V. Clustering of Territorial Areas: A Multi-Criteria Districting Problem. J. Quant. Econ. 2016, 14, 179–198. [Google Scholar] [CrossRef]
- Velázquez, G. Viejas inequidades, nuevos dimensionamientos: “centros” y “periferias” como elementos para el análisis geográfico del bienestar de la población argentina luego del censo de 2001. G. Velázquez & N. Formiga (coords.), Calidad de vida, diferenciación socioespacial y condiciones sociodemográficas. Aportes Para Su Estud. En La Argent. 2008, 23, 47. [Google Scholar]
- Bourjolly, J.M.; Laporte, G.; Rousseau, J.M. Decoupage Electoral Automatise: Application A L’Lle De Montreal. INFOR Inf. Syst. Oper. Res. 1981, 19, 113–124. [Google Scholar] [CrossRef]
- Bozkaya, B.; Erkut, E.; Laporte, G. A tabu search heuristic and adaptive memory procedure for political districting. Eur. J. Oper. Res. 2003, 144, 12–26. [Google Scholar] [CrossRef]
- Swamy, R.; King, D.M.; Ludden, I.G.; Dobbs, K.W.; Jacobson, S.H. A practical optimization framework for political redistricting: A case study in Arizona. Socio-Econ. Plan. Sci. 2024, 92, 101836. [Google Scholar] [CrossRef]
- Álvarez-Miranda, E.; Campos-Valdés, C.; Quiroga, M.M.; Moreno-Faguett, M.; Pereira, J. A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter. Mathematics 2020, 8, 1404–1430. [Google Scholar] [CrossRef]
- Reyes, C.; Lía, D. Diseño de Algoritmos de Distritaje y Su Aplicación al Caso Chileno Universidad de O’Higgins. 2024. Available online: https://repositorio.uoh.cl/handle/611/994 (accessed on 18 September 2024).
- Capron, G.; Conzález Arellano, S. Las escalas de la segregación y de la fragmentación Urbana. Trace. Trav. Rech. Dans Les Amériques DuCent. 2006, 49, 65–75. [Google Scholar]
- Núñez-Colín, C.A.; Escobedo-López, D. Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agron. Mesoam. 2011, 22, 415–427. [Google Scholar] [CrossRef]
- Villardón, J.L.V. Introducción al Análisis de Clúster; Departamento de Estadística, Universidad de Salamanca: Salamanca, Spain, 2007; 22p. [Google Scholar]
- Gómez, M. El análisis Clúster en investigación de marketing: Metodología y crítica. ESIC Mark. 2002, 113, 9–33. [Google Scholar]
- Vega-Dienstmaier, J.; Arévalo-Flores, J. Clasificación mediante análisis de conglomerados: Un método relevante para la psiquiatría. Rev. Neuro-Psiquiatr. 2014, 77, 31–39. [Google Scholar] [CrossRef]
- Servicio de Impuestos Internos. Estadísticas de Empresas por Comuna y Rubro Económico. 2019. Available online: http://www.sii.cl/sobre_el_sii/estadisticas_de_empresas.html (accessed on 18 September 2024).
- Instituto Nacional de Estadísticas. Resultados Censo 2017—Personas. 2019. Available online: http://resultados.censo2017.cl/ (accessed on 18 September 2024).
- Ministerio de Desarrollo Social y Familia. Estimaciones de Tasa de Pobreza por Ingresos y Multidimensional por Comunas, 2017. 2019. Available online: http://observatorio.ministeriodesarrollosocial.gob.cl/indicadores/datos_pobreza_comunal.php (accessed on 18 September 2024).
- Malhotra, N.K. Investigación de Mercados, Quinta ed.; Pearson Educación: Guadalajara, Mexico, 2008. [Google Scholar]
Variable | Acronyms number of Companies | Acronyms for Number of Dependent Workers |
---|---|---|
Agriculture, livestock, forestry and fisheries | ANEM | ANDE |
Mining and quarrying | BNEM | BNDE |
Manufacturing industry | CNEM | CNDE |
Electricity, gas, steam and air-conditioning supply | DNEM | DNDE |
Water supply; wastewater disposal, waste management and decontamination | ENEM | ENDE |
Construction | FNEM | FNDE |
Wholesale and retail trade; repair of motor vehicles and motorbikes | GNEM | GNDE |
Transport and storage | HNEM | HNDE |
Accommodation and food service activities | INEM | INDE |
Information and communications | JNEM | JNDE |
Financial and insurance activities | KNEM | KNDE |
Real estate activities | LNEM | LNDE |
Professional, scientific and technical activities | MNEM | MNDE |
Administrative and support service activities | NNEM | NNDE |
Public administration and defense; compulsory social security schemes | ONEM | ONDE |
Teaching | PNEM | PNDE |
Human health care and social work activities | QNEM | QNDE |
Arts, entertainment and recreational activities | RNEM | RNDE |
Other service activities | SNEM | SNDE |
Activities of households as employers; undifferentiated activities of households | TNEM | TNDE |
Activities of extraterritorial organizations and bodies | UNEM | UNDE |
Variables | Acronym | Source |
---|---|---|
Percentage of the population belonging to indigenous or aboriginal peoples | PPIO | CENSO 2017 |
Average years of schooling | PAES | CENSO 2017 |
Percentage of population living in urban areas | PPZU | CENSO 2017 |
Income poverty rate | TPIN | CASEN 2017 |
Multidimensional poverty rate | TPMU | CASEN 2017 |
Region | Number of Current Districts | Number of Clusters | Segmenting Variables |
---|---|---|---|
Antofagasta | 1 | 2 | PPZU, TPIN, ENEM, ENDE, GNEM, HNEM, HNDE, JNEM, ONEM, SNEM, SNDE |
Coquimbo | 1 | 2 | PPZU, PAES, TPIN, ANEM, ANDE, ENEM, FNEM, FNDE, GNDE, HNDE, JNEM, JNDE, LNEM, MNEM, MNDE, NNEM, NNDE, PNEM, SNEM |
Valparaíso | 2 | 2 | PPIO, PPZU, PAES, TPIN, ANEM, ANDE, CNEM, CNDE, DNEM, ENEM, FNEM, FNDE, GNEM, GNDE, JNEM, KNEM, KNDE, LNEM, LNDE, MNEM, MNDE, NNDE, PNEM, QNEM, RNEM, SNEM, TNEM |
Metropolitana | 7 | 3 | PPIO, PPZU, PAES, TPIN, TPMU, ANEM, ANDE, BNEM, CNEM, CNDE, DNEM, ENEM, FNEM, FNDE, GNEM, GNDE, HNEM, INDE, JNEM, KNEM, KNDE, LNEM, LNDE, MNEM, MNDE, NNEM, NNDE, ONEM, ONDE, PNEM, QNEM, RNEM, SNEM. UNEM |
O’Higgins | 2 | 3 | PPIO, PPZU, PAES, TPIN, ANEM, ANDE, CNEM, CNDE, ENEM, ENDE, FNEM, FNDE, GNEM, GNDE, JNEM, JNDE, MNEM, MNDE, NNEM, PNEM, PNDE, QNEM, RNEM, SNEM |
Maule | 2 | 3 | PPIO, PPZU, PAES, ANEM, ANDE, CNEM, DNEM, ENEM, FNEM, FNDE, GNEM, HNEM, INEM, INDE, JNEM, JNDE, KNEM, LNEM, MNEM, NNEM, ONDE, PNEM, QNEM, QNDE, RNEM, SNEM, |
Ñuble | 1 | 2 | PPIO, PPZU, PAES, TPIN, TPMU, ANEM, ANDE, BNEM, CNEM, CNDE, FNEM, GNEM, HNEM, HNDE, JNEM, JNDE, MNEM, NNEM |
Biobío | 2 | 2 | PPIO, PPZU, PAES, TPIN, TPMU, ANEM, ANDE, CNEM, CNDE, DNEM, DNDE, ENEM, FNEM, FNDE, GNEM, HNEM, INEM, MNEM, NNEM, NNDE, ONEM, ONDE, PNEM, PNDE, SNEM, UNEM, UNDE |
Araucanía | 2 | 3 | PPIO, PPZU, PAES, TPIN, TPMU, ANEM, BNDE, ENEM, FNEM, INDE, KNEM, LNEM, LNDE, MNEM, MNDE, NNEM, ONEM, ONDE, PNEM, QNEM, SNDE |
Los Ríos | 1 | 2 | PPZU, PAES, TPIN, TPMU, CNDE, INDE, JNEM, JNDE, LNEM, LNDE, MNEM, MNDE, NNEM, QNEM, QNDE |
Los Lagos | 2 | 2 | PPZU, PAES, TPIN, TPMU, ANEM, ANDE, BNDE, CNEM, ENEM, GNDE, INDE, JNEM, JNDE, KNEM, KNDE, LNEM, MNEM, MNDE, NNEM, ONEM, QNEM, QNDE, SNEM |
ANOVA | |||||
---|---|---|---|---|---|
Variables | F | Sig. | Variables | F | Sig. |
PPIO | 22.24 | 0.00 | JNEM | 42.15 | 0.00 |
PPZU | 30.93 | 0.00 | JNDE | 0.56 | 0.57 |
PAES | 62.49 | 0.00 | KNEM | 35.49 | 0.00 |
TPIN | 12.70 | 0.00 | KNDE | 23.25 | 0.00 |
TPMU | 14.85 | 0.00 | LNEM | 48.96 | 0.00 |
ANEM | 44.03 | 0.00 | LNDE | 3.92 | 0.03 |
ANDE | 55.95 | 0.00 | MNEM | 136.27 | 0.00 |
BNEM | 4.64 | 0.01 | MNDE | 19.54 | 0.00 |
BNDE | 1.78 | 0.18 | NNEM | 16.66 | 0.00 |
CNEM | 25.97 | 0.00 | NNDE | 4.05 | 0.02 |
CNDE | 12.11 | 0.00 | ONEM | 4.19 | 0.02 |
DNEM | 4.55 | 0.02 | ONDE | 3.56 | 0.04 |
DNDE | 1.15 | 0.32 | PNEM | 4.49 | 0.02 |
ENEM | 25.94 | 0.00 | PNDE | 1.06 | 0.35 |
ENDE | 1.16 | 0.32 | QNEM | 47.80 | 0.00 |
FNEM | 10.26 | 0.00 | QNDE | 1.08 | 0.35 |
FNDE | 6.64 | 0.00 | RNEM | 13.20 | 0.00 |
GNEM | 23.97 | 0.00 | RNDE | 2.05 | 0.14 |
GNDE | 7.20 | 0.00 | SNEM | 34.57 | 0.00 |
HNEM | 43.88 | 0.00 | SNDE | 1.79 | 0.18 |
HNDE | 2.69 | 0.08 | UNEM | 4.95 | 0.01 |
INEM | 0.71 | 0.50 | UNDE | 2.96 | 0.06 |
INDE | 4.91 | 0.01 |
Variables | Cluster | Variables | Cluster | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | ||
PPIO | 0.1960 | 0.3572 | 0.6195 | JNDE | 0.0861 | 0.0759 | 0.0220 |
PPZU | 0.9963 | 0.5537 | 0.9700 | KNEM | 0.5116 | 0.1099 | 0.0769 |
PAES | 0.8750 | 0.2331 | 0.3362 | KNDE | 0.5183 | 0.0417 | 0.0888 |
TPIN | 0.1419 | 0.5632 | 0.5847 | LNEM | 0.6982 | 0.2322 | 0.1914 |
TPMU | 0.1515 | 0.5570 | 0.5109 | LNDE | 0.2908 | 0.0729 | 0.1158 |
ANEM | 0.0350 | 0.3745 | 0.0313 | MNEM | 0.8370 | 0.1370 | 0.2418 |
ANDE | 0.1720 | 0.6224 | 0.0930 | MNDE | 0.4636 | 0.0424 | 0.1227 |
BNEM | 0.2232 | 0.3854 | 0.0947 | NNEM | 0.7667 | 0.3556 | 0.5217 |
BNDE | 0.0167 | 0.0250 | 0.1161 | NNDE | 0.4556 | 0.1791 | 0.2712 |
CNEM | 0.1429 | 0.2925 | 0.6076 | ONEM | 0.2143 | 0.4167 | 0.0303 |
CNDE | 0.1506 | 0.2216 | 0.4738 | ONDE | 0.1523 | 0.3138 | 0.0796 |
DNEM | 0.3175 | 0.1667 | 0.1380 | PNEM | 0.6190 | 0.4815 | 0.6785 |
DNDE | 0.2063 | 0.1015 | 0.0550 | PNDE | 0.1087 | 0.2078 | 0.1977 |
ENEM | 0.0909 | 0.4848 | 0.1625 | QNEM | 0.7000 | 0.0964 | 0.1710 |
ENDE | 0.0292 | 0.0931 | 0.1467 | QNDE | 0.0897 | 0.1420 | 0.0507 |
FNEM | 0.1911 | 0.2489 | 0.5029 | RNEM | 0.6984 | 0.3843 | 0.4596 |
FNDE | 0.5849 | 0.2555 | 0.4943 | RNDE | 0.2308 | 0.1244 | 0.0308 |
GNEM | 0.2088 | 0.4103 | 0.6792 | SNEM | 0.3235 | 0.3444 | 0.6386 |
GNDE | 0.5023 | 0.2052 | 0.5401 | SNDE | 0.0880 | 0.2201 | 0.1007 |
HNEM | 0.1185 | 0.6052 | 0.7088 | TNEM | 0.0000 | 0.0000 | 0.0000 |
HNDE | 0.0688 | 0.2053 | 0.2174 | TNDE | 0.0000 | 0.0000 | 0.0000 |
INEM | 0.1126 | 0.1771 | 0.1553 | UNEM | 0.0000 | 0.1667 | 0.0000 |
INDE | 0.3492 | 0.1950 | 0.1373 | UNDE | 0.1250 | 0.0000 | 0.0000 |
JNEM | 0.5506 | 0.0955 | 0.1970 |
Base Case | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | ||
---|---|---|---|---|---|---|---|
TSED | Average | 66.84 | 64.82 | 59.53 | 54.16 | 51.32 | 49.67 |
Max | 235.48 | 148.84 | 148.84 | 97.70 | 75.42 | 71.36 | |
Min | 20.54 | 9.88 | 9.88 | 15.31 | 15.31 | 22.61 | |
Range | 214.94 | 138.96 | 138.96 | 82.39 | 60.11 | 48.75 | |
Total | 467.85 | 453.73 | 416.68 | 379.13 | 359.21 | 347.67 | |
MALR | Average | 0.0168 | 0.0067 | 0.0057 | 0.0071 | 0.0049 | 0.0054 |
Max | 0.0347 | 0.0128 | 0.0101 | 0.0191 | 0.0101 | 0.0107 | |
Min | 0.0104 | 0.0011 | 0.0027 | 0.0011 | 0.0001 | 0.0015 | |
Range | 0.0244 | 0.0117 | 0.0074 | 0.0181 | 0.0100 | 0.0092 | |
Total | 0.0589 | 0.0233 | 0.0199 | 0.0248 | 0.0170 | 0.0190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebolledo, R.; Reinoso, M.; Cornejo, Ó.; Obreque, C.; Baesler, F. Electoral Districts in Chile: Optimizing Socio-Economic Homogeneity and Demographic Balance. Systems 2025, 13, 85. https://doi.org/10.3390/systems13020085
Rebolledo R, Reinoso M, Cornejo Ó, Obreque C, Baesler F. Electoral Districts in Chile: Optimizing Socio-Economic Homogeneity and Demographic Balance. Systems. 2025; 13(2):85. https://doi.org/10.3390/systems13020085
Chicago/Turabian StyleRebolledo, Rodrigo, Maykol Reinoso, Óscar Cornejo, Carlos Obreque, and Felipe Baesler. 2025. "Electoral Districts in Chile: Optimizing Socio-Economic Homogeneity and Demographic Balance" Systems 13, no. 2: 85. https://doi.org/10.3390/systems13020085
APA StyleRebolledo, R., Reinoso, M., Cornejo, Ó., Obreque, C., & Baesler, F. (2025). Electoral Districts in Chile: Optimizing Socio-Economic Homogeneity and Demographic Balance. Systems, 13(2), 85. https://doi.org/10.3390/systems13020085