Floodplains and Complex Adaptive Systems—Perspectives on Connecting the Dots in Flood Risk Assessment with Coupled Component Models
Abstract
:1. Introduction
2. Main Drivers of Evolving Risks in Floodplains
2.1. Changes in Flood Processes
2.2. Changes in Exposure and Vulnerability
2.3. Adaptation in Governance
3. Characterization of Floodplains from the Viewpoint of Complex Adaptive Systems
4. Prospective Approaches in Modeling Co-Evolutionary Dynamics in Floodplains
4.1. System Dynamics
4.2. Agent-Based Modeling
4.3. Coupled Component Modeling
5. Conclusions and Outlook from a Modeler’s Perspective
Acknowledgments
Conflicts of Interest
References
- United Nations International Strategy for Disaster Reduction (UNISDR). Making Development Sustainable: The Future of Disaster Risk Management; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- Fuchs, S.; Keiler, M.; Zischg, A.; Bründl, M. The long-term development of avalanche risk in settlements considering the temporal variability of damage potential. Nat. Hazards Earth Syst. Sci. 2005, 5, 893–901. [Google Scholar] [CrossRef]
- Haimes, Y.Y. On the complex definition of risk: A systems-based approach. Risk Anal. Off. Publ. Soc. Risk Anal. 2009, 29, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Mazzorana, B.; Levaggi, L.; Keiler, M.; Fuchs, S. Towards dynamics in flood risk assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 3571–3587. [Google Scholar] [CrossRef] [Green Version]
- Merz, B.; Hall, J.; Disse, M.; Schumann, A. Fluvial flood risk management in a changing world. Nat. Hazards Earth Syst. Sci. 2010, 10, 509–527. [Google Scholar] [CrossRef]
- Keiler, M.; Zischg, A.; Fuchs, S.; Hama, M.; Stötter, J. Avalanche related damage potential—Changes of persons and mobile values since the mid-twentieth century, case study Galtür. Nat. Hazards Earth Syst. Sci. 2005, 5, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Keiler, M. Development of the damage potential resulting from avalanche risk in the period 1950–2000, case study Galtür. Nat. Hazards Earth Syst. Sci. 2004, 4, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Keiler, M.; Sailer, R.; Jörg, P.; Weber, C.; Fuchs, S.; Zischg, A.; Sauermoser, S. Avalanche risk assessment; a multi-temporal approach, results from Galtür, Austria. Nat. Hazards Earth Syst. Sci. 2006, 6, 637–651. [Google Scholar] [CrossRef]
- Achleitner, S.; Huttenlau, M.; Winter, B.; Reiss, J.; Plörer, M.; Hofer, M. Temporal development of flood risk considering settlement dynamics and local flood protection measures on catchment scale: An Austrian case study. Int. J. River Basin Manag. 2016, 14, 273–285. [Google Scholar] [CrossRef]
- Himmelsbach, I.; Glaser, R.; Schoenbein, J.; Riemann, D.; Martin, B. Flood risk along the upper Rhine since AD 1480. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 177–211. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Sa lamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth Futur. 2016. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Feyen, L.; Di Baldassarre, G. Increasing flood risk under climate change: A pan-European assessment of the benefits of four adaptation strategies. Clim. Chang. 2016. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef]
- Devkota, R.P.; Bhattarai, U. Assessment of climate change impact on floods from a techno-social perspective. J. Flood Risk Manag. 2015. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Hundecha, Y.; Merz, B. Exploring the relationship between changes in climate and floods using a model-based analysis. Water Resour. Res. 2012, 48, 3331. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Feyen, L.; Dottori, F.; Bianchi, A. Ensemble flood risk assessment in Europe under high end climate scenarios. Glob. Environ. Chang. 2015, 35, 199–212. [Google Scholar] [CrossRef]
- Bouwer, L.M.; Bubeck, P.; Aerts, J.C.J.H. Changes in future flood risk due to climate and development in a Dutch polder area. Glob. Environ. Chang. 2010, 20, 463–471. [Google Scholar] [CrossRef]
- Jongman, B.; Koks, E.E.; Husby, T.G.; Ward, P.J. Increasing flood exposure in the Netherlands: Implications for risk financing. Nat. Hazards Earth Syst. Sci. 2014, 14, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Chang. 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Liu, J.; Hertel, T.W.; Diffenbaugh, N.S.; Delgado, M.S.; Ashfaq, M. Future property damage from flooding: Sensitivities to economy and climate change. Clim. Chang. 2015, 132, 741–749. [Google Scholar] [CrossRef]
- Löschner, L.; Herrnegger, M.; Apperl, B.; Senoner, T.; Seher, W.; Nachtnebel, H.P. Flood risk, climate change and settlement development: A micro-scale assessment of Austrian municipalities. Reg. Environ. Chang. 2016, 42, 125. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; van Beek, L.P.; Bierkens, M.F.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.; Ligtvoet, W.; Lucas, P.L.; van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2015, 6, 381–385. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Simonovic, S.P. Spatial and temporal analysis of urban flood risk assessment. Urban Water J. 2013, 10, 26–49. [Google Scholar] [CrossRef]
- Aubrecht, C.; Fuchs, S.; Neuhold, C. Spatio-temporal aspects and dimensions in integrated disaster risk management. Nat. Hazards 2013, 68, 1205–1216. [Google Scholar] [CrossRef]
- Cammerer, H.; Thieken, A.H.; Verburg, P.H. Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria). Nat. Hazards 2013, 68, 1243–1270. [Google Scholar] [CrossRef]
- Früh-Müller, A.; Wegmann, M.; Koellner, T. Flood exposure and settlement expansion since pre-industrial times in 1850 until 2011 in north Bavaria, Germany. Reg. Environ. Chang. 2015, 15, 183–193. [Google Scholar] [CrossRef]
- Fuchs, S.; Röthlisberger, V.; Thaler, T.; Zischg, A.; Keiler, M. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Ann. Am. Assoc. Geogr. 2016, 107, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Röthlisberger, V.; Zischg, A.; Keiler, M. Spatiotemporal aspects of flood exposure in Switzerland. E3S Web Conf. 2016, 7, 8008. [Google Scholar] [CrossRef]
- Röthlisberger, V.; Zischg, A.P.; Keiler, M. Identifying spatial clusters of flood exposure to support decision making in risk management. Sci. Total Environ. 2017, 598, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Keiler, M.; Sokratov, S.; Shnyparkov, A. Spatiotemporal dynamics: The need for an innovative approach in mountain hazard risk management. Nat. Hazards 2013, 68, 1217–1241. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. Modeling Dynamic Processes in Space and Time—A Spatial System Dynamics Approach. In Proceedings of the World Water and Environmental Resources Congress 2001, Orlando, FL, USA, 20–24 May 2001; pp. 1–20. [Google Scholar]
- Ahmad, S.S.; Simonovic, S.P. System dynamics and hydrodynamic modelling approaches for spatial and temporal analysis of flood risk. Int. J. River Basin Manag. 2015, 13, 443–461. [Google Scholar] [CrossRef]
- Ahmad, S.; Simonovic, S.P. Spatial System Dynamics: New Approach for Simulation of Water Resources Systems. J. Comput. Civ. Eng. 2004, 18, 331–340. [Google Scholar] [CrossRef]
- Bentley, R.A.; Maddison, E.J.; Ranner, P.H.; Bissell, J.; Caiado, C.; Bhatanacharoen, P.; Clark, T.; Botha, M.; Akinbami, F.; Hollow, M.; et al. Social tipping points and Earth systems dynamics. Front. Environ. Sci. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Brinke, W.B.M.; Knoop, J.; Muilwijk, H.; Ligtvoet, W. Social disruption by flooding, a European perspective. Int. J. Disaster Risk Reduct. 2017, 21, 312–322. [Google Scholar] [CrossRef]
- Von Elverfeldt, K.; Embleton-Hamann, C.; Slaymaker, O. Self-organizing change? On drivers, causes and global environmental change. Geomorphology 2016, 253, 48–58. [Google Scholar] [CrossRef]
- Fraternali, P.; Castelletti, A.; Soncini-Sessa, R.; Vaca Ruiz, C.; Rizzoli, A.E. Putting humans in the loop: Social computing for Water Resources Management. Environ. Model. Softw. 2012, 37, 68–77. [Google Scholar] [CrossRef]
- Donges, J.F.; Winkelmann, R.; Lucht, W.; Cornell, S.E.; Dyke, J.G.; Rockström, J.; Heitzig, J.; Schellnhuber, H.J. Closing the loop: Reconnecting human dynamics to Earth System science. Anthr. Rev. 2017, 4, 151–157. [Google Scholar] [CrossRef]
- Helbing, D.; Brockmann, D.; Chadefaux, T.; Donnay, K.; Blanke, U.; Woolley-Meza, O.; Moussaid, M.; Johansson, A.; Krause, J.; Schutte, S.; et al. Saving Human Lives: What Complexity Science and Information Systems can Contribute. J. Stat. Phys. 2015, 158, 735–781. [Google Scholar] [CrossRef] [PubMed]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Arheimer, B.; Lindström, G. Climate impact on floods: Changes in high flows in Sweden in the past and the future (1911–2100). Hydrol. Earth Syst. Sci. 2015, 19, 771–784. [Google Scholar] [CrossRef]
- Hollis, G.E. The effect of urbanization on floods of different recurrence interval. Water Resour. Res. 1975, 11, 431–435. [Google Scholar] [CrossRef]
- Hooke, J.M. Human impacts on fluvial systems in the Mediterranean region. Geomorphology 2006, 79, 311–335. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Olivera, F.; Giglio, M.; Berke, P. The impact of urbanization on the streamflows and the 100-year floodplain extent of the Sims Bayou in Houston, Texas. Int. J. River Basin Manag. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Staffler, H.; Pollinger, R.; Zischg, A.; Mani, P. Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management. Nat. Hazards Earth Syst. Sci. 2008, 8, 539–558. [Google Scholar] [CrossRef]
- Sear, D.A.; Newson, M.D. Environmental change in river channels: A neglected element. Towards geomorphological typologies, standards and monitoring. Detect. Environ. Chang. Sci. Soc. 2003, 310, 17–23. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. The Use of Evolutionary Trajectories to Guide ‘Moving Targets’ in the Management of River Futures. River Res. Appl. 2016, 32, 823–835. [Google Scholar] [CrossRef]
- Marani, M.; Rigon, R. Self-Organized River Basin Landscapes—Fractal and Multifractal Characteristics. Water Resour. Res. 1994, 30, 3531–3539. [Google Scholar] [CrossRef]
- Pinter, N.; Thomas, R.; Wlosinski, J.H. Assessing flood hazard on dynamic rivers. Eos Trans. AGU 2001, 82, 333. [Google Scholar] [CrossRef]
- Church, M.; Ferguson, R.I. Morphodynamics: Rivers beyond steady state. Water Resour. Res. 2015, 51, 1883–1897. [Google Scholar] [CrossRef]
- Coulthard, T.J.; Van De Wiel, M.J. Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution. Geomorphology 2007, 91, 216–235. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef] [Green Version]
- Herget, J.; Dikau, R.; Gregory, K.J.; Vandenberghe, J. The fluvial system—Research perspectives of its past and present dynamics and controls. Geomorphology 2007, 92, 101–105. [Google Scholar] [CrossRef]
- Corenblit, D.; Davies, N.S.; Steiger, J.; Gibling, M.R.; Bornette, G. Considering river structure and stability in the light of evolution: Feedbacks between riparian vegetation and hydrogeomorphology. Earth Surf. Process. Landf. 2014, 40, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Guan, M.; Carrivick, J.L.; Wright, N.G.; Sleigh, P.A.; Staines, K.E.H. Quantifying the combined effects of multiple extreme floods on river channel geometry and on flood hazards. J. Hydrol. 2016, 538, 256–268. [Google Scholar] [CrossRef]
- Croke, J.; Denham, R.; Thompson, C.; Grove, J. Evidence of Self-Organized Criticality in riverbank mass failures: A matter of perspective? Earth Surf. Process. Landf. 2015, 40, 953–964. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Castellarin, A.; Brath, A. Analysis of the effects of levee heightening on flood propagation: Example of the River Po, Italy. Hydrol. Sci. J. 2009, 54, 1007–1017. [Google Scholar] [CrossRef]
- French, J.R. Hydrodynamic Modelling of Estuarine Flood Defence Realignment as an Adaptive Management Response to Sea-Level Rise. J. Coast. Res. 2008, 2, 1–12. [Google Scholar] [CrossRef]
- Pinter, N.; Thomas, R.; Wlosinski, J.H. Regional Impacts of Levee Construction and Channelization, Middle Mississippi River, USA. In Flood Issues in Contemporary Water Management; Marsalek, J., Watt, W.E., Zeman, E., Sieker, F., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 351–361. [Google Scholar]
- Dixon, S.J.; Sear, D.A.; Odoni, N.A.; Sykes, T.; Lane, S.N. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surf. Process. Landf. 2016, 41, 997–1008. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2002, 50, 307–326. [Google Scholar] [CrossRef]
- Kiss, T.; Fiala, K.; Sipos, G. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 2008, 98, 96–110. [Google Scholar] [CrossRef]
- Pinter, N.; van der Ploeg, R.R.; Schweigert, P.; Hoefer, G. Flood magnification on the River Rhine. Hydrol. Process. 2006, 20, 147–164. [Google Scholar] [CrossRef]
- Ward, P.J.; Renssen, H.; Aerts, J.C.J.H.; van Balen, R.T.; Vandenberghe, J. Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: Impacts of long-term anthropogenic land use change and climate variability. Hydrol. Earth Syst. Sci. 2008, 12, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Gregory, K.J. The human role in changing river channels. Geomorphology 2006, 79, 172–191. [Google Scholar] [CrossRef]
- Tobin, G.A. The Levee Love Affair: A Stormy Relationship? J. Am. Water Resour. Assoc. 1995, 31, 359–367. [Google Scholar] [CrossRef]
- Van Triet, N.K.; Dung, N.V.; Fujii, H.; Kummu, M.; Merz, B.; Apel, H. Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream? Hydrol. Earth Syst. Sci. 2017, 21, 3991–4010. [Google Scholar] [CrossRef]
- Ryffel, A.N.; Rid, W.; Grêt-Regamey, A. Land use trade-offs for flood protection: A choice experiment with visualizations. Ecosyst. Serv. 2014, 10, 111–123. [Google Scholar] [CrossRef]
- Salzmann, N.; Huggel, C.; Nussbaumer, S.U.; Ziervogel, G. Climate Change Adaptation Strategies—An Upstream-Downstream Perspective; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; et al. Land-use change impacts on floods at the catchment scale—Challenges and opportunities for future research. Water Resour. Res. 2017, 53, 5209–5219. [Google Scholar] [CrossRef] [PubMed]
- Burby, R.J.; French, S.P. Coping With Floods: The Land Use Management Paradox. J. Am. Plan. Assoc. 2007, 47, 289–300. [Google Scholar] [CrossRef]
- O’Connell, P.E.; Ewen, J.; O’Donnell, G.; Quinn, P. Is there a link between agricultural land-use management and flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [Google Scholar] [CrossRef]
- Carisi, F.; Domeneghetti, A.; Gaeta, M.G.; Castellarin, A. Is anthropogenic land subsidence a possible driver of riverine flood-hazard dynamics? A case study in Ravenna, Italy. Hydrol. Sci. J. 2017, 6, 1–16. [Google Scholar] [CrossRef]
- Fuchs, S.; Keiler, M.; Zischg, A. A spatiotemporal multi-hazard exposure assessment based on property data. Nat. Hazards Earth Syst. Sci. 2015, 15, 2127–2142. [Google Scholar] [CrossRef] [Green Version]
- Elmer, F.; Hoymann, J.; Düthmann, D.; Vorogushyn, S.; Kreibich, H. Drivers of flood risk change in residential areas. Nat. Hazards Earth Syst. Sci. 2012, 12, 1641–1657. [Google Scholar] [CrossRef]
- Morales, A.P.; Gil-Guirado, S.; Cantos, J.O. Housing bubbles and the increase of flood exposure. Failures in flood risk management on the spanish south-eastern coast (1975–2013). J. Flood Risk Manag. 2015, 11, S302–S313. [Google Scholar] [CrossRef]
- Hasan, S.; Foliente, G. Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: Emerging R & D challenges. Nat. Hazards 2015, 78, 2143–2168. [Google Scholar] [CrossRef]
- Little, R.G. Controlling Cascading Failure: Understanding the Vulnerabilities of Interconnected Infrastructures. J. Urban Technol. 2002, 9, 109–123. [Google Scholar] [CrossRef]
- Gonzva, M.; Barroca, B.; Gautier, P.-É.; Diab, Y. Modeling disruptions causing domino effects in urban guided transport systems faced by flood hazards. Nat. Hazards 2017, 86, 183–201. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. Critical infrastructure, panarchies and the vulnerability paths of cascading disasters. Nat. Hazards 2016, 82, 175–192. [Google Scholar] [CrossRef]
- Nicholls, S.; Crompton, J.L. The effect of rivers, streams, and canals on property values. River Res. Appl. 2017, 36, 773. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Posey, J. The determinants of vulnerability and adaptive capacity at the municipal level: Evidence from floodplain management programs in the United States. Glob. Environ. Chang. 2009, 19, 482–493. [Google Scholar] [CrossRef]
- Wiering, M.; Liefferink, D.; Crabbé, A. Stability and change in flood risk governance: On path dependencies and change agents. J. Flood Risk Manag. 2017. [Google Scholar] [CrossRef]
- Kreibich, H.; Müller, M.; Thieken, A.H.; Merz, B. Flood precaution of companies and their ability to cope with the flood in August 2002 in Saxony, Germany. Water Resour. Res. 2007, 43, 41. [Google Scholar] [CrossRef]
- Kuhlicke, C. The dynamics of vulnerability: Some preliminary thoughts about the occurrence of ‘radical surprises’ and a case study on the 2002 flood (Germany). Nat. Hazards 2010, 55, 671–688. [Google Scholar] [CrossRef]
- Guthrie, R. The catastrophic nature of humans. Nat. Geosci. 2015, 8, 421–422. [Google Scholar] [CrossRef]
- Reilly, A.C.; Guikema, S.D.; Zhu, L.; Igusa, T. Evolution of vulnerability of communities facing repeated hazards. PLoS ONE 2017, 12, e0182719. [Google Scholar] [CrossRef] [PubMed]
- Thomi, L.; Zischg, A.; Suter, H. Was Macht Hochwasserschutzprojekte Erfolgreich? Eine Evaluation der Risikoentwicklung, des Nutzens und der Rolle privater Geldgeber; Geographisches Institut: Bern, Switzerland, 2015. [Google Scholar]
- White, G. Human Adjustment to Floods; University of Chicago: Chicago, IL, USA, 1945. [Google Scholar]
- James, L.A.; Marcus, W.A. The human role in changing fluvial systems: Retrospect, inventory and prospect. Geomorphology 2006, 79, 152–171. [Google Scholar] [CrossRef]
- Hartmann, T. Clumsy Floodplains: Responsive Land Policy for Extreme Floods/by Thomas Hartmann; Ashgate: Farnham, UK, 2011. [Google Scholar]
- Ison, R.L.; Collins, K.B.; Wallis, P.J. Institutionalising social learning: Towards systemic and adaptive governance. Environ. Sci. Policy 2015, 53, 105–117. [Google Scholar] [CrossRef]
- Kjeldsen, T.R.; Prosdocimi, I. Assessing the element of surprise of record-breaking flood events. J. Flood Risk Manag. 2016, 19, 83. [Google Scholar] [CrossRef] [Green Version]
- Wiering, M.; Kaufmann, M.; Mees, H.; Schellenberger, T.; Ganzevoort, W.; Hegger, D.L.T.; Larrue, C.; Matczak, P. Varieties of flood risk governance in Europe: How do countries respond to driving forces and what explains institutional change? Glob. Environ. Chang. 2017, 44, 15–26. [Google Scholar] [CrossRef]
- Collenteur, R.A.; Moel, H.; de Jongman, B.; di Baldassarre, G. The failed-levee effect: Do societies learn from flood disasters? Nat. Hazards 2015, 76, 373–388. [Google Scholar] [CrossRef]
- Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- White, G.F.; Kates, R.W.; Burton, I. Knowing better and losing even more: The use of knowledge in hazards management. Environ. Hazards 2001, 3, 81–92. [Google Scholar]
- Klijn, F.; Kreibich, H.; Moel, H. de; Penning-Rowsell, E. Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 845–864. [Google Scholar] [CrossRef]
- Klinke, A.; Renn, O. Adaptive and integrative governance on risk and uncertainty. J. Risk Res. 2012, 15, 273–292. [Google Scholar] [CrossRef]
- Koontz, T.M.; Gupta, D.; Mudliar, P.; Ranjan, P. Adaptive institutions in social-ecological systems governance: A synthesis framework. Environ. Sci. Policy 2015, 53, 139–151. [Google Scholar] [CrossRef]
- Kruse, S.; Pütz, M. Adaptive Capacities of Spatial Planning in the Context of Climate Change in the European Alps. Eur. Plan. Stud. 2013, 22, 2620–2638. [Google Scholar] [CrossRef]
- Hurlimann, A.C.; March, A.P. The role of spatial planning in adapting to climate change. WIREs Clim. Chang. 2012, 3, 477–488. [Google Scholar] [CrossRef]
- Hasselman, L. Adaptive management intentions with a reality of evaluation: Getting science back into policy. Environ. Sci. Policy 2017, 78, 9–17. [Google Scholar] [CrossRef]
- Lawrence, J.; Reisinger, A.; Mullan, B.; Jackson, B. Exploring climate change uncertainties to support adaptive management of changing flood-risk. Environ. Sci. Policy 2013, 33, 133–142. [Google Scholar] [CrossRef]
- Mori, K.; Perrings, C. Optimal management of the flood risks of floodplain development. Sci. Total Environ. 2012, 431, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Simonovic, S.P. Managing flood risk, reliability and vulnerability. J. Flood Risk Manag. 2009, 2, 230–231. [Google Scholar] [CrossRef]
- Priest, S.J.; Penning-Rowsell, E.C.; Suykens, C.; Lang, M.; Klijn, F.; Samuels, P. Promoting adaptive flood risk management: The role and potential of flood recovery mechanisms. E3S Web Conf. 2016, 7, 17005. [Google Scholar] [CrossRef]
- Prenger-Berninghoff, K.; Cortes, V.J.; Sprague, T.; Aye, Z.C.; Greiving, S.; Głowacki, W.; Sterlacchini, S. The connection between long-term and short-term risk management strategies for flood and landslide hazards: Examples from land-use planning and emergency management in four European case studies. Nat. Hazards Earth Syst. Sci. 2014, 14, 3261–3278. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Thaler, T. Moving away from local-based flood risk policy in Austria. Reg. Stud. Reg. Sci. 2016, 3, 329–336. [Google Scholar] [CrossRef]
- Van der Pol, T.D.; van Ierland, E.C.; Gabbert, S. Economic analysis of adaptive strategies for flood risk management under climate change. Mitig. Adapt. Strateg. Glob. Chang. 2015. [Google Scholar] [CrossRef]
- Birkmann, J.; Bach, C.; Vollmer, M. Tools for Resilience Building and Adaptive Spatial Governance. Raumforsch. Raumordn. 2012, 70, 293–308. [Google Scholar] [CrossRef]
- Zischg, A.; Schober, S.; Sereinig, N.; Rauter, M.; Seymann, C.; Goldschmidt, F.; Bäk, R.; Schleicher, E. Monitoring the temporal development of natural hazard risks as a basis indicator for climate change adaptation. Nat. Hazards 2013, 67, 1045–1058. [Google Scholar] [CrossRef]
- Miller, J.H.; Page, S.E. Complex Adaptive Systems: An Introduction to Computational Models of Social Life; Miller, J.H., Page, S.E., Eds.; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Mitchell, M. Complexity: A Guided Tour; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Birdsey, L.; Szabo, C.; Falkner, K. Identifying Self-Organization and Adaptability in Complex Adaptive Systems. In Proceedings of the 2017 IEEE 11th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), Tucson, AZ, USA, 18–22 September 2017; pp. 131–140. [Google Scholar]
- Bras, R.L. Complexity and organization in hydrology: A personal view. Water Resour. Res. 2015. [Google Scholar] [CrossRef]
- Kirschke, S.; BORCHARDT, D.; Newig, J. Mapping Complexity in Environmental Governance: A comparative analysis of 37 priority issues in German water management. Environ. Policy Gov. 2017, 3, 101. [Google Scholar] [CrossRef]
- Weis, S.W.M.; Agostini, V.N.; Roth, L.M.; Gilmer, B.; Schill, S.R.; Knowles, J.E.; Blyther, R. Assessing vulnerability: An integrated approach for mapping adaptive capacity, sensitivity, and exposure. Clim. Chang. 2016, 136, 615–629. [Google Scholar] [CrossRef]
- Blair, P.; Buytaert, W. Socio-hydrological modelling: A review asking “why, what and how?”. Hydrol. Earth Syst. Sci. 2016, 20, 443–478. [Google Scholar] [CrossRef]
- Schlüter, M.; Mcallister, R.R.J.; Arlinghaus, R.; Bunnefeld, N.; Eisenack, K.; Hölker, F.; Milner-Gulland, E.J.; Müller, B. New horizons for managing the environment: A review of coupled social-ecological systems modeling. Nat. Resour. Model. 2012, 25, 219–272. [Google Scholar] [CrossRef]
- Werner, B.T.; McNamara, D.E. Dynamics of coupled human-landscape systems. Geomorphology 2007, 91, 393–407. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Folke, C.; Alberti, M.; Redman, C.M.; Ouyang, Z.; Deadman, P.; Kratz, T.; Provencher, W. Coupled human and natural systems. Ambio 2007, 639–649. [Google Scholar]
- Noël, P.H.; Cai, X. On the role of individuals in models of coupled human and natural systems: Lessons from a case study in the Republican River Basin. Environ. Model. Softw. 2017, 92, 1–16. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Turner, B.L.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Hovelsrud-Broda, G.K.; Kasperson, J.X.; Kasperson, R.E.; Luers, A.; et al. Illustrating the coupled human-environment system for vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, P.E.; O’Donnell, G. Towards modelling flood protection investment as a coupled human and natural system. Hydrol. Earth Syst. Sci. 2014, 18, 155–171. [Google Scholar] [CrossRef]
- McMillan, H.; Montanari, A.; Cudennec, C.; Savenije, H.; Kreibich, H.; Krueger, T.; Liu, J.; Mejia, A.; van Loon, A.; Aksoy, H.; et al. Panta Rhei 2013–2015: Global perspectives on hydrology, society and change. Hydrol. Sci. J. 2016, 1–18. [Google Scholar] [CrossRef]
- Kreibich, H.; Krueger, T.; van Loon, A.; Mejia, A.; Liu, J.; McMillan, H.; Castellarin, A. Scientific debate of Panta Rhei research—How to advance our knowledge of changes in hydrology and society? Hydrol. Sci. J. 2016, 1–3. [Google Scholar] [CrossRef]
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S.; et al. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Process. 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Kemerink, J.S.; Kooy, M.; Brandimarte, L. Floods and societies: The spatial distribution of water-related disaster risk and its dynamics. WIREs Water 2014, 1, 133–139. [Google Scholar] [CrossRef]
- Pande, S.; Sivapalan, M. Progress in socio-hydrology: A meta-analysis of challenges and opportunities. WIREs Water 2016, 4, e1193. [Google Scholar] [CrossRef]
- Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for models of socio-hydrology: Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18, 2141–2166. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Nearing, G.S. Debates-the future of hydrological sciences: A (common) path forward? Using models and data to learn: A systems theoretic perspective on the future of hydrological science. Water Resour. Res. 2014, 50, 5351–5359. [Google Scholar] [CrossRef]
- Liu, D.; Tian, F.; Lin, M.; Sivapalan, M. A conceptual socio-hydrological model of the co-evolution of humans and water: Case study of the Tarim River basin, western China. Hydrol. Earth Syst. Sci. 2015, 19, 1035–1054. [Google Scholar] [CrossRef]
- Garcia, M.; Portney, K.; Islam, S. A question driven socio-hydrological modeling process. Hydrol. Earth Syst. Sci. 2016, 20, 73–92. [Google Scholar] [CrossRef]
- Mount, N.J.; Maier, H.R.; Toth, E.; Elshorbagy, A.; Solomatine, D.; Chang, F.-J.; Abrahart, R.J. Data-driven modelling approaches for socio-hydrology: Opportunities and challenges within the Panta Rhei Science Plan. Hydrol. Sci. J. 2016, 61, 1192–1208. [Google Scholar] [CrossRef]
- Seidl, R.; Barthel, R. Linking scientific disciplines: Hydrology and social sciences. J. Hydrol. 2017, 550, 441–452. [Google Scholar] [CrossRef]
- Sivapalan, M.; Konar, M.; Srinivasan, V.; Chhatre, A.; Wutich, A.; Scott, C.A.; Wescoat, J.L.; Rodríguez-Iturbe, I. Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. Earth Futur. 2014, 2, 225–230. [Google Scholar] [CrossRef]
- Sivapalan, M.; Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 2015, 51, 6988–7022. [Google Scholar] [CrossRef]
- Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.L.; Scolobig, A.; Blöschl, G. Insights from socio-hydrology modelling on dealing with flood risk—Roles of collective memory, risk-taking attitude and trust. J. Hydrol. 2014, 518, 71–82. [Google Scholar] [CrossRef]
- Wesselink, A.; Kooy, M.; Warner, J. Socio-hydrology and hydrosocial analysis: Toward dialogues across disciplines. WIREs Water 2016, 4, e1196. [Google Scholar] [CrossRef]
- Fuchs, S.; Karagiorgos, K.; Kitikidou, K.; Maris, F.; Paparrizos, S.; Thaler, T. Flood risk perception and adaptation capacity: A contribution to the socio-hydrology debate. Hydrol. Earth Syst. Sci. 2017, 21, 3183–3198. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, Y.; Xiao, H.; Zou, S.; Xie, J.; Ren, J.; Western, A. Evolution of the human–water relationships in the Heihe River basin in the past 2000 years. Hydrol. Earth Syst. Sci. 2015, 19, 2261–2273. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Saccà, S.; Aronica, G.T.; Grimaldi, S.; Ciullo, A.; Crisci, M. Human-flood interactions in Rome over the past 150 years. Adv. Geosci. 2017, 44, 9–13. [Google Scholar] [CrossRef]
- Gaál, L.; Szolgay, J.; Kohnová, S.; Parajka, J.; Merz, R.; Viglione, A.; Blöschl, G. Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resour. Res. 2012, 48, 383. [Google Scholar] [CrossRef]
- Mao, F.; Clark, J.; Karpouzoglou, T.; Dewulf, A.; Buytaert, W.; Hannah, D. HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change. Hydrol. Earth Syst. Sci. 2017, 21, 3655–3670. [Google Scholar] [CrossRef]
- Reynard, E.; Bonriposi, M.; Graefe, O.; Homewood, C.; Huss, M.; Kauzlaric, M.; Liniger, H.; Rey, E.; Rist, S.; Schädler, B.; et al. Interdisciplinary assessment of complex regional water systems and their future evolution: How socioeconomic drivers can matter more than climate. WIREs Water 2014, 1, 413–426. [Google Scholar] [CrossRef]
- Sofia, G.; Roder, G.; Dalla Fontana, G.; Tarolli, P. Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction. Sci. Rep. 2017, 7, 40527. [Google Scholar] [CrossRef] [PubMed]
- Westerberg, I.K.; Di Baldassarre, G.; Beven, K.J.; Coxon, G.; Krueger, T. Perceptual models of uncertainty for socio-hydrological systems: A flood risk change example. Hydrol. Sci. J. 2017. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Yan, K.; Brandimarte, L.; Blöschl, G. Debates-Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res. 2015, 51, 4770–4781. [Google Scholar] [CrossRef]
- Gober, P.; Wheater, H.S. Debates-Perspectives on socio-hydrology: Modeling flood risk as a public policy problem. Water Resour. Res. 2015, 51, 4782–4788. [Google Scholar] [CrossRef]
- Loucks, D.P. Debates-Perspectives on socio-hydrology: Simulating hydrologic-human interactions. Water Resour. Res. 2015, 51, 4789–4794. [Google Scholar] [CrossRef]
- Montanari, A. Debates-Perspectives on socio-hydrology: Introduction. Water Resour. Res. 2015, 51, 4768–4769. [Google Scholar] [CrossRef]
- Sanderson, M.R.; Bergtold, J.S.; Heier Stamm, J.L.; Caldas, M.M.; Ramsey, S.M. Bringing the “social” into socio-hydrology: Conservation policy support in the Central Great Plains of Kansas, USA. Water Resour. Res. 2017, 53, 6725–6743. [Google Scholar] [CrossRef]
- Sivapalan, M. Debates-Perspectives on socio-hydrology: Changing water systems and the “tyranny of small problems”-Socio-hydrology. Water Resour. Res. 2015, 51, 4795–4805. [Google Scholar] [CrossRef]
- Troy, T.J.; Pavao-Zuckerman, M.; Evans, T.P. Debates-Perspectives on socio-hydrology: Socio-hydrologic modeling: Tradeoffs, hypothesis testing, and validation. Water Resour. Res. 2015, 51, 4806–4814. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Kooy, M.; Kemerink, J.S.; Brandimarte, L. Towards understanding the dynamic behaviour of floodplains as human-water systems. Hydrol. Earth Syst. Sci. 2013, 17, 3235–3244. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.L.; Blöschl, G. Socio-hydrology: Conceptualising human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295–3303. [Google Scholar] [CrossRef]
- Ciullo, A.; Viglione, A.; Castellarin, A.; Crisci, M.; Di Baldassarre, G. Socio-hydrological modelling of flood-risk dynamics: Comparing the resilience of green and technological systems. Hydrol. Sci. J. 2016, 62, 880–891. [Google Scholar] [CrossRef]
- Ashmore, P. Towards a sociogeomorphology of rivers. Geomorphology 2015, 251, 149–156. [Google Scholar] [CrossRef]
- Keiler, M. Geomorphology and Complexity–inseparably connected? Z. Geomorphol. Suppl. Issues 2011, 55, 233–257. [Google Scholar] [CrossRef]
- Temme, A.J.A.M.; Keiler, M.; Karssenberg, D.; Lang, A. Complexity and non-linearity in earth surface processes—Concepts, methods and applications. Earth Surf. Process. Landf. 2015, 40, 1270–1274. [Google Scholar] [CrossRef]
- Slater, L.J.; Singer, M.B.; Kirchner, J.W. Hydrologic versus geomorphic drivers of trends in flood hazard. Geophys. Res. Lett. 2015, 42, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Sanderson, M.; Garcia, M.; Konar, M.; Blöschl, G.; Sivapalan, M. Prediction in a socio-hydrological world. Hydrol. Sci. J. 2016, 62, 338–345. [Google Scholar] [CrossRef]
- Lane, S.N. Acting, predicting and intervening in a socio-hydrological world. Hydrol. Earth Syst. Sci. 2014, 18, 927–952. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier, H.R.; Rizzoli, A.E.; et al. Selecting among five common modelling approaches for integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [Google Scholar] [CrossRef]
- Neuwirth, C.; Peck, A.; Simonović, S.P. Modeling structural change in spatial system dynamics: A Daisyworld example. Environ. Model. Softw. 2015, 65, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Forrester, J.W. Urban Dynamics; Massachusetts Institute of Technology Press: Boston, MA, USA, 1969. [Google Scholar]
- Luhmann, N. Soziale Systeme; Suhrkamp: Frankfurt, Germany, 1987. [Google Scholar]
- Rougé, C.; Mathias, J.-D.; Deffuant, G. Vulnerability: From the conceptual to the operational using a dynamical system perspective. Environ. Model. Softw. 2015, 73, 218–230. [Google Scholar] [CrossRef]
- Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G. Modelling the interaction between flooding events and economic growth. Proc. IAHS 2015, 369, 3–6. [Google Scholar] [CrossRef]
- Roos, M.M.D.; Hartmann, T.T.; Spit, T.T.J.M.; Johann, G.G. Constructing risks—Internalisation of flood risks in the flood risk management plan. Environ. Sci. Policy 2017, 74, 23–29. [Google Scholar] [CrossRef]
- Wingo, P.; Brookes, A.; Bolte, J. Modular and spatially explicit: A novel approach to system dynamics. Environ. Model. Softw. 2017, 94, 48–62. [Google Scholar] [CrossRef]
- Neuwirth, C. System dynamics simulations for data-intensive applications. Environ. Model. Softw. 2017, 96, 140–145. [Google Scholar] [CrossRef]
- Neuwirth, C.; Hofer, B.; Peck, A. Spatiotemporal processes and their implementation in Spatial System Dynamics models. J. Spat. Sci. 2015, 60, 277–288. [Google Scholar] [CrossRef]
- ElSawah, S.; Pierce, S.A.; Hamilton, S.H.; van Delden, H.; Haase, D.; Elmahdi, A.; Jakeman, A.J. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ. Model. Softw. 2017, 93, 127–145. [Google Scholar] [CrossRef]
- Simonovic, S.P. Systems Approach to Management of Disasters; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Heppenstall, A.; Malleson, N.; Crooks, A. “Space, the Final Frontier”: How Good are Agent-Based Models at Simulating Individuals and Space in Cities? Systems 2016, 4, 9. [Google Scholar] [CrossRef]
- Malanson, G.P.; Walsh, S.J. Agent-based models: Individuals interacting in space. Appl. Geogr. 2015, 56, 95–98. [Google Scholar] [CrossRef]
- Dawson, R.J.; Peppe, R.; Wang, M. An agent-based model for risk-based flood incident management. Nat. Hazards 2011, 59, 167–189. [Google Scholar] [CrossRef]
- Lumbroso, D.; Davison, M. Use of an agent based model and Monte Carlo analysis to estimate the effectiveness of emergency management interventions to reduce loss of life during extreme floods. J. Flood Risk Manag. 2016, 11, S419–S433. [Google Scholar] [CrossRef]
- Dressler, G.; Müller, B.; Frank, K.; Kuhlicke, C. Towards thresholds of disaster management performance under demographic change: Exploring functional relationships using agent-based modeling. Nat. Hazards Earth Syst. Sci. 2016, 16, 2287–2301. [Google Scholar] [CrossRef]
- Jenkins, K.; Surminski, S.; Hall, J.; Crick, F. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. Sci. Total Environ. 2017, 595, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Laniak, G.F.; Olchin, G.; Goodall, J.; Voinov, A.; Hill, M.; Glynn, P.; Whelan, G.; Geller, G.; Quinn, N.; Blind, M.; et al. Integrated environmental modeling: A vision and roadmap for the future. Environ. Model. Softw. 2013, 39, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Welsh, W.D.; Vaze, J.; Dutta, D.; Rassam, D.; Rahman, J.M.; Jolly, I.D.; Wallbrink, P.; Podger, G.M.; Bethune, M.; Hardy, M.J.; et al. An integrated modelling framework for regulated river systems. Environ. Model. Softw. 2013, 39, 81–102. [Google Scholar] [CrossRef]
- Martin, R.; Schlüter, M. Combining system dynamics and agent-based modeling to analyze social-ecological interactions—An example from modeling restoration of a shallow lake. Front. Environ. Sci. 2015, 3, 1166. [Google Scholar] [CrossRef]
- Malard, J.J.; Inam, A.; Hassanzadeh, E.; Adamowski, J.; Tuy, H.A.; Melgar-Quiñonez, H. Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models. Environ. Model. Softw. 2017, 96, 410–420. [Google Scholar] [CrossRef]
- Zischg, A.; Fuchs, S.; Keiler, M.; Meißl, G. Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads. Nat. Hazards Earth Syst. Sci. 2005, 5, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Falter, D.; Schröter, K.; Dung, N.V.; Vorogushyn, S.; Kreibich, H.; Hundecha, Y.; Apel, H.; Merz, B. Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. J. Hydrol. 2015, 524, 182–193. [Google Scholar] [CrossRef]
- Zischg, A.P.; Felder, G.; Weingartner, R.; Quinn, N.; Coxon, G.; Neal, J.; Freer, J.; Bates, P. Effects of variability in probable maximum precipitation patterns on flood losses. Hydrol. Earth Syst. Sci. Discuss. 2018. in review. [Google Scholar] [CrossRef]
- Saint-Geours, N.; Bailly, J.-S.; Grelot, F.; Lavergne, C. Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies. Environ. Model. Softw. 2014, 60, 153–166. [Google Scholar] [CrossRef]
- Thaler, T.; Zischg, A.; Keiler, M.; Fuchs, S. Allocation of risk and benefits—Distributional justices in mountain hazard management. Reg. Environ. Chang. 2018, 18, 353–365. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zischg, A.P. Floodplains and Complex Adaptive Systems—Perspectives on Connecting the Dots in Flood Risk Assessment with Coupled Component Models. Systems 2018, 6, 9. https://doi.org/10.3390/systems6020009
Zischg AP. Floodplains and Complex Adaptive Systems—Perspectives on Connecting the Dots in Flood Risk Assessment with Coupled Component Models. Systems. 2018; 6(2):9. https://doi.org/10.3390/systems6020009
Chicago/Turabian StyleZischg, Andreas Paul. 2018. "Floodplains and Complex Adaptive Systems—Perspectives on Connecting the Dots in Flood Risk Assessment with Coupled Component Models" Systems 6, no. 2: 9. https://doi.org/10.3390/systems6020009
APA StyleZischg, A. P. (2018). Floodplains and Complex Adaptive Systems—Perspectives on Connecting the Dots in Flood Risk Assessment with Coupled Component Models. Systems, 6(2), 9. https://doi.org/10.3390/systems6020009