An Approach for a Wide Dynamic Range Low-Noise Current Readout Circuit
Abstract
:1. Introduction
2. Low-Noise Current Readout Architecture
2.1. Current Amplification
2.2. Programmable Gain Current Amplifier Stage
2.3. Low-Frequency Gain Setting
2.4. High-Frequency Gain Setting
2.5. System Architecture
2.6. Programmable Reference Current Stage
2.7. Amplifier
2.8. Comparator
2.9. Layout
3. Simulation Result
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosenstein, J.K.; Wanunu, M.; Merchant, C.A.; Drndic, M.; Shepard, K.L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 2012, 9, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Balan, A.; Machielse, B.; Niedzwiecki, D.; Lin, J.; Ong, P.; Engelke, R.; Shepard, K.L.; Drndić, M. Improving Signal-to-Noise Performance for DNA Translocation in Solid-State Nanopores at MHz Bandwidths. Nano Lett. 2014, 14, 7215–7220. [Google Scholar] [CrossRef] [PubMed]
- Crescentini, M.; Bennati, M.; Carminati, M.; Tartagni, M. Noise Limits of CMOS Current Interfaces for Biosensors: A Review. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 278–292. [Google Scholar] [CrossRef]
- Dai, S.; Perera, R.T.; Yang, Z.; Rosensteing, J.K. A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 935–944. [Google Scholar] [CrossRef]
- Ferrari, G.; Gozzini, F.; Molari, A.; Sampietro, M. Transimpedance amplifier for high sensitivity current measurements on nanodevice. IEEE J. Solid State Circuits 2009, 44, 1609–1616. [Google Scholar] [CrossRef]
- Ibrahim, M.M.R.; Levine, P.M. CMOS transimpedance amplifier for biosensor signal acquisition. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014. [Google Scholar]
- Hwang, S.; Trakimas, M.; Sonkusale, S. A Low-Power Asynchronous ECG Acquisition System in CMOS Technology. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Hwang, S.; Aninakwa, K.; Sonkusale, S. Bandwidth Tunable Amplifier for Recording Biopotential Signals. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Ibrahim, M.M.R.; Levine, P.M. A 170-dB CMOS TIA with 52-pA input-referred noise and 1-MHz bandwidth for very low current. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 1756–1766. [Google Scholar]
- Kim, D.; Goldstein, B.; Tang, W.; Sigworth, F.J.; Culurciello, E. Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 2012, 99, 52–62. [Google Scholar]
- Hwang, S.; Sonkusale, S. CMOS VLSI Potentiostat for Portable Environmental Sensing Applications. IEEE Sens. J. 2010, 10, 820–821. [Google Scholar] [CrossRef]
- Mazhab Jafari, H.; Genov, R. Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans. Circuits Syst. Regul. Pap. 2013, 60, 1149–1157. [Google Scholar] [CrossRef]
- Ferrari, G.; Farina, M.; Guagliardo, F.; Carminati, M.; Sampietro, M. Ultra-low-noise CMOS current preamplifier from DC to 1 MHz. Electron. Lett. 2009, 45, 1278–1280. [Google Scholar] [CrossRef]
- Ferreira, L.H.C.; Sonkusale, S. A 0.25-V 28-nW 58-dB Dynamic Range Asynchronous Delta Sigma Modulator in 130-nm Digital CMOS Process. IEEE Trans. Very Large Scale Integr. Syst. 2015, 23, 926–934. [Google Scholar] [CrossRef]
- Linares-Barranco, B.; Serrano-Gotarredona, T. On the design and characterization of femtoampere current-mode circuits. IEEE J. Solid State Circuits 2003, 38, 1353–1363. [Google Scholar] [CrossRef]
- Allen, P.; Holberg, D. CMOS Analog Circuit Design, 2nd ed.; Oxford University Press: Oxford, UK, 2002; pp. 471–475. [Google Scholar]
- Amayreh, M.; Manoli, Y.; Keller, M. A 1.85 f Arms/sq(Hz) fully integrated read-out interface for sub-pA current sensing applications. In Proceedings of the ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 11–14 September 2017. [Google Scholar]
- Hsu, C.L.; Hall, D.A. A Current-Measurement Front-End with 160 dB Dynamic Range and 7 ppm INL. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018. [Google Scholar]
- Bennati, M.; Thei, F.; Rossi, M.; Crescentini, M.; D’Avino, G.; Baschirotto, A.; Tartagni, M. A Sub-pA ΔΣ Current Amplifier for Single Molecule Nanosensors. In Proceedings of the 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009. [Google Scholar]
Total Gain | First Stage Gain | Second Stage Gain |
---|---|---|
1000× | 50× | 20× |
100× | 50× | 2× |
10× | 10× | 1× |
1× | 1× | 1× |
Parameter | Value |
---|---|
Gain 1000× | Gain 100× | Gain 10× | Gain 1× | |
---|---|---|---|---|
100 Hz | 8 fA | 8 fA | 9 fA | 26 fA |
10 KHz | 0.13 pA | 0.13 pA | 0.25 pA | 2.53 pA |
1 MHz | 0.051 nA | 0.054 nA | 0.118 nA | 1.113 nA |
[4] | [5] | [17] | [18] | [19] | This Work * | |
---|---|---|---|---|---|---|
Technology (m) | 0.18 | 0.35 | 0.35/0.5 | 0.18 | 0.18 | 0.18 |
Power supply (V) | 1.8 | 3 | 3 | 1.8 | 3.3 | 1.8 |
3 dB Signal bandwidth (MHz) | 1.4 | 4 | 0.1 | 1.25 | 0.0039 | 0.85 |
Dynamic range (dB) | 155.1 | 95.9 | 80 | 160 | 74 | 140 |
Area (mm) | 0.091 | 0.34 | 0.6 | 0.2 | 0.5 | 1.015 |
Power consumption (mW) | 9.4 | 13.5 | 7 | 0.3 | 23 | 10.3 |
Speed improvement factor | 1× | 1× | 1×1 | 1× | 1× | 1000× |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Sonkusale, S. An Approach for a Wide Dynamic Range Low-Noise Current Readout Circuit. J. Low Power Electron. Appl. 2020, 10, 23. https://doi.org/10.3390/jlpea10030023
Wang W, Sonkusale S. An Approach for a Wide Dynamic Range Low-Noise Current Readout Circuit. Journal of Low Power Electronics and Applications. 2020; 10(3):23. https://doi.org/10.3390/jlpea10030023
Chicago/Turabian StyleWang, Wei, and Sameer Sonkusale. 2020. "An Approach for a Wide Dynamic Range Low-Noise Current Readout Circuit" Journal of Low Power Electronics and Applications 10, no. 3: 23. https://doi.org/10.3390/jlpea10030023
APA StyleWang, W., & Sonkusale, S. (2020). An Approach for a Wide Dynamic Range Low-Noise Current Readout Circuit. Journal of Low Power Electronics and Applications, 10(3), 23. https://doi.org/10.3390/jlpea10030023