Waxberry-Like Nanosphere Li4Mn5O12 as High Performance Electrode Materials for Supercapacitors
Abstract
:1. Introduction
2. Material and Methods
2.1. Synthesis of Sphere MnCO3
2.1.1. Synthesis of Waxberry-Like Nanosphere Mn2O3
2.1.2. Synthesis of α-MnO2
2.1.3. Synthesis of Waxberry-Like Nanosphere and Raspberry-Like Nanosphere Li4Mn5O12
2.2. Assembly of the Working Electrode
2.3. Characterization and Measurement
3. Result and Discussion
3.1. Material Characterization
3.2. Electrochemical Test
3.3. Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zainol, N.H.; Osman, Z.; Kamarulzaman, N.; Rusdi, R. Investigation on the electrochemical performances of Li4Mn5O12 for battery applications. Ionics 2016, 23, 303–307. [Google Scholar] [CrossRef]
- Qu, Q.; Fu, L.; Zhan, X.; Samuelis, D.; Maier, J.; Li, L.; Tian, S.; Li, Z.; Wu, Y. Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ. Sci. 2011, 4, 3985–3990. [Google Scholar] [CrossRef]
- Zhang, C.; Xi, Y.; Wang, C.; Hu, C.; Liu, Z.; Javed, M.S.; Wang, M.; Lai, M.; Yang, Q.; Zhang, D. High-performance flexible supercapacitors based on C/Na2Ti5O11 nanocomposite electrode materials. J. Mater. Sci. 2017, 52, 13897–13908. [Google Scholar] [CrossRef]
- Wang, C.; Xi, Y.; Wang, M.; Zhang, C.; Wang, X.; Yang, Q.; Li, W.; Hu, C.; Zhang, D. Carbon-modified Na2Ti3O7 center dot 2H(2)O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 2016, 28, 115–123. [Google Scholar] [CrossRef]
- Mishra, R.K.; Manivannan, S.; Kim, K.; Kwon, H.I.; Jin, S.H. Petal-like MoS 2 nanostructures with metallic 1 T phase for high performance supercapacitors. Curr. Appl. Phys. 2018, 18, 345–352. [Google Scholar] [CrossRef]
- Wu, C.; Cai, J.; Zhu, Y.; Zhang, K. Hybrid Reduced Graphene Oxide Nanosheet Supported Mn-Ni-Co Ternary Oxides for Aqueous Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 19114–19123. [Google Scholar] [CrossRef] [PubMed]
- Sim, C.M.; Choi, S.H.; Kang, Y.C. Superior electrochemical properties of LiMn2O4 yolk-shell powders prepared by a simple spray pyrolysis process. Chem. Commun. (Camb.) 2013, 49, 5978–5980. [Google Scholar] [CrossRef] [PubMed]
- Dolphijn, G.; Isikli, S.; Gauthy, F.; Vlad, A.; Gohy, J.F. Hybrid LiMn2O4–radical polymer cathodes for pulse power delivery applications. Electrochim. Acta 2017, 255, 442–448. [Google Scholar] [CrossRef]
- Azari, S.R.; Rahmanifar, M.S.; El-Kady, M.F.; Noori, A.; Mousavi, M.F.; Kaner, R.B. A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite. J. Iran. Chem. Soc. 2017, 14, 2579–2590. [Google Scholar] [CrossRef]
- Mao, Y.; Xiao, S.; Liu, J. Nanoparticle-assembled LiMn2O4 hollow microspheres as high-performance lithium-ion battery cathode. Mater. Res. Bull. 2017, 96, 437–442. [Google Scholar] [CrossRef]
- Kun, R.; Schlee, P.; Pal, E.; Busse, M.; Gesing, T. Role of the precursor chemistry on the phase composition and electrochemical performance of thin-film LiMn2O4 Li-ion battery cathodes prepared by spray pyrolysis. J. Alloys Compd. 2017, 726, 664–674. [Google Scholar] [CrossRef]
- Kim, S.; Aykol, M.; Hegde, V.I.; Lu, Z.; Kirklin, S.; Croy, J.R.; Thackeray, M.M.; Wolverton, C. Material design of high-capacity Li-rich layered-oxide electrodes: Li2MnO3 and beyond. Energy Environ. Sci. 2017, 10, 2201–2211. [Google Scholar] [CrossRef]
- Yao, X.; Hu, Y.; Su, Z. Effects of acid treatment on electrochemical properties of Li2MnO3·LiNi 0.5Co 0.45Fe 0.05O2 cathode materials. Chem. Pap. 2017, 71, 2465–2471. [Google Scholar] [CrossRef]
- Freire, M.; Lebedev, O.I.; Maignan, A.; Jordy, C.; Pralong, V. Nanostructured Li2MnO3: A disordered rock salt type structure for high energy density Li ion batteries. J. Mater. Chem. A 2017, 5, 21898–21902. [Google Scholar] [CrossRef]
- Kaewmala, S.; Chantrasuwan, P.; Wiriya, N.; Srilomsak, S.; Limphirat, W.; Limthongkul, P.; Meethong, N. Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3 0.5LiCoO2 cathode material. Sci. Rep. 2017, 7, 13196. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.M.; Huynh, L.T.N.; Ha, C.T.D.; Nguyen, T.M.V.; Le, M.L.P. Electrochemical properties of non-stoichiometric nanocrystalline Li4Mn5O12 for hybrid capacitors. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 015012. [Google Scholar]
- Zhou, L.; Zhou, X.; Huang, X.; Liu, Z.; Zhao, D.; Yao, X.; Yu, C. Designed synthesis of LiMn2O4 microspheres with adjustable hollow structures for lithium-ion battery applications. J. Mater. Chem. A 2013, 1, 837–842. [Google Scholar] [CrossRef]
- Xie, A.; Tao, F.; Jiang, C.; Sun, W.; Li, Y.; Hu, L.; Du, X.; Luo, S.; Yao, C. A coralliform-structured γ-MnO 2 /polyaniline nanocomposite for high-performance supercapacitors. J. Electroanal. Chem. 2017, 789, 29–37. [Google Scholar] [CrossRef]
- Javed, M.S.; Dai, S.; Wang, M.; Guo, D.; Chen, L.; Wang, X.; Hu, C.; Xi, Y. High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J. Power Sources 2015, 285, 63–69. [Google Scholar] [CrossRef]
- Dai, S.; Xi, Y.; Hu, C.; Liu, J.; Zhang, K.; Yue, X.; Cheng, L. KCu7S4 nanowires and the Mn/KCu7S4 nanostructure for solid-state supercapacitors. J. Mater. Chem. A 2013, 1, 15530. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, D.; Jiao, X.; Duan, Y. Facile preparation and electrochemical properties of cubic-phase Li4Mn5O12 nanowires. Chem. Commun. 2007, 2072–2074. [Google Scholar] [CrossRef]
- Zhao, Y.; Lai, Q.; Zeng, H.; Hao, Y.; Lin, Z. Li4Mn5O12 prepared using l-lysine as additive and its electrochemical performance. Ionics 2013, 19, 1483–1487. [Google Scholar] [CrossRef]
- Singh, I.B.; Singh, A. A facile low-temperature synthesis of Li4Mn5O12 nanorods. Colloid Polym. Sci. 2017, 295, 689–693. [Google Scholar] [CrossRef]
- Chu, H.Y.; Lai, Q.Y.; Hao, Y.J.; Zhao, Y.; Xu, X.Y. Study of electrochemical properties and the charge/discharge mechanism for Li4Mn5O12/MnO2-AC hybrid supercapacitor. J. Appl. Electrochem. 2009, 39, 2007–2013. [Google Scholar] [CrossRef]
- Kim, H.U.; Sun, Y.K.; Lee, B.S.; Jin, C.S.; Shin, K.H. Synthesis of Defective-Structure Li4Mn5O12 by Combustion Method and Its Application to Hybrid Capacitor. J. Korean Electrochem. Soc. 2010, 13, 103–109. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, G.J.; Shen, Z.R.; Sun, P.C.; Ding, D.T.; Chen, T.H. Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3. Solid State Sci. 2009, 11, 118–128. [Google Scholar] [CrossRef]
- Hao, Y.J.; Lai, Q.Y.; Xu, X.Y.; Wang, L. Electrochemical performance of symmetric supercapacitor based on Li4Mn5O12 electrode in Li2SO4 electrolyte. Mater. Chem. Phys. 2011, 126, 432–436. [Google Scholar] [CrossRef]
- Dai, S.; Guo, H.; Wang, M.; Liu, J.; Wang, G.; Hu, C.; Xi, Y. A Flexible micro-supercapacitor based on a pen ink-carbon fiber thread. J. Mater. Chem. A 2014, 2, 19665–19669. [Google Scholar] [CrossRef]
- Allagui, A.; Freeborn, T.J.; Elwakil, A.S.; Maundy, B.J. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry. Sci. Rep. 2016, 6, 38568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Guo, C.; Li, T.; Ren, X.; Mao, Y.; Wei, Y.; Hou, L. Doping Ni: An effective strategy enhancing electrochemical performance of MnCO3 electrode materials for supercapacitors. J. Mater. Sci. 2016, 52, 1477–1485. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, H.; Hu, Y.; Zhang, L.; Li, C. Hierarchical porous Li4Mn5O12 nano/micro structure as superior cathode materials for Li-ion batteries. J. Power Sources 2014, 261, 306–310. [Google Scholar] [CrossRef]
- Hao, Y.J.; Wang, Y.Y.; Lai, Q.Y.; Zhao, Y.; Chen, L.M.; Ji, X.Y. Study of capacitive properties for LT-Li4Mn5O12 in hybrid supercapacitor. J. Solid State Electrochem. 2008, 13, 905–912. [Google Scholar] [CrossRef]
- Wang, F.X.; Xiao, S.Y.; Zhu, Y.S.; Chang, Z.; Hu, C.L.; Wu, Y.P.; Holze, R. Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. J. Power Sources 2014, 246, 19–23. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Ma, J.; Liu, C.; Ma, Y. Detailed XPS analysis and anomalous variation of chemical state for Mn- and V-doped TiO2 coated on magnetic particles. Ceram. Int. 2017, 43, 16763–16772. [Google Scholar] [CrossRef]
Materials | Capacitance | Scan Rate | Current | Cyclic Stability | Power Density | Energy Density | Reference |
---|---|---|---|---|---|---|---|
Nano crystalline Li4Mn5O12 | 33 F g−1 | 2 mV s−1 | ---- | 45.5% after 100 cycles | 22.5 w Kg−1 | 100 Wh kg−1 | [16] |
Li4Mn5O12@MnO2 | 51.3 F g−1 | ---- | 0.1 A g−1 | 61.1% after 600 cycles | 43.3 W kg−1 | 65 Wh Kg−1 | [24] |
Waxberry-like nano porous spinel Li4Mn5O12 | 147.25 F g−1/535 mF cm−2 | 2 mV s−1/0.25 mA cm−2 | ---- | 70% after 5000 cycles | 70 W kg−1 | 110.7 Wh kg−1 | This work |
Cubic spinel Li4Mn5O12 | 149.5 F g−1 | ---- | 0.2 A g−1 | 98.2% after 900 cycles | 146.2 W kg−1 | 140 Wh Kg−1 | [27] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, P.; Xi, Y.; Zhang, C.; Wang, C.; Hu, C.; Guan, Y.; Zhang, D. Waxberry-Like Nanosphere Li4Mn5O12 as High Performance Electrode Materials for Supercapacitors. J. Low Power Electron. Appl. 2018, 8, 32. https://doi.org/10.3390/jlpea8030032
Ji P, Xi Y, Zhang C, Wang C, Hu C, Guan Y, Zhang D. Waxberry-Like Nanosphere Li4Mn5O12 as High Performance Electrode Materials for Supercapacitors. Journal of Low Power Electronics and Applications. 2018; 8(3):32. https://doi.org/10.3390/jlpea8030032
Chicago/Turabian StyleJi, Peiyuan, Yi Xi, Chengshuang Zhang, Chuanshen Wang, Chenguo Hu, Yuzhu Guan, and Dazhi Zhang. 2018. "Waxberry-Like Nanosphere Li4Mn5O12 as High Performance Electrode Materials for Supercapacitors" Journal of Low Power Electronics and Applications 8, no. 3: 32. https://doi.org/10.3390/jlpea8030032
APA StyleJi, P., Xi, Y., Zhang, C., Wang, C., Hu, C., Guan, Y., & Zhang, D. (2018). Waxberry-Like Nanosphere Li4Mn5O12 as High Performance Electrode Materials for Supercapacitors. Journal of Low Power Electronics and Applications, 8(3), 32. https://doi.org/10.3390/jlpea8030032