Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crude Oil Characterization
2.2. N-Heptane Dilution Test
2.3. Compatibility Indices
2.3.1. Crude oil Solvent Power and Critical Solvent Power
2.3.2. Compatibility Indices Based on Petroleum SARA Analysis Data
2.3.3. Oil Compatibility Model
3. Results
3.1. Relations between Compatibility Indices and Crude Oil Properties
3.2. Relation between Compatibility Indices and Crude Desalting Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Aro | Aromatics |
Asp | Asphaltenes |
CCR | Conradson carbon content, wt.% |
CCRvr | Conradson carbon content of the vacuum residue in crude oil (cut boiling above 540 °C), wt.% |
CII | Colloidal instability index |
C5Asp | C5 asphaltene content in the crude oil, wt.% |
C7Asp | C7 asphaltene content in the crude oil, wt.% |
CO | Crude oil |
COsalt | Crude oil salt content, mg/L |
D | Crude oil density at 15 °C, kg/L |
d | Crude oil density at 20 °C, kg/L |
DE | Crude oil desalting efficiency, % |
desalted COsalt | Content of salts in desalted crude oil, mg/L |
FBP | Final boiling point, °C |
HD | n-heptane Dilution |
HTSD | High temperature simulation distillation |
IBP | Initial Boiling point, °C |
ICrA | Intercriteria analysis |
IN | Insolubility number |
Kw | Watson characterization factor |
Kco | Characterization factor of the crude oil |
Kt | Characterization factor of the toluene |
Khp | Characterization factor of the n-heptane |
LNB | Lukoil Neftohim Burgas |
Res | Resins |
S | Crude oil Sulphur content, wt.% |
SARA | Saturates, aromatics, resins, asphaltenes |
Sat | Saturates |
SBN | Solubility number of crude oil |
SBNi | Solubility number of i crude oil in the blend |
SBNmix | Solubility number of the petroleum blend |
SBN/IN | Solubility blending number/insolubility number ratio |
Sp | Solvent power of the crude oil |
Sp critical | Critical solvent power of the crude oil |
Sp blend | Solvent power of petroleum blend |
Spi | Solvent power of i crude oil; |
TBP | True boiling point |
T10 | Boiling point of 10% of evaporate according to the HTSD or physical distillation, °C |
T30 | Boiling point of 30% of evaporate according to the HTSD or physical distillation, °C |
T50 | Boiling point of 50% of evaporate according to the HTSD or physical distillation, °C |
T70 | Boiling point of 70% of evaporate according to the HTSD or physical distillation, °C |
T90 | Boiling point of 90% of evaporate according to the HTSD or physical distillation, °C |
TAN | total acid number, mg KON/g |
Vh | Volume of n-heptane, mL |
Vi | Volume of i crude oil in the blend, mL |
Vis | Crude oil viscosity at 40 °C, mm2/s |
Voil | Volume of crude oil, mL |
VR | Vacuum residue |
Xi | Weight fraction of i crude oil in the petroleum blend |
μ | Consonance |
δco | Solubility parameter of crude oil, MPa0.5 |
δT | Solubility parameter of toluene, MPa0.5 |
δH | Solubility parameter of toluene, MPa0.5 |
References
- Ooms, A.C.; van den Berg, F.; Kapusta, S.D.; Nouwens, L.W. Processing Opportunity Crudes: A New Strategy for Crude Selection; ERTC: Madrid, Spain, 2001. [Google Scholar]
- van den Berg, F.G.A.; Kapusta, S.D.; Ooms, A.C.; Smith, A.J. Fouling and compatibility of crudes as basis for a new crude selection strategy. Pet. Sci. Technol. 2003, 21, 557–568. [Google Scholar] [CrossRef]
- Qing, W. Processing High TAN Crude: Part I. PTQ 2010, Q4. Available online: https://www.digitalrefining.com/article/1000524/processing-high-tan-crude-part-i#.YPUneugzaUk (accessed on 18 July 2021).
- Santos, J.M.; Wisniewski, A., Jr.; Eberlin, M.N.; Schrader, W. Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil. Energies 2018, 11, 2766. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Corredores, M. The Science and Technology of Unconventional Oils; Elsevier Inc.: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Goldhammer, B.; Weber, C.; Christensen, P.; Yeung, S.; Garrett, T.; Yeung, T. Future of Opportunity Crudes Processing PTQ 2011, Q4. Available online: https://www.digitalrefining.com/article/1000384/future-of-opportunity-crudes-processing#.YPZpBo0zaUm (accessed on 18 July 2021).
- Yeung, T.W. Evaluating Opportunity Crude Processing. PTQ 2006, Q4, 93. Available online: https://www.digitalrefining.com/article/1000644/evaluating-opportunity-crude-processing#.YPZo7o0zaUk (accessed on 18 July 2021).
- Kumar, R.; Voolapalli, R.K.; Upadhyayula, S. Prediction of crude oil blends compatibility and blend optimization for increasing heavy oil processing. Fuel Process. Technol. 2018, 177, 309–327. [Google Scholar] [CrossRef]
- Saad, M.A.; Kamil, M.; Abdurahman, N.H.; Yunus, R.M.; Awad, O.I. An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions. Processes 2019, 7, 470. [Google Scholar] [CrossRef] [Green Version]
- Wiehe, I.A.; Kennedy, R.J. The Oil Compatibility Model and Crude Oil Incompatibility. Energy Fuels 2000, 14, 56–59. [Google Scholar] [CrossRef]
- Wiehe, I.A. Self-incompatible crude oils and converted petroleum resids. J. Disper. Sci. Technol. 2004, 3, 333–339. [Google Scholar] [CrossRef]
- Wiehe, I.A. Asphaltene Solubility and Fluid Compatibility. Energy Fuels 2012, 26, 4004–4016. [Google Scholar] [CrossRef]
- Speight, J.G. Fouling in Refineries; Elsevier: Waltham, MA, USA, 2015. [Google Scholar]
- Liu, G.; Xu, X.; Gao, J. Study on the Compatibility of Asphaltic Crude Oil with the Electric Desalting Demulsifiers. Energy Fuels 2003, 17, 543–548. [Google Scholar] [CrossRef]
- Rogel, E.; Hench, K.; Miao, T.; Lee, E.; Dickakian, G. Evaluation of the Compatibility of Crude Oil Blends and Its Impact on Fouling Propensity. Energy Fuels 2018, 32, 9233–9242. [Google Scholar] [CrossRef]
- Coletti, F.; Frederick, H.G. Crude Oil Fouling: Deposit Characterization, Measurements, and Modelling; Gulf Professional Publishing: Huston, TX, USA; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Nedelchev, A.; Kirilov, K.; Nikolaychuk, E.; Ivanov, A.; Sharafutdinov, I.; Veli, A.; Mitkova, M.; Tsaneva, T.; et al. Investigation of Relationships between Petroleum Properties and Their Impact on Crude Oil Compatibility. Energy Fuels 2015, 29, 7836–7854. [Google Scholar] [CrossRef]
- Asomaning, S.; Watkinson, A.P. Petroleum stability and heteroatom species effects in fouling of heat exchangers by asphaltenes. Heat Transf. Eng. 2000, 21, 10–16. [Google Scholar]
- Evdokimov, I.N. The importance of asphaltene content in petroleum iii—New criteria for prediction of incompatibility in crude oil blends. Pet. Sci. Technol. 2010, 28, 1351–1357. [Google Scholar] [CrossRef]
- Hong, E.; Watkinson, P. A study of asphaltene solubility and precipitation. Fuel 2004, 83, 1881–1887. [Google Scholar]
- Saleh, Z.S.; Sheikholeslami, R.; Watkinson, A.P. Blending effects on fouling of four crude oils. In Proceedings of the 6th International Conference on Heat Exchanger Fouling and Cleaning—Challenges and Opportunities, Kloster Irsee, Germany, 5–10 June 2005; Müller-Steinhagen, M.H., Malayeri, R., Paul Watkinson, A., Eds.; Engineering Conferences International: New York, NY, USA, 2005. [Google Scholar]
- Hong, E.; Watkinson, P. Precipitation and fouling in heavy oil–diluent blends. Heat Transf. Eng. 2009, 30, 786–793. [Google Scholar]
- Asomaning, S. Test Methods for Determining Asphaltene Stability in Crude Oils. Pet. Sci. Technol. 2003, 21, 581–590. [Google Scholar] [CrossRef]
- ASTM D4740-04(2014). Standard Test Method for Cleanliness and Compatibility of Residual Fuels by Spot Test; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Schermer, W.E.M.; Melein, P.M.J.; van den Berg, F.G.A. Simple Techniques for Evaluation of Crude Oil Compatibility. Pet. Sci. Technol. 2004, 22, 1045–1054. [Google Scholar] [CrossRef]
- Wiehe, I.A.; Kennedy, R.J. Application of the Oil Compatibility Model to Refinery Streams. Energy Fuels 2000, 14, 60–63. [Google Scholar] [CrossRef]
- Wiehe, I.A.; Kennedy, R.J.; Dickakian, G. Fouling of Nearly Incompatible Oils. Energy Fuels 2001, 15, 1057–1058. [Google Scholar] [CrossRef]
- Mahmoud, M.B.; Aboujadeed, A.A. Compatibility Assessment of Crude Oil Blends Using Different Methods. Chem. Eng. Trans. 2017, 57, 1705–1710. [Google Scholar]
- Gabrienko, A.A.; Subramani, V.; Martyanov, O.N.; Kazarian, S.G. Correlation between Asphaltene Stability in n-Heptane and Crude Oil Composition Revealed with In Situ Chemical Imaging. Adsorp. Sci. Technol. 2014, 32, 243–255. [Google Scholar] [CrossRef]
- Rogel, E.; Hench, K.; Hajdu, P.; Ingham, H. Chapter 7: The role of compatibility in determining the blending and processing of crude oils. In Chemistry Solutions to Challenges in the Petroleum Industry; Rahimi, P., Ovalles, C., Zhang, Y., Adams, J.J., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019. [Google Scholar]
- Rogel, E.; Ovalles, C.; Moir, M. Asphaltene Stability in Crude Oils and Petroleum Materials by Solubility Profile Analysis. Energy Fuels 2010, 24, 4369–4374. [Google Scholar] [CrossRef]
- da Silva Ramos, A.C.; Rolemberg, M.P.; de Moura, L.G.M.; Zilio, E.L.; dos Santos, M.F.P.; González, G. Determination of Solubility Parameters of Oils and Prediction of Oil Compatibility. J. Petrol. Sci. Eng. 2013, 102, 36–40. [Google Scholar] [CrossRef]
- Gharbi, K.; Benyounes, K.; Khodja, M. Removal and Prevention of Asphaltene Deposition during Oil Production: A Literature Review. J. Petrol. Sci. Eng. 2017, 158, 351–360. [Google Scholar] [CrossRef]
- Fakher, S.; Ahdaya, M.; Elturki, M.; Imqam, A. Critical Review of Asphaltene Properties and Factors Impacting its Stability in Crude Oil. J. Pet. Explor. Prod. Technol. 2020, 10, 1183–1200. [Google Scholar] [CrossRef] [Green Version]
- Hemmati-Sarapardeh, A.; Ahmadi, M.; Ameli, F.; Dabirb, B.; Mohammad, A.H.; Husein, M.M. Modeling asphaltene precipitation during natural depletion of reservoirs and evaluating screening criteria for stability of crude oils. J. Pet. Sci. Eng. 2019, 181, 106127. [Google Scholar] [CrossRef]
- Guzmán, R.; Ancheyta, J.; Trejo, F.; Rodríguez, S. Methods for determining asphaltene stability in crude oils. Fuel 2017, 188, 530–543. [Google Scholar] [CrossRef]
- Tharanivasan, A.K.; Svrcek, W.Y.; Yarranton, H.W. Measurement and modeling of asphaltene precipitation from crude oil blends. Energy Fuels 2009, 23, 3971–3980. [Google Scholar] [CrossRef]
- Rodríguez, S.; Ancheyta, J.; Guzmán, R.; Trejo, F. Experimental setups for studying the compatibility of crude oil blends under dynamic conditions. Energy Fuels 2016, 30, 8216–8225. [Google Scholar] [CrossRef]
- Moura, L.G.M.; Santos, M.F.P.; Zilio, E.L.; Rolemberg, M.P.; Ramos, A.C.S. Evaluation of indices and of models applied to the prediction of the stability of crude oils. J. Pet. Sci. Eng. 2010, 74, 77–87. [Google Scholar] [CrossRef]
- de la Cruz, J.L.M.; Cedillo-Ramírez, J.C.; Aguirre-Gutiérrez, A.J.; García-Sánches, F.; Aquino-Olivos, M.A. Incompatibility determination of crude oil blends from experimental viscosity and density data. Energy Fuels 2015, 29, 480–487. [Google Scholar] [CrossRef]
- Stankiewicz, A.B.; Flannery, M.D.; Fuex, N.Q.; Broze, G.; Couch, J.L.; Dubey, S.T.; Iyer, S.D. Prediction of asphaltene deposition risk in E&P operations. In Proceedings of the Third International Symposium on Mechanisms and Mitigation of Fouling in Petroleum and Natural Gas Production, AIChE, New Orleans, LA, USA, 10–14 March 2002. [Google Scholar]
- Nemana, S.; Kimbrell, M.R.; Zaluzec, E. Predictive Crude Oil Compatibility Model. U.S. Patent 7,618,822 B2, 28 May 2009. [Google Scholar]
- Wiehe, I.A.; Kennedy, R.J. Process for Blending Potentially Incompatible Petroleum Oils. U.S. Patent 5,871,634, 16 February 1999. [Google Scholar]
- Kumar, R.; Voolapalli, R.K.; Rakshit, P.R.; Bhargava, S.; Upadhyayula, S. Predicting of crude oil blend compatibility and blend optimization for increasing heavy oil processing. U.S. Patent 2019/0234928, 1 August 2019. [Google Scholar]
- Hascakir, B.; Punase, A. Method and System for Stability Determination of Asphaltenes Utilizing Dielectric Constant Measurements. U.S. Patent 10,620,145, 14 April 2018. [Google Scholar]
- Punase, A.; Prakoso, A.A.; Hascakir, B. The polarity of crude oil fractions affects the asphaltenes stability. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 23–26 May 2016. [Google Scholar]
- Punase, A.; Hascakir, B. Stability determination of asphaltenes through dielectric constant measurements of polar oil fractions. Energy Fuels 2016, 31, 65–72. [Google Scholar] [CrossRef]
- Prakoso, A.A.; Punase, A.D.; Hascakir, B. A mechanistic understanding of asphaltenes precipitation from varying-saturate-concentration perspectives. SPE Prod. Oper. 2016, 32, 86–98. [Google Scholar]
- Stratiev, D.; Yankov, V.; Petrov, I.; Shishkova, I.; Pavlova, A.; Ivanova, P.; Surleva, A.; Hristov, K.; Todorova, E.; Obryvalina, A.; et al. Study on the origin of sediment formation in a high pressure near zero sulfur diesel hydrotreater. Fuel Process. Technol. 2014, 126, 332–342. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Nikolova, R.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation on precision of determination of sara analysis of vacuum residual oils from different origin. Pet. Coal 2016, 58, 109–119. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Nikolaychuk, E.; Atanasova, V.; Atanassov, K. Investigation of relations of properties of straight run and h-oil unconverted vacuum residual oils. Pet Coal 2019, 61, 763–776. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Nikolaychuk, E.; Ijlstra, W.; Holmes, B.; Caillot, M. Feed properties effect on the performance of vacuum residue ebullated bed H-Oil hydrocracking. Oil Gas Eur. Mag. 2019, 4, 194–199. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Ivanova, N.; Veli, A.; Nikolova, R.; Mitkova, M.; Stanulov, K.; Argirov, G.; Yordanov, D.; Nikolaychuk, E. Colloidal stability and hot filtration test of residual fuel oils based on visbreaking and ebullated bed residue H-Oil hydrocracking. Int. J. Oil. Gas. Coal Technol. 2019, 20, 169–188. [Google Scholar] [CrossRef]
- Gharagheizi, F.; Fazeli, A. Prediction of the Watson characterization factor of hydrocarbon components from molecular properties. QSAR Comb. Sci. 2008, 227, 758–767. [Google Scholar] [CrossRef]
- Patil, P.D.; Kozminski, M.; Peterson, J.; Kumar, S. Fouling diagnosis of pennsylvania grade crude blended with opportunity crude oils in a refinery crude unit’s hot heat exchanger train. Ind. Eng. Chem. Res. 2019, 58, 17918–17927. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, C.M.; Lin, X.S.; Yang, J.T.; Guo, T.M. Experimental and modeling studies on the asphaltene precipitation in degassed and gas-injected reservoir oils. Fluid Phase Equilibria 1999, 157, 143–153. [Google Scholar] [CrossRef]
- Correra, S.; Merlini, M.; Di Lullo, A.; Merino-Garcia, D. Estimation of the solvent power of crude oil from density and viscosity measurements. Ind. Eng. Chem. Res. 2005, 44, 9307–9315. [Google Scholar] [CrossRef]
- Al-Hosani, A.; Ravichandran, S.; Daraboina, N. Review of asphaltene deposition modeling in oil and gas production. Energy Fuels 2021, 35, 965–986. [Google Scholar] [CrossRef]
- Rogel, E.; Ovalles, C.; Vien, J.; Moir, M. Asphaltene characterization of paraffinic crude oils. Fuel 2016, 178, 71–76. [Google Scholar] [CrossRef]
- Joonaki, E.; Hassanpouryouzband, A.; Burgass, R.; Hase, A.; Tohidi, B. Effects of Waxes and the Related Chemicals on Asphaltene Aggregation and Deposition Phenomena: Experimental and Modeling Studies. ACS Omega 2020, 5, 7124–7134. [Google Scholar] [CrossRef] [PubMed]
- D’Avila, F.G.; Silva, C.M.F.; Steckel, L.; Ramos, A.C.S.; Lucas, E.F. Influence of Asphaltene Aggregation State on the Wax Crystallization Process and the Efficiency of EVA as a Wax Crystal Modifier: A Study Using Model Systems. Energy Fuels 2020, 34, 4095–4105. [Google Scholar] [CrossRef]
- del Carmen García, M.; Carbognani, L. Asphaltene−Paraffin Structural Interactions. Effect on Crude Oil Stability. Energy Fuels 2001, 15, 1021–1027. [Google Scholar] [CrossRef]
- Stratiev, D.; Nenov, S.; Shishkova, I.; Georgiev, B.; Argirov, G.; Dinkov, R.; Yordanov, D.; Atanassova, V.; Vassilev, P.; Atanassov, K. Commercial Investigation of the Ebullated-Bed Vacuum Residue Hydrocracking in the Conversion Range of 55–93%. ACS Omega 2020, 51, 33290. [Google Scholar] [CrossRef]
- Vargas, F.M.; Tavakkoli, M. Asphaltene Deposition: Fundamentals, Prediction, Prevention, and Remediation; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Xiong, R.; Guo, J.; Kiyingi, W.; Feng, H.; Sun, T.; Yang, X.; Li, Q. Method for Judging the Stability of Asphaltenes in Crude Oil. ACS Omega 2020, 5, 21420–21427. [Google Scholar] [CrossRef]
- Sellman, E.; Mandewalkar, P. Highly Efficient Dehydration and Desalting of Crude Oil from Mature Fields in the Middle East. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26 September 2016. [Google Scholar]
- Moretto, J. Bitumen Processing—A Guide to Crude Oil Unit Revamps. In Proceedings of the 109th NPRA Annual Meeting, San Antonio, TX, USA, 21 March 2011. [Google Scholar]
- Vafajoo, L.; Ganjian, K.; Fattahi, M. Influence of key parameters on crude oil desalting: An experimental and theoretical study. J. Pet. Sci. Eng. 2012, 90–91, 107–111. [Google Scholar] [CrossRef]
- Kim, Y.H.; Wasan, D.T. Effect of demulsifier partitioning on the destabilization of water-in-oil emulsions. Ind. Eng. Chem. Res. 1996, 35, 1141–1149. [Google Scholar] [CrossRef]
- Cucciniello, C. Tetra-Plot: A Microsoft Excel spreadsheet to perform tetrahedral diagrams. Period. Mineral. 2016, 85, 115–119. [Google Scholar]
Crude Oil | D, kg/L | S, wt.% | Water, vol.% | Sediment, wt.% | Chlorides, mg/kg | Pour Point, °C | Vis, mm2/s at at 40 °C | Distillation ASTM D 2892, wt.% | Distillation ASTM D 5236, wt.% | Simulated Distillation ASTM D7169, °C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IBP–110 | 110–180 | 180–240 | 240–360 | 360–540 | 540–FBP | IBP | 5% | 10% | 30% | 50% | 70% | 90% | 95% | FBP | ||||||||
Albanian | 1.0014 | 5.64 | −3 | 236 | 2.0 | 4.7 | 4.4 | 14.8 | 25.2 | 48.2 | 83 | 94 | 162 | 312 | 442 | 595 | 683 | 709 | 811 | |||
Arabian Heavy | 0.8916 | 2.967 | 0.1 | 0.01 | 11 | −36 | 23.4 | 6.94 | 8.94 | 8.13 | 19.94 | 24.54 | 30.51 | 75 | 103 | 139 | 257 | 369 | 489 | 650 | 687 | 768 |
Arabian Light | 0.863 | 1.89 | 0.025 | 0.01 | 7.7 | −36 | 5.87 | 9.98 | 11.72 | 9.07 | 21.38 | 23.92 | 22.93 | 73 | 124 | 163 | 292 | 404 | 514 | 651 | 693 | 811 |
Arabian Med | 0.868 | 2.4 | 0.025 | 0.01 | 17 | −36 | 9.44 | 8.88 | 12.03 | 8.65 | 19.99 | 23.8 | 25.65 | 70 | 110 | 150 | 270 | 386 | 505 | 652 | 693 | 818 |
Aseng | 0.8722 | 0.258 | 0.05 | 0.0048 | 4 | 36 | 8.64 | 5.88 | 9.06 | 9.47 | 23.66 | 38.15 | 13.75 | 85 | 119 | 163 | 285 | 376 | 450 | 564 | 621 | 711 |
Azeri Light | 0.8483 | 0.2 | 0.025 | 0.01 | 28 | −12 | 4.82 | 9.09 | 12.22 | 10.42 | 25.93 | 26.58 | 14.76 | 76 | 101 | 132 | 238 | 321 | 423 | 580 | 649 | 730 |
Basrah heavy | 0.9202 | 4.08 | −30.2 | 28.3 | 5.99 | 8.25 | 8.4 | 17.63 | 24.22 | 34.51 | 75 | 111 | 156 | 295 | 418 | 546 | 668 | 695 | 753 | |||
Basrah light | 0.884 | 3.31 | 0.5 | 0.02 | 31 | −36 | 10.9 | 9.03 | 10.44 | 7.68 | 18.51 | 24.19 | 29.15 | 75 | 106 | 143 | 273 | 392 | 516 | 664 | 700 | 806 |
Boscan | 1.0024 | 4.77 | 0.35 | −32.8 | 31.3 | 1.26 | 2.26 | 3.58 | 11.855 | 31.5 | 49.5 | 101 | 227 | 285 | 435 | 558 | 640 | 688 | 707 | 757 | ||
Bozachi | 0.9062 | 1.571 | −21 | 51.9 | 2.37 | 4 | 6.82 | 18.66 | 34.47 | 32.67 | 89 | 177 | 226 | 332 | 431 | 541 | 660 | 697 | 816 | |||
Cheleken | 0.8541 | 0.4 | 6 | 12.3 | 5.53 | 10.04 | 11.25 | 28.41 | 27.22 | 16.55 | 90 | 133 | 169 | 268 | 350 | 440 | 592 | 650 | 750 | |||
CPC | 0.7954 | 0.55 | 0.025 | 0.01 | 29 | −36 | 1.87 | 17.84 | 19.48 | 12.66 | 24.1 | 18.09 | 6.83 | 76 | 94 | 114 | 198 | 273 | 361 | 499 | 568 | 715 |
El Bouri | 0.8763 | 1.72 | 0.15 | 0.0094 | 18 | 0 | 14.5 | 5.38 | 8.88 | 8.23 | 18.77 | 31.03 | 26.71 | 64 | 125 | 165 | 296 | 401 | 504 | 643 | 682 | 791 |
Kazakh | 0.8876 | 0.4 | 1.1 | 0.022 | 81 | 21 | 2.31 | 5.82 | 5.96 | 5.82 | 19 | 39.05 | 23.35 | 101 | 200 | 260 | 376 | 444 | 529 | 655 | 697 | 823 |
Kirkuk | 0.8538 | 2.26 | 0.25 | 0.005 | 71 | −36 | 8.3 | 11.19 | 12.88 | 10.3 | 20.3 | 23.9 | 20.43 | 36 | 99 | 132 | 241 | 345 | 459 | 627 | 672 | 797 |
Kumkol | 0.877 | 0.22 | 0.025 | 10 | 5.01 | 10.99 | 12.91 | 10.15 | 22.74 | 28.6 | 13.61 | 84 | 131 | 180 | 328 | 417 | 506 | 648 | 690 | 806 | ||
Kuwait Export | 0.8913 | 2.69 | 0.025 | 0.01 | 15 | −36 | 12 | 8.23 | 10.12 | 8.4 | 19.99 | 24.1 | 28.16 | 79 | 110 | 151 | 274 | 388 | 506 | 656 | 691 | 754 |
Okwibome | 0.8673 | 0.202 | 0.05 | 0.0058 | 4 | −36 | 7.19 | 10.58 | 11.16 | 34.9 | 29.31 | 6.86 | 85 | 114 | 150 | 251 | 317 | 398 | 502 | 571 | 692 | |
Oryx | 0.9192 | 4.209 | 5.55 | 8.85 | 7.51 | 16.2 | 24.47 | 37.42 | 72 | 124 | 162 | 302 | 431 | 570 | 676 | 707 | 826 | |||||
Ras Gharib | 0.9424 | 3.44 | 0.25 | 0.0148 | 124 | 9 | 95 | 3.98 | 6.48 | 7.27 | 14.41 | 26.65 | 40.21 | 114 | 209 | 271 | 414 | 517 | 616 | 690 | 714 | 838 |
Urals | 0.874 | 1.44 | 0.075 | 0.01 | 24 | −6 | 8.23 | 7.22 | 9.59 | 8.31 | 21.3 | 27.31 | 25.27 | 76 | 107 | 150 | 273 | 378 | 487 | 644 | 686 | 770 |
Rhemoura | 0.8728 | 0.75 | 0.15 | 0.02 | 151 | 6 | 5.64 | 9.43 | 12.57 | 9.24 | 21.59 | 25.99 | 20.18 | 71 | 103 | 137 | 249 | 350 | 458 | 611 | 663 | 783 |
Siberian Light | 0.8538 | 0.57 | 0.075 | 0.01 | 34 | −9 | 6.24 | 8.63 | 11.39 | 9.09 | 23.07 | 28.09 | 18.73 | 75 | 98 | 138 | 254 | 352 | 451 | 604 | 659 | 732 |
SGC | 0.8924 | 2.26 | 1.15 | 0.01 | 30 | −21 | 26.6 | 11.54 | 8.97 | 6 | 18.14 | 24.29 | 30.06 | 69 | 100 | 142 | 294 | 416 | 539 | 666 | 703 | 828 |
Prinos | 0.8875 | 3.71 | 0.075 | 0.01 | 42 | −21 | 4.3 | 10.07 | 11.6 | 8.59 | 22.4 | 26.04 | 20.3 | 76 | 105 | 137 | 251 | 349 | 445 | 610 | 666 | 739 |
Val’d Agri | 0.8327 | 1.96 | 0.05 | 0.04 | −21 | 2.9 | 14.19 | 15.56 | 12.43 | 22.73 | 20.51 | 13.58 | 74 | 91 | 110 | 204 | 303 | 416 | 582 | 653 | 734 | |
Varandey blend | 0.8667 | 0.625 | 0.08 | 0.001 | 23.3 | −12 | 5.36 | 7.28 | 10.77 | 11.39 | 25.43 | 29.21 | 14.92 | 93 | 150 | 185 | 279 | 362 | 450 | 598 | 656 | 784 |
Tempa rossa | 0.9401 | 5.35 | −42 | 47.81 | 7.15 | 8.63 | 7.24 | 15.66 | 22.74 | 37.58 | 39 | 119 | 157 | 295 | 428 | 565 | 677 | 707 | 842 | |||
Forties | 0.817 | 0.679 | 0.2 | 0.01 | 113 | −36 | 2.67 | 18.1 | 15.8 | 10.4 | 20.3 | 22.6 | 11.9 | 36.0 | 83.0 | 108.0 | 206 | 312 | 427 | 585 | 647 | 750 |
Kuwait M | 0.8313 | 1.049 | 9.44 | 10.7 | 16.3 | 13.2 | 24.4 | 18.9 | 15.5 | 36 | 96 | 126 | 212 | 306 | 410 | 555 | 616 | 719 |
Crude Oil | Sat, wt.% | Aro, wt.% | Res. wt.% | C7 Asp., wt.% | C5 Asp., wt.% |
---|---|---|---|---|---|
Albanian | 24.4 | 58.0 | 2.74 | 14.86 | 17.6 |
Arabian Heavy | 51.3 | 39.7 | 2.92 | 6.07 | 9.0 |
Arabian Light | 59.9 | 35.8 | 1.54 | 2.77 | 4.3 |
Arabian Medium | 58.4 | 35.1 | 2.79 | 3.74 | 6.5 |
Aseng | 57.1 | 42.4 | 0.06 | 0.51 | 0.4 |
Azeri Light | 64.6 | 34.6 | 0.60 | 0.20 | 0.8 |
Basrah heavy | 43.4 | 43.8 | 3.20 | 9.56 | 12.8 |
Basrah light | 53.5 | 38.4 | 2.82 | 5.25 | 8.1 |
Boscan | 24.2 | 57.5 | 4.72 | 13.61 | 18.3 |
Bozachi | 47.2 | 50.8 | 1.41 | 0.59 | 2.0 |
Cheleken | 62.7 | 35.2 | 1.11 | 0.95 | 2.1 |
CPC | 82.7 | 16.5 | 0.43 | 0.38 | 0.8 |
El Bouri | 55.8 | 36.9 | 2.61 | 4.67 | 7.3 |
Kazakh | 52.5 | 45.5 | 1.32 | 0.70 | 2.0 |
Kirkuk | 62.8 | 30.1 | 1.98 | 5.15 | 7.1 |
Kumkol | 55.6 | 44.3 | 0.07 | 0.05 | 0.1 |
Kuwait Export | 51.4 | 41.3 | 2.57 | 4.67 | 7.2 |
Okwibome | 58.6 | 41.3 | 0.12 | ||
Oryx | 43.7 | 44.8 | 11.55 | ||
Ras Gharib | 37.7 | 51.8 | 10.45 | ||
Urals | 56.5 | 39.0 | 0.88 | 3.56 | 4.4 |
Rhemoura | 56.9 | 36.8 | 1.63 | 4.68 | 6.3 |
Siberian Light | 62.8 | 34.3 | 1.44 | 1.46 | 2.9 |
SGC | 51.1 | 40.4 | 2.00 | 6.55 | 8.5 |
Prinos | 52.5 | 39.6 | 1.79 | 6.09 | 7.9 |
Val’d Agri | 69.7 | 27.6 | 1.50 | 1.15 | 2.7 |
Varandey blend | 58.8 | 39.2 | 0.87 | 1.14 | 2.0 |
Tempa rossa | 38.3 | 44.1 | 3.76 | 13.83 | 17.6 |
Forties | 75.1 | 23.8 | 0.31 | 0.86 | 1.2 |
Kuwait M | 70.2 | 27.2 | 1.00 | 1.60 | 2.6 |
Crude Oil | IBP–110 | 110–180 | 180–240 | 240–360 | 360–540 | 540–FBP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D, kg/L | S, wt.% | D, kg/L | S, wt.% | D, kg/L | S, wt.% | D, kg/L | S, wt.% | D, kg/L | S, wt.% | D, kg/L | S, wt.% | C7 Asp, wt.% | C5 Asp, wt.% | CCR, wt.% | Vis, mm2/s | |
Albanian | 0.690 | 0.29 | 0.7902 | 1.05 | 0.850 | 1.99 | 0.913 | 3.69 | 0.986 | 5.59 | 1.080 | 30.8 | 36.5 | 24.2 | ||
Arabian Heavy | 0.679 | 0.03 | 0.755 | 0.07 | 0.800 | 0.34 | 0.863 | 2.01 | 0.927 | 3.23 | 1.026 | 5.82 | 19.9 | 29.5 | ||
Arabian Light | 0.677 | 0.09 | 0.758 | 0.14 | 0.799 | 0.25 | 0.851 | 1.36 | 0.919 | 2.51 | 1.004 | 4.86 | 12.1 | 18.8 | ||
Arabian Medium | 0.701 | 0.07 | 0.768 | 0.13 | 0.802 | 0.31 | 0.854 | 1.55 | 0.915 | 2.75 | 1.005 | 5.27 | 14.6 | 25.5 | 20.7 | |
Aseng | 0.725 | 0.08 | 0.787 | 0.10 | 0.830 | 0.16 | 0.862 | 0.27 | 0.818 | 0.29 | 1.002 | 0.62 | 3.7 | 3.3 | 14.2 | 28 |
Azeri Light | 0.734 | 0.06 | 0.779 | 0.07 | 0.815 | 0.07 | 0.851 | 0.14 | 0.901 | 0.25 | 0.959 | 0.54 | 1.4 | 5.4 | 9.5 | 19 |
Basrah heavy | 0.693 | 0.03 | 0.760 | 0.18 | 0.804 | 0.55 | 0.878 | 2.70 | 0.947 | 4.30 | 1.045 | 7.36 | 27.7 | 37.0 | 28.9 | |
Basrah light | 0.709 | 0.06 | 0.768 | 0.18 | 0.803 | 0.43 | 0.858 | 1.96 | 0.937 | 3.94 | 1.006 | 6.14 | 18.0 | 27.7 | 23.8 | |
Boscan | 0.725 | 0.13 | 0.752 | 0.64 | 0.824 | 2.29 | 0.891 | 3.83 | 0.953 | 4.73 | 1.072 | 27.5 | 37.0 | 20.8 | 1028 | |
Bozachi | 0.721 | 0.01 | 0.777 | 0.04 | 0.817 | 0.19 | 0.853 | 0.75 | 0.910 | 1.42 | 1.006 | 3.10 | 1.8 | 6.1 | 16.0 | |
Cheleken | 0.716 | 0.08 | 0.765 | 0.09 | 0.802 | 0.11 | 0.836 | 0.22 | 0.886 | 0.42 | 0.974 | 1.20 | 5.8 | 12.5 | ||
CPC | 0.702 | 0.15 | 0.771 | 0.28 | 0.807 | 0.26 | 0.846 | 0.76 | 0.891 | 1.16 | 0.931 | 1.32 | 5.6 | 11.9 | 9.2 | |
El Bouri | 0.711 | 0.01 | 0.774 | 0.04 | 0.817 | 0.17 | 0.861 | 1.24 | 0.910 | 1.90 | 1.040 | 3.37 | 17.5 | 27.3 | 25.47 | 139 |
Kazakh | 0.710 | 0.03 | 0.768 | 0.02 | 0.808 | 0.05 | 0.851 | 0.21 | 0.893 | 0.36 | 1.009 | 0.94 | 3.0 | 8.7 | 10.9 | 17 |
Kirkuk | 0.682 | 0.05 | 0.758 | 0.10 | 0.797 | 0.20 | 0.853 | 1.45 | 0.920 | 2.81 | 1.040 | 6.22 | 25.2 | 34.9 | ||
Kumkol | 0.687 | 0.011 | 0.7632 | 0.02 | 0.801 | 0.04 | 0.830 | 0.10 | 0.875 | 0.21 | 0.952 | 0.53 | 0.37 | 0.92 | ||
Kuwait Export | 0.697 | 0.06 | 0.764 | 0.10 | 0.800 | 0.27 | 0.856 | 1.68 | 0.920 | 2.99 | 1.007 | 5.68 | 16.6 | 25.7 | ||
Okwibome | 0.712 | 0.07 | 0.763 | 0.08 | 0.818 | 0.10 | 0.877 | 0.19 | 0.931 | 0.29 | 0.998 | 0.50 | 1.7 | 12.9 | 9 | |
Oryx | 0.686 | 0.00 | 0.752 | 0.06 | 0.793 | 0.33 | 0.852 | 1.94 | 0.932 | 3.80 | 1.084 | 8.01 | 30.9 | 29.41 | 564 | |
Ras Gharib | 0.700 | 0.06 | 0.767 | 0.35 | 0.816 | 1.02 | 0.863 | 2.31 | 0.921 | 3.02 | 1.063 | 5.58 | 26.0 | 25.1 | 430 | |
Urals | 0.724 | 0.07 | 0.774 | 0.15 | 0.812 | 0.30 | 0.856 | 0.94 | 0.907 | 1.61 | 1.003 | 2.93 | 14.1 | 17.6 | 17.5 | |
Rhemoura | 0.725 | 0.05 | 0.777 | 0.06 | 0.817 | 0.10 | 0.854 | 0.52 | 0.910 | 0.97 | 1.006 | 1.90 | 23.2 | 31.3 | 23.7 | |
Siberian Light | 0.715 | 0.03 | 0.775 | 0.06 | 0.814 | 0.10 | 0.855 | 0.35 | 0.905 | 0.78 | 1.005 | 1.58 | 7.8 | 15.5 | 14.0 | |
South Green Canyon | 0.714 | 0.06 | 0.776 | 0.14 | 0.813 | 0.34 | 0.863 | 1.17 | 0.927 | 2.22 | 1.007 | 5.09 | 21.8 | 28.4 | 22.9 | |
Prinos | 0.704 | 0.17 | 0.788 | 0.40 | 0.821 | 0.72 | 0.867 | 2.61 | 0.942 | 3.90 | 1.039 | 9.14 | 30.0 | 38.8 | 32.82 | |
Val’d Agri | 0.683 | 0.04 | 0.761 | 0.07 | 0.802 | 0.29 | 0.862 | 1.73 | 0.935 | 3.29 | 0.999 | 6.47 | 8.5 | 19.5 | 21.4 | 80 |
Varandey blend | 0.716 | 0.02 | 0.772 | 0.09 | 0.809 | 0.15 | 0.850 | 0.48 | 0.888 | 0.74 | 0.987 | 1.76 | 7.62 | 13.48 | 15.1 | 24.25 |
Tempa rossa | 0.682 | 0.07 | 0.76 | 0.42 | 0.807 | 1.14 | 0.883 | 3.58 | 0.970 | 5.10 | 1.119 | 9.26 | 36.8 | 46.8 | 34.33 | |
Forties | 0.696 | 0.05 | 0.8 | 0.07 | 0.805 | 0.11 | 0.848 | 0.48 | 0.971 | 1.51 | 0.989 | 2.54 | 7.2 | 9.8 | 14.77 | |
Kuwait M | 0.680 | 0.05 | 0.755 | 0.066 | 0.795 | 0.09 | 0.847 | 0.86 | 0.912 | 1.86 |
Crude Oil | Sp | Sp Critical | CII | Sat/Aro | Res/Asp | δCO, MPa0.5 | SBN/IN | SBN | IN |
---|---|---|---|---|---|---|---|---|---|
Albanian | 94.1 | 52.2 | 0.65 | 0.4 | 0.2 | 19.44 | 1.00 | 136.7 | 136.7 |
Arabian Heavy | 60.3 | 34.4 | 1.35 | 1.3 | 0.5 | 18.07 | 2.31 | 92.4 | 40.0 |
Arabian Light | 36.5 | 27.8 | 1.68 | 1.7 | 0.6 | 17.69 | 1.55 | 80.5 | 51.9 |
Arabian Medium | 44.0 | 38.6 | 1.64 | 1.7 | 0.7 | 17.76 | 1.86 | 82.6 | 44.4 |
Aseng | 44.1 | 29.1 | 1.36 | 1.3 | 0.1 | 17.81 | 1.86 | 84.3 | 45.3 |
Azeri Light | 44.2 | 37.6 | 1.84 | 1.9 | 3.0 | 17.50 | 1.33 | 74.2 | 55.8 |
Basrah heavy | 63.9 | 46.4 | 1.13 | 1.0 | 0.3 | 18.43 | 1.90 | 104.2 | 54.8 |
Basrah light | 52.7 | 36.5 | 1.43 | 1.4 | 0.5 | 17.97 | 1.87 | 89.3 | 47.7 |
Boscan | 68.9 | 48.2 | 0.61 | 0.4 | 0.3 | 19.45 | 1.00 | 137.0 | 137.0 |
Bozachi | 45.2 | 36.9 | 0.92 | 0.9 | 2.4 | 18.25 | 2.33 | 98.5 | 42.3 |
Cheleken | 37.5 | 25.3 | 1.75 | 1.8 | 1.2 | 17.58 | 2.24 | 76.7 | 34.2 |
CPC | 24.2 | 31.2 | 4.92 | 5.0 | 1.1 | 16.79 | 1.00 | 51.4 | 51.4 |
El Bouri | 43.3 | 41.4 | 1.53 | 1.5 | 0.6 | 17.87 | 1.34 | 86.1 | 64.2 |
Kazakh | 29.6 | 19.4 | 1.14 | 1.2 | 1.9 | 18.01 | 1.55 | 90.8 | 58.6 |
Kirkuk | 45.4 | 42.0 | 2.12 | 2.1 | 0.4 | 17.57 | 1.31 | 76.6 | 58.5 |
Kumkol | 38.9 | 38.2 | 1.26 | 1.3 | 1.5 | 17.88 | 1.14 | 86.4 | 75.8 |
Kuwait Export | 55.4 | 42.0 | 1.28 | 1.2 | 0.6 | 18.06 | 1.88 | 92.3 | 49.1 |
Okwibome | 50.1 | 31.6 | 1.42 | 1.4 | 17.75 | 1.85 | 82.3 | 44.5 | |
Oryx | 60.6 | 50.1 | 1.23 | 1.0 | 18.42 | 1.58 | 103.8 | 65.7 | |
Ras Gharib | 47.0 | 22.2 | 0.93 | 0.7 | 18.71 | 1.61 | 113.2 | 70.3 | |
Urals | 48.1 | 32.5 | 1.51 | 1.4 | 0.2 | 17.84 | 1.88 | 85.1 | 45.3 |
Rhemoura | 52.9 | 41.2 | 1.60 | 1.5 | 0.3 | 17.82 | 1.32 | 84.6 | 64.1 |
Siberian Light | 42.6 | 29.0 | 1.80 | 1.8 | 1.0 | 17.57 | 2.26 | 76.6 | 33.9 |
South Green Canyon | 53.3 | 38.4 | 1.36 | 1.3 | 0.3 | 18.08 | 1.88 | 92.8 | 49.3 |
Prinos | 60.8 | 39.3 | 1.42 | 1.3 | 0.3 | 18.01 | 1.34 | 90.7 | 67.7 |
Val’d Agri | 43.6 | 28.2 | 2.43 | 2.5 | 1.3 | 17.30 | 2.22 | 67.6 | 30.4 |
Varandey blend | 40.2 | 36.9 | 1.49 | 1.5 | 0.8 | 17.74 | 1.32 | 82.0 | 62.1 |
Tempa rossa | 71.73 | 60.97 | 1.09 | 0.9 | 0.3 | 18.68 | 1.59 | 112.3 | 70.6 |
Forties | 37.83 | 18.73 | 3.15 | 3.2 | 0.4 | 17.09 | 1.99 | 60.8 | 30.6 |
Kuwait M | 37.67 | 37.67 | 2.54 | 2.6 | 0.6 | 17.28 | 1.0 | 66.98 | 66.98 |
μ | Sp | Sp Critical | CII | Sat/Aro | Res/Asp | δCO | SBN/IN | SBN | IN |
---|---|---|---|---|---|---|---|---|---|
Sp | 1.00 | 0.79 | 0.40 | 0.36 | 0.57 | 0.81 | 0.48 | 0.81 | 0.62 |
Sp critical | 0.79 | 1.00 | 0.64 | 0.60 | 0.71 | 0.57 | 0.34 | 0.57 | 0.57 |
CII | 0.40 | 0.64 | 1.00 | 0.99 | 0.51 | 0.20 | 0.38 | 0.20 | 0.59 |
Sat/Aro | 0.36 | 0.60 | 0.99 | 1.00 | 0.63 | 0.16 | 0.41 | 0.16 | 0.56 |
Res/Asp | 0.57 | 0.71 | 0.51 | 0.63 | 1.00 | 0.74 | 0.51 | 0.24 | 0.29 |
δCO | 0.81 | 0.57 | 0.20 | 0.16 | 0.74 | 1.00 | 0.33 | 0.99 | 0.75 |
SBN/IN | 0.48 | 0.34 | 0.38 | 0.41 | 0.51 | 0.33 | 1.00 | 0.33 | 0.28 |
SBN | 0.81 | 0.57 | 0.20 | 0.16 | 0.24 | 0.99 | 0.33 | 1.00 | 0.75 |
IN | 0.62 | 0.57 | 0.59 | 0.56 | 0.29 | 0.75 | 0.28 | 0.75 | 1.00 |
μ | Density at 15 °C | Sulfur | Pour Point | Sp | Sp Critical | Vis | C7 Asp. CO | C5 Asp. CO | SBN/IN | TAN | Density VR | Sulfur VR | C7 Asp. VR | C5 Asp. VR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Density at 15 °C | 1.00 | 0.73 | 0.44 | 0.78 | 0.72 | 0.79 | 0.76 | 0.76 | 0.50 | 0.56 | 0.78 | 0.69 | 0.70 | 0.69 |
Sulfur | 0.73 | 1.00 | 0.24 | 0.81 | 0.74 | 0.74 | 0.88 | 0.87 | 0.48 | 0.45 | 0.82 | 0.95 | 0.86 | 0.86 |
Pour Point | 0.44 | 0.24 | 1.00 | 0.35 | 0.38 | 0.41 | 0.32 | 0.30 | 0.40 | 0.54 | 0.36 | 0.25 | 0.33 | 0.30 |
Sp | 0.78 | 0.81 | 0.35 | 1.00 | 0.79 | 0.76 | 0.83 | 0.81 | 0.48 | 0.50 | 0.80 | 0.78 | 0.81 | 0.79 |
Sp critical | 0.72 | 0.74 | 0.38 | 0.79 | 1.00 | 0.71 | 0.74 | 0.73 | 0.34 | 0.53 | 0.76 | 0.72 | 0.75 | 0.75 |
Vis | 0.79 | 0.74 | 0.41 | 0.76 | 0.71 | 1.00 | 0.76 | 0.77 | 0.57 | 0.51 | 0.75 | 0.70 | 0.72 | 0.69 |
C7 Asp. CO | 0.76 | 0.88 | 0.32 | 0.83 | 0.74 | 0.76 | 1.00 | 0.94 | 0.46 | 0.48 | 0.85 | 0.86 | 0.94 | 0.92 |
C5 Asp. CO | 0.76 | 0.87 | 0.30 | 0.81 | 0.73 | 0.77 | 0.94 | 1.00 | 0.47 | 0.47 | 0.84 | 0.84 | 0.89 | 0.89 |
SBN/IN | 0.50 | 0.48 | 0.40 | 0.48 | 0.34 | 0.57 | 0.46 | 0.47 | 1.00 | 0.33 | 0.46 | 0.49 | 0.42 | 0.43 |
TAN | 0.56 | 0.45 | 0.54 | 0.50 | 0.53 | 0.51 | 0.48 | 0.47 | 0.33 | 1.00 | 0.44 | 0.43 | 0.47 | 0.46 |
Density VR | 0.78 | 0.82 | 0.36 | 0.80 | 0.76 | 0.75 | 0.85 | 0.84 | 0.46 | 0.44 | 1.00 | 0.81 | 0.84 | 0.82 |
Sulfur VR | 0.69 | 0.95 | 0.25 | 0.78 | 0.72 | 0.70 | 0.86 | 0.84 | 0.49 | 0.43 | 0.81 | 1.00 | 0.86 | 0.86 |
C7 Asp. VR | 0.70 | 0.86 | 0.33 | 0.81 | 0.75 | 0.72 | 0.94 | 0.89 | 0.42 | 0.47 | 0.84 | 0.86 | 1.00 | 0.96 |
C5 Asp. VR | 0.69 | 0.86 | 0.30 | 0.79 | 0.75 | 0.69 | 0.92 | 0.89 | 0.43 | 0.46 | 0.82 | 0.86 | 0.96 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishkova, I.K.; Stratiev, D.S.; Tavlieva, M.P.; Dinkov, R.K.; Yordanov, D.; Sotirov, S.; Sotirova, E.; Atanassova, V.; Ribagin, S.; Atanassov, K.; et al. Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting. Resources 2021, 10, 75. https://doi.org/10.3390/resources10080075
Shishkova IK, Stratiev DS, Tavlieva MP, Dinkov RK, Yordanov D, Sotirov S, Sotirova E, Atanassova V, Ribagin S, Atanassov K, et al. Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting. Resources. 2021; 10(8):75. https://doi.org/10.3390/resources10080075
Chicago/Turabian StyleShishkova, Ivelina K., Dicho S. Stratiev, Mariana P. Tavlieva, Rosen K. Dinkov, Dobromir Yordanov, Sotir Sotirov, Evdokia Sotirova, Vassia Atanassova, Simeon Ribagin, Krassimir Atanassov, and et al. 2021. "Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting" Resources 10, no. 8: 75. https://doi.org/10.3390/resources10080075
APA StyleShishkova, I. K., Stratiev, D. S., Tavlieva, M. P., Dinkov, R. K., Yordanov, D., Sotirov, S., Sotirova, E., Atanassova, V., Ribagin, S., Atanassov, K., Stratiev, D. D., Todorova-Yankova, L., & Nenov, S. (2021). Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting. Resources, 10(8), 75. https://doi.org/10.3390/resources10080075