Greenhouse Gas Emission Assessment of Simulated Wastewater Biorefinery
Abstract
:1. Introduction
- “domestic wastewater” means wastewater from residential settlements and services, which originates predominantly from the human metabolism and from household activities;
- “agglomeration” means an area where the population and/or economic activities are sufficiently concentrated for urban wastewater to be collected and conducted into an urban wastewater treatment plant or to a final discharge point.
2. Materials and Methods
2.1. Inventory of WWTP
Item | Literature #1 | Literature #2 | Literature #3 | Benchmark Average |
---|---|---|---|---|
Electricity pumps Stirring centrifugation, UV disinfection | 0.45 Wh [8] | 0.59 Wh [9] | 5.1 Wh [10] | 2.05 Wh |
Heat for anaerobic digestion (HAD) | 907 J [8] | 395 J [11] | 790 J [11] | 697 J |
Calculated natural gas needs (based on HAD and LHV 39 MJ/m3) | 2.3 × 10−5 m3 | 1.0 × 10−5 m3 | 2.0 × 10−5 m3 | 1.8 × 10−5 m3 |
Biogas (60% CH4, 40% CO2) LHV 23.4 MJ/m3 | 1.1 × 10−4 m3 [11] | 2.2 × 10−4 m3 [12] | 1.1 × 10−4 m3 [13] | 1.5 × 10−4 m3 |
Biogas electricity by CHP 30% (a) | 0.4 Wh | 0.2 Wh | 0.4 Wh | 0.33 Wh |
Biogas heat by CHP 70% (a) | 1801 J | 3604 J | 1801 J | 2402 J |
Biogas (60% CH4, 40% CO2) LHV 23.4 MJ/m3 (d) | 8 × 10−5 m3 | 1.5 × 10−4 m3 | 8 × 10−4 m3 | 3.4 × 10−4 m3 |
Biogas electricity by CHP 30% (a) (d) | 0.28 Wh | 0.14 Wh | 0.28 Wh | 0.23 Wh |
Biogas heat by CHP 70% (a) (d) | 1261 J | 2523 J | 1261 J | 1682 J |
Dry sludge | 0.43 g (b) | 0.39 g [12] | 0.79 g [6] | 0.54 g |
Dry sludge N content | 6 mg [8] | 20 mg [12] | 7 mg [6] | 33 mg |
Dry sludge P content | 9 mg [8] | 10 mg [12] | 8 mg [6] | 9 mg |
Primary sludge 30% (c) | 0.13 mg | 0.12 mg | 0.24 mg | 0.16 mg |
Bioplastic (PHA) (c) (d) | 0.03 mg | 0.03 mg | 0.07 mg | 0.04 mg |
Avoided Fertilizer (N content + P content) | 15 mg | 30 mg | 15 mg | 20 mg |
2.2. Global Warming Potential
Item/GHG Emission | CO2 | CH4 | N2O |
---|---|---|---|
Electricity production (used or avoided w/biogas CHP) [23] | 90.4 g/kWhe | 0.021 g/kWhe | 0.004 g/kWhe |
Natural gas production (used or avoided, w/biogas CHP) [23] | 90.9 g/m3 | 5.6 g/m3 | 1.2 g/m3 |
Natural gas burning (used or avoided, w/biogas CHP) | 1.62 kg/m3 | 0.0656 kg/m3 | 0 kg/m3 |
Biogas flared [7] | 0.0715 kg/m3 | 1.053 kg/m3 | 0.225 mg/L inflow |
Bioplastics Avoided fossil PHA production [25,26] | −4.6 kg/kgPAH | −0.014 kgCH4/kgPAH | −0.000168 kgN2O/kgPAH |
Fertilizers avoided fossil production [24] | −0.22 kg/kgFert | −0.0018 kgCH4/kgFert | −0.000727 kgN2O/kgFert |
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AR | Assessment report |
BOD | Biological oxygen demand |
CHP | Combined heat and power |
cLCA | Conventional LCA |
CO2eq | Carbon dioxide equivalent |
COD | Chemical oxygen demand |
dLCA | Dynamic LCA |
HAD | Heat for anaerobic digestion |
GHG | Greenhouse gas |
GWP | Global warming potential |
ΔGHGabs | Absolute GHG emission savings |
ΔGHGrel | Relative GHG emission savings |
IPCC | Intergovernmental panel on climate change |
LCA | Life cycle analysis |
LHV | Lower heating value |
N | Nitrogen |
P | Phosphorus |
PHA | Polyhydroxyalkanoates |
SAR | Second assessment report IPCC |
TH | Time horizon |
TKN | Total Kjeldahl Nitrogen |
UV | Ultra-violet |
WWTP | Wastewater treatment plant |
References
- EurEau. Europe’s Water in Figures An Overview of the European Drinking Water and Waste Water Sectors; EurEau: Brussels, Belgium, 2017. [Google Scholar]
- Europe, Plastics. Plastics the Facts 2014/2015: An Analysis of European Plastics Production, Demand and Waste Data; Plastics Europe: Brussels, Belgium, 2015; pp. 1–34. [Google Scholar]
- FAO. World Fertilizer Trends and Outlook to 2018; FAO: Rome, Italy, 2015; ISBN 9789251086926. [Google Scholar]
- Garcia, N.P.; Vatopoulos, K.; Krook-Riekkola, A.; Rivera, J.A.M.; Lopez, A.P. Heat and Cooling Demand and Market Perspective; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Piippo, S.; Lauronen, M.; Postila, H. Greenhouse gas emissions from different sewage sludge treatment methods in north. J. Clean. Prod. 2018, 177, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Dong, B. Life-Cycle Assessment of Wastewater Treatment Plants; Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 2012. [Google Scholar]
- RTI. Greenhouse Gas Emissions Estimation Methodologies for Biogenic Emissions from Selected Source Categories: Solid Waste Disposal Wastewater Treatment Ethanol Fermentation; RTI: Research Triangle Park, NC, USA, 2010. [Google Scholar]
- Lundin, M.; Bengtsson, M.; Molander, S. Life cycle assessment of wastewater systems: Influence of system boundaries and scale on calculated environmental loads. Environ. Sci. Technol. 2000, 34, 180–186. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, G.; Molinos-Senante, M.; Hospido, A.; Hernández-Sancho, F.; Moreira, M.T.; Feijoo, G. Environmental and economic profile of six typologies of wastewater treatment plants. Water Res. 2011, 45, 5997–6010. [Google Scholar] [CrossRef] [PubMed]
- Greg, M.; Matthew, H.; Fitzsimons, L.; Delaure, Y.; Corcoran, B. Life Cycle Assessment of Waste Water Treatment Plants in Ireland. J. Sustain. Dev. Energy Water Environ. Syst. 2016, 4, 216–233. [Google Scholar]
- Bachmann, N.; la Cour Jansen, J.; Bochmann, G.; Montpart, N. Sustainable Biogas Production in Municipal Wastewater Treatment Plants; IEA Bioenergy: Dublin, Ireland, 2015; p. 20. [Google Scholar]
- Fine, P.; Hadas, E. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use. Sci. Total Environ. 2012, 416, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Pasqualino, J.C.; Meneses, M.; Abella, M.; Castells, F. LCA as a Decision Support Tool for the Environmental Improvement of the Operation of a Municipal Wastewater Treatment Plant. Environ. Sci. Technol. 2009, 43, 3300–3307. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Wu, S.; Sun, L.; Tan, X.; Yu, S.; Zhang, Z. Composition of Waste Sludge from Municipal Wastewater Treatment Plant. Procedia Environ. Sci. 2012, 12, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Pittmann, T.; Steinmetz, H. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants. Bioengineering 2017, 4, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collet, P.; Hélias, A.; Lardon, L.; Ras, M.; Goy, R.-A.; Steyer, J.-P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour. Technol. 2011, 102, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Gernaey, K.V.; Jeppsson, U.; Vanrolleghem, P.A.; Copp, J.B. Benchmarking of Control Strategies for Wastewater Treatment Plants; IWA Publishing: London, UK, 2015. [Google Scholar]
- Rosen, C.; Jeppsson, U. Aspects on ADM1 Implementation within the BSM2 Framework; Technical Reports; Lund University: Lund, Sweden, 2008. [Google Scholar]
- Balcombe, P.; Speirs, J.F.; Brandon, N.P.; Hawkes, A.D. Methane emissions: Choosing the right climate metric and time horizon. Environ. Sci. Process. Impacts 2018, 20, 1323–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levasseur, A.; Lesage, P.; Margni, M.; Deschěnes, L.; Samson, R. Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environ. Sci. Technol. 2010, 44, 3169–3174. [Google Scholar] [CrossRef] [PubMed]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing Chapter 2; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Joos, F.; Roth, R.; Fuglestvedt, J.S.; Peters, G.P.; Enting, I.G.; Von Bloh, W.; Brovkin, V.; Burke, E.J.; Eby, M.; Edwards, N.R.; et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys. 2013, 13, 2793–2825. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.; Larive, J.-F.; Rickeard, D.; Weindorf, W. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context WELL-TO-TANK (WTT) Report. Version 4.; Publications Office of the European Union: Luxembourg, 2013; ISBN 9789279338885. [Google Scholar]
- Hasler, K.; Bröring, S.; Omta, S.W.F.; Olfs, H.W. Life cycle assessment (LCA) of different fertilizer product types. Eur. J. Agron. 2015, 69, 41–51. [Google Scholar] [CrossRef]
- Narodoslawsky, M. LCA of PHA Production—Identifying the Ecological Potential of Bio-plastic. Chem. Biochem. Eng. Q. 2015, 29, 299–305. [Google Scholar] [CrossRef]
- Patel, M.; Bastioli, C.; Marini, L.; Würd, D.E. Biopolymers Online—Environmental Assessment of Bio-Based Polymers and Natural Fibres; Utrecht University: Utrecht, The Netherlands, 2005. [Google Scholar]
- Pacheco, R.; Silva, C. Global Warming Potential of Biomass-to-Ethanol: Review and Sensitivity Analysis through a Case Study. Energies 2019, 12, 2535. [Google Scholar] [CrossRef] [Green Version]
- Lindorfer, J.; Lettner, M.; Hesser, F.; Fazeni, K.; Rosenfeld, D.; Annevelink, B.; Mandl, M. Technical, Economic and Environmental Assessment of Biorefinery Concepts. 2019. Available online: https://www.ieabioenergy.com/wp-content/uploads/2019/07/TEE_assessment_report_final_20190704-1.pdf (accessed on 27 July 2021).
- JRC. Deployment Scenarios for Low Carbon Energy Technologies; JRC: Ispra, Italy, 2019. [Google Scholar]
- European Comission. Towards Efficient Use of Water Resources in Europe; European Comission: Brussels, Belgium, 2012.
Model | #Years Validity | a0 | a1 | a2 | a3 | τ1 | τ2 | τ3 | GWP100 CH4 | GWP100 N2O |
---|---|---|---|---|---|---|---|---|---|---|
NCAR | 289 | 2.935 × 10−7 | 0.3665 | 0.3542 | 0.2793 | 1691 | 28.36 | 5.316 | 17.4 | 283.3 |
CSM1.4 HadGEM2-ES | 101 | 0.434 | 0.1973 | 0.1889 | 0.1789 | 23.07 | 23.07 | 3.922 | 15.4 | 251.0 |
MPI-ESM | 101 | 1.252 × 10−7 | 0.5864 | 0.231 | 0.231 | 178.1 | 9.039 | 8.989 | 16.6 | 270.6 |
Bern3D-LPJ (reference) | 1000 | 6.345 × 10−10 | 0.515 | 0.2631 | 0.2219 | 1955 | 45.83 | 3.872 | 13.2 | 215.2 |
Bern3D-LPJ (reference) PI100 w/climate feedback | 1000 | 0.1266 | 0.2607 | 0.2909 | 0.3218 | 302.8 | 31.61 | 4.24 | 18.1 | 294.5 |
Bern3D-LPJ (reference) PI100 w/o climate feedback | 1000 | 0.1332 | 0.1663 | 0.3453 | 0.3551 | 313.3 | 29.99 | 4.601 | 20.7 | 338.0 |
Bern3D-LPJ (reference) PD100 w/climate feedback | 1000 | 6.345 × 10−10 | 0.515 | 0.2631 | 0.2219 | 1955.5 | 45.83 | 3.872 | 13.2 | 215.2 |
Bern3D-LPJ (reference) PD100 w/o climate feedback | 1000 | 0.2123 | 0.2444 | 0.336 | 0.2073 | 0.2219 | 1955 | 45.83 | 13.0 | 212.6 |
Bern3D-LPJ (ensemble) | 585 | 0.2796 | 0.2382 | 0.2382 | 0.244 | 276.2 | 38.45 | 4.928 | 14.1 | 230.6 |
Bern2.5D-LPJ | 1000 | 0.2362 | 0.09866 | 0.385 | 0.2801 | 232.1 | 58.5 | 2.587 | 16.0 | 261.3 |
Bern-SAR | 1000 | 0.1994 | 0.1762 | 0.3452 | 0.2792 | 333.1 | 39.69 | 4.11 | 16.6 | 271.0 |
Bern-378 ppm [20] | 1000 | 0.217 | 0.259 | 0.338 | 0.186 | 172.9 | 18.51 | 1.186 | 25 | 298 |
CLIMBER2-LPJ DCESS | 1000 | 0.2318 | 0.2756 | 0.49 | 0.002576 | 272.6 | 6.692 | 6.692 | 16.4 | 267.7 |
GENIE (ensemble) | 1000 | 0.2145 | 0.249 | 0.1924 | 0.3441 | 270.1 | 39.32 | 4.305 | 16.1 | 261.7 |
LOVECLIM | 1000 | 8.539 × 10−8 | 0.3606 | 0.4503 | 0.1891 | 1596 | 21.71 | 2.281 | 18.0 | 294.2 |
MESMO | 1000 | 0.2848 | 0.2938 | 0.2382 | 0.1831 | 454.3 | 25 | 2.014 | 13.3 | 217.6 |
UVic2.9 | 1000 | 0.3186 | 0.1748 | 0.1921 | 0.3145 | 304.6 | 26.56 | 3.8 | 15.4 | 250.8 |
ACC2 | 985 | 0.1779 | 0.1654 | 0.3796 | 0.2772 | 386.2 | 36.89 | 3.723 | 17.5 | 285.5 |
MAGICC6(ensemble) | 604 | 0.2051 | 0.2533 | 0.3318 | 0.2098 | 596.1 | 21.97 | 2.995 | 15.8 | 256.9 |
TOTEM2 | 984 | 0.000007177 | 0.2032 | 0.6995 | 0.09738 | 85,770 | 111.8 | 0.01583 | 12.3 | 199.9 |
Multimodel mean | 1000 | 0.2173 | 0.224 | 0.2824 | 0.2763 | 394.4 | 36.54 | 4.304 | 15.6 | 253.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C. Greenhouse Gas Emission Assessment of Simulated Wastewater Biorefinery. Resources 2021, 10, 78. https://doi.org/10.3390/resources10080078
Silva C. Greenhouse Gas Emission Assessment of Simulated Wastewater Biorefinery. Resources. 2021; 10(8):78. https://doi.org/10.3390/resources10080078
Chicago/Turabian StyleSilva, Carla. 2021. "Greenhouse Gas Emission Assessment of Simulated Wastewater Biorefinery" Resources 10, no. 8: 78. https://doi.org/10.3390/resources10080078
APA StyleSilva, C. (2021). Greenhouse Gas Emission Assessment of Simulated Wastewater Biorefinery. Resources, 10(8), 78. https://doi.org/10.3390/resources10080078