Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal)
Abstract
:1. Introduction
2. State-of-the-Art
2.1. Coal
2.2. Biomass
2.3. The Logistic Problem
2.4. Biomass as an Alternative to Coal
3. National Framework
3.1. Characterization of Land Use in Portugal
3.2. Characterization of Energy Production in Portugal
4. The Portuguese Situation: Decarbonization and the Pego Power Plant
5. Results and Discussion
5.1. Biomass Supply in Portugal and the Hypothetical Case of Pego Power Plant Conversion
5.2. Other Implications Regarding the Pego Thermal Power Plant Conversion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Destek, M.A.; Sinha, A. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic co-operation and development countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- MacNeill, J. Strategies for sustainable economic development. Sci. Am. 1989, 261, 154–165. [Google Scholar] [CrossRef]
- Baz, K.; Cheng, J.; Xu, D.; Abbas, K.; Ali, I.; Ali, H.; Fang, C. Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique. Energy 2021, 226, 120357. [Google Scholar] [CrossRef]
- Shaari, M.; Hussain, N.; Ismail, M. Relationship between energy consumption and economic growth: Empirical evidence for Malaysia. Bus. Syst. Rev. 2013, 2, 17–28. [Google Scholar]
- Park, S.-Y.; Yoo, S.-H. The dynamics of oil consumption and economic growth in Malaysia. Energy Policy 2014, 66, 218–223. [Google Scholar] [CrossRef]
- Žiković, S.; Vlahinic-Dizdarević, N. Oil consumption and economic growth interdependence in small European countries. Econ. Res. Ekon. Istraž. 2011, 24, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Antonakakis, N.; Chatziantoniou, I.; Filis, G. Energy consumption, CO2 emissions, and economic growth: An ethical dilemma. Renew. Sustain. Energy Rev. 2017, 68, 808–824. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.R.; Zhang, Y.; Kumar, A.; Zavadskas, E.; Streimikiene, D. Measuring the impact of renewable energy, public health expenditure, logistics, and environmental performance on sustainable economic growth. Sustain. Dev. 2020, 28, 833–843. [Google Scholar] [CrossRef]
- Attiaoui, I.; Toumi, H.; Ammouri, B.; Gargouri, I. Causality links among renewable energy consumption, CO 2 emissions, and economic growth in Africa: Evidence from a panel ARDL-PMG approach. Environ. Sci. Pollut. Res. 2017, 24, 13036–13048. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, B.; Ozturk, I. Renewable energy consumption-economic growth nexus in emerging countries: A bootstrap panel causality test. Renew. Sustain. Energy Rev. 2019, 104, 30–37. [Google Scholar] [CrossRef]
- Khoshnevis Yazdi, S.; Shakouri, B. Renewable energy, nonrenewable energy consumption, and economic growth. Energy Sources Part B Econ. Plan. Policy 2017, 12, 1038–1045. [Google Scholar] [CrossRef]
- Jaber, J.O.; Badran, O.; Abu-Shikhah, N. Sustainable energy and environmental impact: Role of renewables as clean and secure source of energy for the 21st century in Jordan. Clean Technol. Environ. Policy 2004, 6, 174–186. [Google Scholar] [CrossRef]
- Klette, T.J.; Møen, J.; Griliches, Z. Do subsidies to commercial R&D reduce market failures? Microeconometric evaluation studies. Res. Policy 2000, 29, 471–495. [Google Scholar]
- Hargreaves, T.; Hielscher, S.; Seyfang, G.; Smith, A. Grassroots innovations in community energy: The role of intermediaries in niche development. Glob. Environ. Chang. 2013, 23, 868–880. [Google Scholar] [CrossRef] [Green Version]
- Patlitzianas, K.D.; Ntotas, K.; Doukas, H.; Psarras, J. Assessing the renewable energy producers’ environment in EU accession member states. Energy Convers. Manag. 2007, 48, 890–897. [Google Scholar] [CrossRef]
- Fischer, W.; Hake, J.-F.; Kuckshinrichs, W.; Schröder, T.; Venghaus, S. German energy policy and the way to sustainability: Five controversial issues in the debate on the “Energiewende”. Energy 2016, 115, 1580–1591. [Google Scholar] [CrossRef]
- Dinar, S.; Katz, D.; De Stefano, L.; Blankespoor, B. Do treaties matter? Climate change, water variability, and cooperation along transboundary river basins. Political Geogr. 2019, 69, 162–172. [Google Scholar] [CrossRef]
- Vinogradov, S.; Wouters, P. Adaptation regulatory regimes to address climate change challenges in transboundary water basins: Can multilateral regionalism help? Rev. Eur. Comp. Int. Environ. Law 2020, 29, 406–416. [Google Scholar]
- Pacesila, M.; Burcea, S.G.; Colesca, S.E. Analysis of renewable energies in European Union. Renew. Sustain. Energy Rev. 2016, 56, 156–170. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bačeković, I.; Ćosić, B.; Krajačić, G.; Pukšec, T.; Duić, N.; Markovska, N. Zero carbon energy system of South East Europe in 2050. Appl. Energy 2016, 184, 1517–1528. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, F.; van Eck, N.J.; Frey, M. The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management. Renew. Energy 2014, 62, 657–671. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
- Demirbaş, A. Influence of gas and detrimental metal emissions from biomass firing and co-firing on environmental impact. Energy Sources 2005, 27, 1419–1428. [Google Scholar] [CrossRef]
- Baxter, L. Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel 2005, 84, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yang, K.; Zhou, J.; Zhao, G. Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability 2020, 12, 3692. [Google Scholar] [CrossRef]
- Thornley, P. Increasing biomass based power generation in the UK. Energy Policy 2006, 34, 2087–2099. [Google Scholar] [CrossRef]
- Hartig, E.K.; Grozev, O.; Rosenzweig, C. Climate change, agriculture and wetlands in Eastern Europe: Vulnerability, adaptation and policy. Clim. Chang. 1997, 36, 107–121. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Bentz, J.; Silva, J.M.; Fonseca, A.L.; Swart, R.; Santos, F.D.; Penha-Lopes, G. Adaptation to climate change at local level in Europe: An overview. Environ. Sci. Policy 2018, 86, 38–63. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manag. 2015, 155, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Elkerbout, M.; Egenhofer, C.; Núñez Ferrer, J.; Catuti, M.; Kustova, I.; Rizos, V. The European Green Deal after Corona: Implications for EU Climate Policy; CEPS: Brussels, Belgium, 2020. [Google Scholar]
- Santopietro, L.; Scorza, F. The Italian experience of the covenant of mayors: A territorial evaluation. Sustainability 2021, 13, 1289. [Google Scholar] [CrossRef]
- Von Stein, J. The international law and politics of climate change: Ratification of the United Nations framework convention and the kyoto protocol. J. Confl. Resolut. 2008, 52, 243–268. [Google Scholar] [CrossRef]
- Kim, Y.; Tanaka, K.; Matsuoka, S. Environmental and economic effectiveness of the Kyoto Protocol. PLoS ONE 2020, 15, e0236299. [Google Scholar] [CrossRef]
- Villoria-Sáez, P.; Tam, V.W.; del Río Merino, M.; Arrebola, C.V.; Wang, X. Effectiveness of greenhouse-gas Emission Trading Schemes implementation: A review on legislations. J. Clean. Prod. 2016, 127, 49–58. [Google Scholar] [CrossRef]
- Ingrao, C.; Matarazzo, A.; Gorjian, S.; Adamczyk, J.; Failla, S.; Primerano, P.; Huisingh, D. Wheat-straw derived bioethanol production: A review of Life Cycle Assessments. Sci. Total Environ. 2021, 781, 146751. [Google Scholar] [CrossRef]
- Carvalho, A.; Schmidt, L.; Santos, F.D.; Delicado, A. Climate change research and policy in Portugal. Clim. Chang. 2014, 5, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Borrego, C.; Martins, H.; Lopes, M. Portuguese industry and the EU trade emissions directive: Development and analysis of CO2 emission scenarios. Environ. Sci. Policy 2005, 8, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Pereira, R.M.; Rodrigues, P.G. A new carbon tax in Portugal: A missed opportunity to achieve the triple dividend? Energy Policy 2016, 93, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Viola, E.; Franchini, M.; Ribeiro, T.L. Climate governance in an international system under conservative hegemony: The role of major powers. Rev. Bras. Política Int. 2012, 55, 9–29. [Google Scholar] [CrossRef] [Green Version]
- Amorim, F.; Pina, A.; Gerbelová, H.; da Silva, P.P.; Vasconcelos, J.; Martins, V. Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling. Energy 2014, 69, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bolaños, T.G.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, S.; Cleto, J.; Fortes, P.; Seixas, J.; Huppes, G. Cost of energy and environmental policy in Portuguese CO2 abatement—scenario analysis to 2020. Energy Policy 2008, 36, 3598–3611. [Google Scholar] [CrossRef]
- Pereira, A.M.; Pereira, R.M.M. Is fuel-switching a no-regrets environmental policy? VAR evidence on carbon dioxide emissions, energy consumption and economic performance in Portugal. Energy Econ. 2010, 32, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Lindholt, L.; Glomsrød, S. Phasing out coal and phasing in renewables—Good or bad news for arctic gas producers? Energy Econ. 2018, 70, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Demirbaş, A. Sustainable cofiring of biomass with coal. Energy Convers. Manag. 2003, 44, 1465–1479. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Wolfe, A.; Hendryx, M.S. The future environmental and health impacts of coal. Energy Geosci. 2021, 2, 99–112. [Google Scholar] [CrossRef]
- Sen, S.; Ganguly, S. Opportunities, barriers and issues with renewable energy development—A discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Brown, B.; Spiegel, S.J. Coal, climate justice, and the cultural politics of energy transition. Glob. Environ. Politics 2019, 19, 149–168. [Google Scholar] [CrossRef]
- Breyer, C.; Fasihi, M.; Aghahosseini, A. Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: A new type of energy system sector coupling. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Strezov, V. Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies. Energy 2017, 133, 1132–1141. [Google Scholar] [CrossRef]
- Dai, W.; Dong, J.; Yan, W.; Xu, J. Study on each phase characteristics of the whole coal life cycle and their ecological risk assessment—A case of coal in China. Environ. Sci. Pollut. Res. 2017, 24, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Guo, M.; Tan, Y.; Bai, E.; Zhao, G. Sustainable development of resources and the environment: Mining-induced eco-geological environmental damage and mitigation measures—A case study in the Henan coal mining area, China. Sustainability 2019, 11, 4366. [Google Scholar] [CrossRef] [Green Version]
- Epstein, P.R.; Buonocore, J.J.; Eckerle, K.; Hendryx, M.; Stout Iii, B.M.; Heinberg, R.; Clapp, R.W.; May, B.; Reinhart, N.L.; Ahern, M.M. Full cost accounting for the life cycle of coal. Ann. N. Y. Acad. Sci. 2011, 1219, 73. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Van der Velde, M.; Vicca, S.; Babst, F. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [Green Version]
- Burke, A.; Fishel, S. A coal elimination treaty 2030: Fast tracking climate change mitigation, global health and security. Earth Syst. Gov. 2020, 3, 100046. [Google Scholar] [CrossRef]
- Millot, A.; Krook-Riekkola, A.; Maïzi, N. Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden. Energy Policy 2020, 139, 111358. [Google Scholar] [CrossRef]
- Fekete, H.; Kuramochi, T.; Roelfsema, M.; den Elzen, M.; Forsell, N.; Höhne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Swain, R.B.; Karimu, A. Renewable electricity and sustainable development goals in the EU. World Dev. 2020, 125, 104693. [Google Scholar] [CrossRef]
- Yuille, A.; Tyfield, D.; Willis, R. Implementing rapid climate action: Learning from the ‘Practical Wisdom’of local decision-makers. Sustainability 2021, 13, 5687. [Google Scholar] [CrossRef]
- Paraschiv, S.; Paraschiv, L.S. Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Rep. 2020, 6, 237–242. [Google Scholar] [CrossRef]
- Fuhrmann, J.; Madlener, R. Evaluation of synergies in the context of European Multi-Business Utilities. Energies 2020, 13, 6676. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Adedoyin, F.F.; Bein, M.A.; Bekun, F.V.; Agozie, D.Q. The anthropogenic consequences of energy consumption in E7 economies: Juxtaposing roles of renewable, coal, nuclear, oil and gas energy: Evidence from panel quantile method. J. Clean. Prod. 2021, 295, 126373. [Google Scholar] [CrossRef]
- Gowlett, J. Fire, Early Human Use of; American Cancer Society: Atlanta, GA, USA, 2018. [Google Scholar]
- Glikson, A. Fire and human evolution: The deep-time blueprints of the Anthropocene. Anthropocene 2013, 3, 89–92. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.-F. Biomass for energy in the EU—The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 2010, 51, 969–982. [Google Scholar] [CrossRef]
- Herzog, H.; Golomb, D. Carbon capture and storage from fossil fuel use. Encycl. Energy 2004, 1, 277–287. [Google Scholar]
- Giuntoli, J.; Agostini, A.; Caserini, S.; Lugato, E.; Baxter, D.; Marelli, L. Climate change impacts of power generation from residual biomass. Biomass Bioenergy 2016, 89, 146–158. [Google Scholar] [CrossRef]
- Gonçalves, M.; Freire, F.; Garcia, R. Material flow analysis of forest biomass in Portugal to support a circular bioeconomy. Resour. Conserv. Recycl. 2021, 169, 105507. [Google Scholar] [CrossRef]
- Wolfsmayr, U.J.; Rauch, P. The primary forest fuel supply chain: A literature review. Biomass Bioenergy 2014, 60, 203–221. [Google Scholar] [CrossRef]
- Nunes, L.J. Torrefied biomass as an alternative in coal-fueled power Plants: A case study on grindability of agroforestry waste forms. Clean Technol. 2020, 2, 270–289. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Sarsaiya, S.; Patel, A.; Juneja, A.; Singh, R.P.; Yan, B.; Awasthi, S.K.; Jain, A.; Liu, T.; Duan, Y. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 2020, 127, 109876. [Google Scholar] [CrossRef]
- Cairns, M.A.; Meganck, R.A. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management. Environ. Manag. 1994, 18, 13–22. [Google Scholar] [CrossRef]
- Sebastián, F.; Royo, J.; Gómez, M. Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology. Energy 2011, 36, 2029–2037. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Van den Broek, R.; Faaij, A.; van Wijk, A. Biomass combustion for power generation. Biomass Bioenergy 1996, 11, 271–281. [Google Scholar] [CrossRef]
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Demirbas, A. The importance of biomass. Energy Sources 2004, 26, 361–366. [Google Scholar] [CrossRef]
- Nunes, L.; Matias, J.; Catalão, J. Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renew. Sustain. Energy Rev. 2016, 53, 235–242. [Google Scholar] [CrossRef]
- Müller, A.; Weigelt, J.; Götz, A.; Schmidt, O.; Alva, I.L.; Matuschke, I.; Ehling, U.; Beringer, T. The Role of Biomass in the Sustainable Development Goals: A Reality Check and Governance Implications; IASS: Potsdam, Germany, 2015. [Google Scholar]
- Tonini, D.; Vadenbo, C.; Astrup, T.F. Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective. Energy 2017, 124, 295–309. [Google Scholar] [CrossRef]
- Mirkouei, A.; Haapala, K.R.; Sessions, J.; Murthy, G.S. A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework. Appl. Energy 2017, 206, 1088–1101. [Google Scholar] [CrossRef]
- Nunes, L.; Causer, T.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- Bolyos, E.; Lawrence, D.; Nordin, A. Biomass as an energy source: The challenges and the path forward. In Proceedings of the Third International Disposal Conference, Karlskoga, Sweden, 10–11 November 2003. [Google Scholar]
- Ebhota, W.S.; Jen, T.-C. Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system. Int. J. Precis. Eng. Manuf. Technol. 2020, 7, 97–117. [Google Scholar] [CrossRef]
- Sefidari, H.; Lindblom, B.; Nordin, L.-O.; Wiinikka, H. The feasibility of replacing coal with biomass in iron-ore pelletizing plants with respect to melt-induced slagging. Energies 2020, 13, 5386. [Google Scholar] [CrossRef]
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. [Google Scholar] [CrossRef]
- Niu, Y.; Tan, H. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 2016, 52, 1–61. [Google Scholar] [CrossRef]
- Rietig, K. Accelerating low carbon transitions via budgetary processes? EU climate governance in times of crisis. J. Eur. Public Policy 2021, 28, 1–20. [Google Scholar] [CrossRef]
- Duwe, M. The climate action network: A glance behind the curtains of a transnational NGO network. Rev. Eur. Community Int. Environ. Law 2001, 10, 177. [Google Scholar] [CrossRef]
- Europe, C.A.N. Off Target. Ranking of EU Countries’ Ambition and Progress in Fighting Climate Change; Climate Action Network Europe: Brussels, Belgium, 2018. [Google Scholar]
- Hein, K.; Bemtgen, J. EU clean coal technology—Co-combustion of coal and biomass. Fuel Process. Technol. 1998, 54, 159–169. [Google Scholar] [CrossRef]
- do Território, D.-G. Especificações técnicas da carta de uso e Ocupação do solo de Portugal Continental para 1995, 2007, 2010 e 2015. Relat. Téc. 2018. Available online: http://mapas.dgterritorio.pt/atom-dgt/pdf-cous/COS2018/ET-COS-2018_v1.pdf (accessed on 30 June 2021).
- Ceccherini, G.; Duveiller, G.; Grassi, G.; Lemoine, G.; Avitabile, V.; Pilli, R.; Cescatti, A. Abrupt increase in harvested forest area over Europe after 2015. Nature 2020, 583, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Uva, J.S. 6° Inventário Florestal Nacional—Relatório Final; ICNF: Lisbon, Portugal, 2015; p. 284. [Google Scholar]
- Van der Knaap, W.; Van Leeuwen, J. Late Glacial and early Holocene vegetation succession, altitudinal vegetation zonation, and climatic change in the Serra da Estrela, Portugal. Rev. Palaeobot. Palynol. 1997, 97, 239–285. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Brito, P.; Vilarinho, C. Biomass resources in Portugal: Current status and prospects. Renew. Sustain. Energy Rev. 2017, 78, 1221–1235. [Google Scholar] [CrossRef]
- Severo, E.A.; De Guimarães, J.C.F.; Dellarmelin, M.L. Impact of the COVID-19 pandemic on environmental awareness, sustainable consumption and social responsibility: Evidence from generations in Brazil and Portugal. J. Clean. Prod. 2021, 286, 124947. [Google Scholar] [CrossRef]
- Alves, P.; Fernandes, J.F.; Torres, J.P.N.; Branco, P.C.; Fernandes, C.; Gomes, J. From Sweden to Portugal: The effect of very distinct climate zones on energy efficiency of a concentrating photovoltaic/thermal system (CPV/T). Sol. Energy 2019, 188, 96–110. [Google Scholar] [CrossRef]
- Lopes, F.M.; Silva, H.G.; Salgado, R.; Cavaco, A.; Canhoto, P.; Collares-Pereira, M. Short-term forecasts of GHI and DNI for solar energy systems operation: Assessment of the ECMWF integrated forecasting system in southern Portugal. Sol. Energy 2018, 170, 14–30. [Google Scholar] [CrossRef]
- Lopes, F.; Sá, J.; Santana, J. Renewable generation, support policies and the merit order effect: A comprehensive overview and the case of wind power in Portugal. In Electricity Markets with Increasing Levels of Renewable Generation: Structure, Operation, Agent-Based Simulation, and Emerging Designs; Springer: Berlin, Germany, 2018. [Google Scholar]
- Ferreira, P.; Lima, F.; Ribeiro, F.; Vieira, F. A mixed-method approach for the assessment of local community perception towards wind farms. Sustain. Energy Technol. Assess. 2019, 33, 44–52. [Google Scholar] [CrossRef]
- Silva, L.; Delicado, A. Wind farms and rural tourism. Morav. Geogr. Rep. 2017, 25, 248–256. [Google Scholar]
- Fortes, P.; Simoes, S.G.; Gouveia, J.P.; Seixas, J. Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal. Appl. Energy 2019, 237, 292–303. [Google Scholar] [CrossRef]
- Shahbaz, M.; Benkraiem, R.; Miloudi, A.; Lahiani, A. Production function with electricity consumption and policy implications in Portugal. Energy Policy 2017, 110, 588–599. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Yeh, S.; Zakerinia, S.; Ramea, K.; McCollum, D. Achieving California’s 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model. Energy Policy 2015, 77, 118–130. [Google Scholar] [CrossRef]
- McIlveen-Wright, D.R.; Huang, Y.; Rezvani, S.; Redpath, D.; Anderson, M.; Dave, A.; Hewitt, N.J. A technical and economic analysis of three large scale biomass combustion plants in the UK. Appl. Energy 2013, 112, 396–404. [Google Scholar] [CrossRef]
- Wang, L.; Watanabe, T.; Xu, Z. Monetization of external costs using lifecycle analysis—A comparative case study of coal-fired and biomass power plants in Northeast China. Energies 2015, 8, 1440–1467. [Google Scholar] [CrossRef] [Green Version]
- Karkour, S.; Ichisugi, Y.; Abeynayaka, A.; Itsubo, N. External-cost estimation of electricity generation in G20 countries: Case study using a global life-cycle impact-assessment method. Sustainability 2020, 12, 2002. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cheng, H. Development and bottlenecks of renewable electricity generation in China: A critical review. Environ. Sci. Technol. 2013, 47, 3044–3056. [Google Scholar] [CrossRef]
- Jewell, J.; Vinichenko, V.; Nacke, L.; Cherp, A. Prospects for powering past coal. Nature Clim. Chang. 2019, 9, 592–597. [Google Scholar] [CrossRef]
- Parraga, J.; Khalilpour, K.R.; Vassallo, A. Polygeneration with biomass-integrated gasification combined cycle process: Review and prospective. Renew. Sustain. Energy Rev. 2018, 92, 219–234. [Google Scholar] [CrossRef]
- da Graça Carvalho, M.; Bonifacio, M.; Dechamps, P. Building a low carbon society. Energy 2011, 36, 1842–1847. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Knight, K.W.; Rosa, E.A. The environmental efficiency of well-being: A cross-national analysis. Soc. Sci. Res. 2011, 40, 931–949. [Google Scholar] [CrossRef]
- Aprill, M.; O’Neil, J.K. Greenhouse gases and sustainable development. In Encyclopedia of Sustainability in Higher Education; Springer: Berlin, Germnay, 2019. [Google Scholar]
- Aste, T.; Tasca, P.; Di Matteo, T. Blockchain technologies: The foreseeable impact on society and industry. Computer 2017, 50, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Mohr, S.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Projection of world fossil fuels by country. Fuel 2015, 141, 120–135. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Falkner, R. The Paris Agreement and the new logic of international climate politics. Int. Aff. 2016, 92, 1107–1125. [Google Scholar] [CrossRef]
- Costa, L.; Moreau, V.; Thurm, B.; Yu, W.; Clora, F.; Baudry, G.; Warmuth, H.; Hezel, B.; Seydewitz, T.; Ranković, A. The decarbonisation of Europe powered by lifestyle changes. Environ. Res. Lett. 2021, 16, 044057. [Google Scholar] [CrossRef]
- Capstick, S.; Whitmarsh, L.; Poortinga, W.; Pidgeon, N.; Upham, P. International trends in public perceptions of climate change over the past quarter century. Clim. Chang. 2015, 6, 35–61. [Google Scholar]
- Wilmotte, A.; Erkinaro, J.; Pedros Alio, C.; Piepenburg, D.; Xavier, J.; Frenot, Y.; Velazquez, D.; Badhe, R.; Savela, H. Footprints on changing polar ecosystems processes, threats, responses and opportunities for future generations. In The EU-PolarNet White Papers; EU-PolarNet: Bremerhaven, Germany, 2019. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strat. Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Bogdanov, D.; Gulagi, A.; Fasihi, M.; Breyer, C. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Appl. Energy 2021, 283, 116273. [Google Scholar] [CrossRef]
- Griffin, P.W.; Hammond, G.P.; Norman, J.B. Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective. Appl. Energy 2018, 227, 587–602. [Google Scholar] [CrossRef]
- Muhammad, B.; Khan, M.K.; Khan, M.I.; Khan, S. Impact of foreign direct investment, natural resources, renewable energy consumption, and economic growth on environmental degradation: Evidence from BRICS, developing, developed and global countries. Environ. Sci. Pollut. Res. 2021, 28, 21789–21798. [Google Scholar] [CrossRef] [PubMed]
- Miguel, C.V.; Mendes, A.; Madeira, L.M. An overview of the Portuguese energy sector and perspectives for power-to-gas implementation. Energies 2018, 11, 3259. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.; Matias, J.C. Biomass torrefaction as a key driver for the sustainable development and decarbonization of energy production. Sustainability 2020, 12, 922. [Google Scholar] [CrossRef] [Green Version]
- Bunn, D.W.; Redondo-Martin, J.; Muñoz-Hernandez, J.I.; Diaz-Cachinero, P. Analysis of coal conversion to biomass as a transitional technology. Renew. Energy 2019, 132, 752–760. [Google Scholar] [CrossRef]
Firms | Number of Employees |
---|---|
Tejo Energia | 10 |
Pegop | 128 |
Carbopego | 2 |
Total | 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casau, M.; Cancela, D.C.M.; Matias, J.C.O.; Dias, M.F.; Nunes, L.J.R. Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal). Resources 2021, 10, 84. https://doi.org/10.3390/resources10080084
Casau M, Cancela DCM, Matias JCO, Dias MF, Nunes LJR. Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal). Resources. 2021; 10(8):84. https://doi.org/10.3390/resources10080084
Chicago/Turabian StyleCasau, Margarida, Diana C. M. Cancela, João C. O. Matias, Marta Ferreira Dias, and Leonel J. R. Nunes. 2021. "Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal)" Resources 10, no. 8: 84. https://doi.org/10.3390/resources10080084
APA StyleCasau, M., Cancela, D. C. M., Matias, J. C. O., Dias, M. F., & Nunes, L. J. R. (2021). Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal). Resources, 10(8), 84. https://doi.org/10.3390/resources10080084