Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts
Abstract
:1. Introduction
2. Geologic Abundance, Ore Bodies, Mineralogy and Resources
Metal | Atomic Number | Abundance a (Atoms/106 Si Atoms) | Abundance in Upper Continental Crust (ppb) b | World Resources (Metric Tonnes) |
---|---|---|---|---|
Copper (Cu) | 29 | 212 | ≈60,000 | 3,034,700,000 c |
Iron (Fe) | 28 | 600,000 d | 5.2 wt% | 110,000,000,000 |
Ruthenium (Ru) | 44 | 1.49 | 0.03 | 4,459 e, 5,000 f |
Rhodium (Rh) | 45 | 0.214 | 0.018 | 3090 e |
Palladium (Pd) | 46 | 0.675 | 0.526 | 24,302 e |
Osmium (Os) | 76 | 1.00 | 0.05 | 580 e |
Iridium (Ir) | 77 | 0.821 | 0.022 | 1074 e |
Platinum (Pt) | 78 | 1.625 | 0.599 | 32,986 e |
Cerium (Ce) | 58 | 2.26 | 65 h | 299,000,000 g |
3. Supply
4. Usage and Demand
4.1. Non-Catalytic Usage and Demand
4.1.1. Jewellery
4.1.2. Industrial
Glass
Electronics and Electrical
Medical
Other
4.2. PGM in Catalysis
4.2.1. Chemicals and Environmental Catalysis
Reaction | Catalyst | Comments |
---|---|---|
Refinery Processes | ||
Cracking of vacuum distillates for fuels Naphtha production | Pd/H-Y-Zeolite | Part of the cracking used for petrol and olefinic gases production. Alternative: Transition metals/H-Y-Zeolite [90] |
Reforming of naphtha and isomerization of light gasoline | Pt/Al2O3/SiO2 or Pt/Zeolite | Used for octane increase in fuels |
Disproportionation of toluene to benzene and xylenes | Pt/Al2O3/SiO2 | Terephthaic acid and dimethyl terephthalate, also used in pharmaceutical industry |
hydrodesulphurisation | Pt/support | Desulphurisation of fuels to reduce auto-catalyst poisoning |
Isomerisation of xylene | Pt/Zeolite or Al2O3 | Used to make para-xylene—a precursor for polyesters [105]. Ga is also used for this reaction |
Environmental Processes | ||
Auto | Pt/Pd/Rh/oxides including Al2O3 | Exhaust gas remediation [106] |
VOC removal | Pt, Pd/oxide supports Ru,Rh/TiO2 for chlorobenzene Pt, Rh/oxide for formaldehyde Pt, Pd/oxide for toluene Pd/oxide for Benzene | Removal via oxidation [91,107,108] Alternative non-catalytic processes available [109] |
Industrial exhaust | Pt/Pd/Rh on various oxide supports | Exhaust gas remediation [110] Alternative: Transition metal TWC (Fe-CuNi) [111,112] |
Industrial Processes | ||
Ammonia synthesis | Ru/graphite | Most ammonia synthesis is performed over Fe-based catalysts [100] |
Ammonia oxidation | Pt/Pd/Rh metal nets | Part of ammonium nitrate production for fertilizers and explosives |
Aldehydes/ketones to alcohol | Pt, Pd, Ru (also Ni) | Used mainly for solvent production under reducing conditions [101] |
o-Xylene to phthalic anhydride | RuO2 promoter on TiO2/V2O5 | Ru is one of several possible promoters. Phthalic anhydride is used as a precursor for plasticizers in the plastics industry [92,102]. |
Hydrogenation of bio-oils | Pd | Preferential removal of linolenic acid [48,92,113] |
Caprolactam | Pd, Ru (homogeneous) | Used in nylon fibre fabrication. [29,114] Alternative methods available |
Cyclohexane Production | Ru-based Pd/Al2O3 | Hydrogenation of benzene to cyclohexane from nylon [115] Alternative: Ni/Al2O3 [29] |
Toluene diisocyanate production | Pd | Hydrogenation of dinitrotoluene—an intermediate in Toluene di-isocyanate [116]. Used in a range of products including polyurethane Alternative: Raney Ni [29] or non-catalytic [117] |
Metathesis reactions | Ru complex (homogeneous) Ru/Al2O3 (heterogeneous) | Used to reorganize C=C bonds. Most important example is Olefin metathesis [95,96] Alternative: Mo and W. |
Telomerisation | Pd/triphenylphosphine monosulfonate phosphonium complex Pd/supported oxides | Used for dimerization of 1,3-dienes particularly for butadiene which is used as a plasticizer [103] |
Nitric Acid Production (Ostwald process) | Pt/Rh/Pd or Pt/Rh gauze | Bulk chemical production of nitric acid [29] |
H2O2 production (Antrachinone process) | Pd gauze/suspension | Production of hydrogen peroxide [29] |
Fine Chemical | ||
Hydrogenation | Pt, Ru | Range of hydrogenation reactions using different catalysts, e.g., Vitamin manufacture, carboxcylic acid conversion to aldehydes [92,118] |
Reductive amination of aldehydes and ketones | Pd | Hydrogenation in the presence of ammonia. E.g., isophorene diamine Used to make sealants and adhesives [119] or isophorene nitrile used for isocyanates manufacture [120] |
Carbonylation of substituted alcohol | PdCl2 based | Production of ibuprofen [78] |
Amidocarbonylation of 2,5,dichloropyridine | Pd-Based | Anti-parkinson drug lazabemide [121] |
Citronella production | Rh complex (homogeneous) | One of the main components of citronella oil which is used as an insect repellent and also has anti-inflammatory properties. |
Acetic acid and its anhydride | Rh complex (homogenous), Pd/SiO2 (heterogeneous) | Production of vinyl acetate monomer Pd catalyst and ethylene as a reactant) [29]. |
Acetaldehyde | Pd(II)Cl2 | Homogeneous catalyst [29] |
Metolachlor | Ir complex | Organic compound used as herbicide [121] |
1-Octene production | Pd-complex | Co-monomer in polyethylene production |
4.2.2. Petroleum
4.3. Auto-Catalysts
4.3.1. Internal Combustion Engine Vehicles (ICEV)
- high activity of these metals under high flow and short residence time of the exhaust gas over the catalyst,
- resistance to poisoning (particularly by Sulphur compounds),
- they are less prone to deactivation by interaction with the support and sintering,
- they have significant activity at temperatures as low as 220 °C (around 400 to 500 °C lower than thermal oxidation).
4.3.2. Electric Vehicles
Battery Electric Vehicles (BEVs)
Fuel Cell Electric Vehicles (FCEVs)
4.4. Substitution for PGMs
4.5. Future PGM Demand for EVs
5. Recycling/Secondary Supply
6. Dissipation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
References
- Hilliard, H.E. Platinum Recycling in the United States in 1998; U.S. Geological Survey: Reston, VA, USA, 2001.
- Suess, H.E. Abundances of the elements. Rev. Mod. Phys. 1956, 28, 53–73. [Google Scholar] [CrossRef]
- USGS Platinum-Group Metals Statistics and Information, Minerals Commodity Summary for 2020; U.S. Geological Survey: Reston, VA, USA. Available online: https://www.usgs.gov/centers/nmic/platinum-group-metals-statistics-and-information. (accessed on 16 March 2021).
- Mudd, G.M. Key trends in the resource sustainability of platinum group elements. Ore Geol. Rev. 2012, 46, 106–117. [Google Scholar] [CrossRef]
- Starostin, V.I.; Izbekov, E.D.; Razin, L.V.; Sakya, D.R. Perspectives of the discovery of large and unique noble metal deposits in the northeastern Siberian Platform. Mosc. Univ. Geol. Bull. 2016, 71, 252–261. [Google Scholar] [CrossRef]
- Nassar, N.T. Limitations to elemental substitution as exemplified by the platinum-group metals. Green Chem. 2015, 17, 2226–2235. [Google Scholar] [CrossRef]
- Zientek, M.L.; Loferski, P.J.; Parks, H.L.; Schulte, R.F.; Seal, R.R., II. Platinum-Group Metals; U.S. Geological Survey: Reston, VA, USA, 2017.
- Mudd, G.M.; Jowitt, S.M.; Werner, T.T. Global platinum group element resources, reserves and mining—A critical assessment. Sci. Total Environ. 2018, 622–623, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Cawthorn, R.G. The Platinum Group Element Deposits of the Bushveld Complex in South Africa. Platin. Met. Rev. 2010, 54, 205–215. [Google Scholar] [CrossRef]
- Oberthür, T.; Melcher, F.; Buchholz, P.; Locmelis, M. The oxidized ores of the Main Sulphide Zone, Great Dyke, Zimbabwe: Turning resources into minable reserves-mineralogy is the key. J. South. Afr. Inst. Min. Metall. 2013, 113, 191–201. [Google Scholar]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef] [Green Version]
- Emsley, J. Ruthenium. In Nature’s Building Blocks: An A–Z Guide to the Elements; Oxford University Press: Oxford, UK, 2003; pp. 368–370. [Google Scholar]
- Weng, Z.; Jowitt, S.M.; Mudd, G.M.; Haque, N. A detailed assessment of global rare earth element resources: Opportunities and challenges. Econ. Geol. 2015, 110, 1925–1952. [Google Scholar] [CrossRef]
- Hagelüken, C. Markets for the catalyst metals platinum, palladium and rhodium. Metall 2006, 60, 31–42. [Google Scholar]
- Grandell, L.; Lehtilä, A.; Kivinen, M.; Koljonen, T.; Kihlman, S.; Lauri, L.S. Role of critical metals in the future markets of clean energy technologies. Renew. Energy 2016, 95, 53–62. [Google Scholar] [CrossRef]
- Gulley, A.L.; Nassar, N.T.; Xun, S. China, the United States, and competition for resources that enable emerging technologies. Proc. Natl. Acad. Sci. USA 2018, 115, 4111–4115. [Google Scholar] [CrossRef] [Green Version]
- Nassar, N.T.; Brainard, J.; Gulley, A.; Manley, R.; Matos, G.; Lederer, G.; Bird, L.R.; Pineault, D.; Alonso, E.; Gambogi, J.; et al. Evaluating the mineral commodity supply risk of the U.S. Manufacturing sector. Sci. Adv. 2020, 6, eaay8647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Yellishetty, M.; Mudd, G.M.; Muñoz, M.A.; Northey, S.A.; Werner, T.T. Toward dynamic evaluations of materials criticality: A systems framework applied to platinum. Resour. Conserv. Recycl. 2020, 152, 104532. [Google Scholar] [CrossRef]
- Kiemel, S.; Smolinka, T.; Lehner, F.; Full, J.; Sauer, A.; Miehe, R. Critical materials for water electrolysers at the example of the energy transition in Germany. Int. J. Energy Res. 2021, 45, 9914–9935. [Google Scholar] [CrossRef]
- Crundwell, F.; Moats, M.; Ramachandran, V.; Robinson, T.; Davenport, W.G. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Cramer, L.A. The extractive metallurgy of South Africa’s platinum ores. JOM 2001, 53, 14–18. [Google Scholar] [CrossRef]
- Vermaak, C.F.; Hendriks, L.P. A review of the mineralogy of the Merensky Reef, with specific reference to new data on the precious metal mineralogy. Econ. Geol. 1976, 71, 1244–1269. [Google Scholar] [CrossRef]
- Corrans, I.J.; Dunne, R.C.; Allison, S.A. Recovery of Platinum-Group Metals from the Chromite Reefs of the Bushveld Complex; The Canadian Institute of Mining and Metallurgy: Ottawa, ON, Canada, 1983; pp. II.-10.1–II.-10.21. [Google Scholar]
- Kyriakakis, G. Extraction of gold from platinum group metal (PGM) ores. Dev. Miner. Process. 2005, 15, 897–917. [Google Scholar] [CrossRef]
- Cowley, A. PGM Market Report; Johnson Matthey: London, UK, 2016. [Google Scholar]
- Starostin, V.I.; Sorokhtin, O.G. A new interpretation for the origin of the Norilsk type PGE-Cu-Ni sulfide deposits. Geosci. Front. 2011, 2, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Cowley, A.; Ryan, M.; Brisley, B. PGM Market Report; Johnson Matthey: London, UK, 2019. [Google Scholar]
- Biggs, T.; Taylor, S.S.; van der Lingen, E. The hardening of platinum alloys for potential jewellery application. Platin. Met. Rev. 2005, 49, 2–15. [Google Scholar] [CrossRef]
- Böck, R. Use and demand of palladium for the industry. In Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects; Springer: Berlin, Germany, 2006; pp. 39–51. [Google Scholar]
- Johsnson Matthey Technology Review. Platinum 2004. Platin. Met. Rev. 2004, 48, 133. [CrossRef]
- Weisberg, A.M. Rhodium plating. Met. Finish. 2002, 100, 278–282. [Google Scholar] [CrossRef]
- Morris, D.; McGrath, R. ZGS Platinum Materials for Improved Glass Manufacturing Equipment and Laboratory Ware. Platin. Met. Rev. 2013, 57, 230–232. [Google Scholar] [CrossRef]
- Rana, B.B. Corrosion by a heavy metal oxide glass. J. Mater. Sci. Technol. 2005, 21, 243–245. [Google Scholar] [CrossRef]
- Dos Santos, I.M.G.; Moreira, R.C.M.; de Souza, A.G.; Paskocimas, C.A.; Leite, E.R.; Varela, J.A.; Longo, E. Ceramic crucible corrosion by heavy metal oxide glasses—Phenomenological study. Int. Ceram. Rev. 2005, 54, 5–8. [Google Scholar]
- Matthey, J. Electronic Components. Available online: http://www.platinum.matthey.com/about-pgm/applications/industrial/electronic-components# (accessed on 15 January 2021).
- Trento, C. The Container of Artificial Crystal Growth: Iridium Crucible. Available online: https://www.samaterials.com/content/the-container-of-artificial-crystal-growth-iridium-crucible.html (accessed on 26 January 2021).
- Smith, S. The Global Lithium Tantalate Wafers Market Size Is Expected to Reach USD 2.87 Billion by 2024. Available online: https://www.prnewswire.com/news-releases/the-global-lithium-tantalate-wafers-market-size-is-expected-to-reach-usd-2-87-billion-by-2024--300755464.html (accessed on 26 February 2021).
- Gunn, G. Critical Metals Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 1–439. [Google Scholar]
- Im, T.; Pyo, J.; Lee, J.S.; Lee, C.S. Fabrication of homogeneous nanosized nickel powders using a planetary ball mill: Applications to multilayer ceramic capacitors (MLCCs). Powder Technol. 2021, 382, 118–125. [Google Scholar] [CrossRef]
- Jahn, W. Contact materials for reed switches. In Proceedings of the Annual Holm Conference on Electrical Contacts, Montreal, QC, Canada, 20–24 August 1990; pp. 53–58. [Google Scholar]
- Weisberg, A.M. Ruthenium plating. Met. Finish. 2002, 100, 283. [Google Scholar] [CrossRef]
- He, P.; Hu, G.; Wang, C.; Hewage, K.; Sadiq, R.; Feng, H. Analyzing present and future availability of critical high-tech minerals in waste cellphones: A case study of India. Waste Manag. 2021, 119, 275–284. [Google Scholar] [CrossRef]
- Kim, K.S.; Jung, K.H.; Park, B.G.; Shin, Y.E.; Jung, S.B. Characterization of Ag-Pd nanocomposite paste for electrochemical migration resistance. J. Nanosci. Nanotechnol. 2013, 13, 7620–7624. [Google Scholar] [CrossRef]
- Le, V.-G.; Vu, C.-T.; Shih, Y.-J.; Huang, Y.-H. Highly efficient recovery of ruthenium from integrated circuit (IC) manufacturing wastewater by Al reduction and cementation. RSC Adv. 2019, 9, 25303–25308. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Yang, M.; Ke, C.; Wei, G.; Priest, C.; Qiao, Z.; Wu, G.; Zhang, J. Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem 2020, 2, 100023. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Chung, H.T.; Cullen, D.A.; Higgins, D.; Sneed, B.T.; Holby, E.F.; More, K.L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, S.T.; Papageorgopoulos, D. Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles. Nat. Catal. 2019, 2, 558–561. [Google Scholar] [CrossRef]
- Kneebone, J.L.; Daifuku, S.L.; Kehl, J.A.; Wu, G.; Chung, H.T.; Hu, M.Y.; Alp, E.E.; More, K.L.; Zelenay, P.; Holby, E.F.; et al. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. J. Phys. Chem. C 2017, 121, 16283–16290. [Google Scholar] [CrossRef]
- Minke, C.; Suermann, M.; Bensmann, B.; Hanke-Rauschenbach, R. Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis? Int. J. Hydrog. Energy 2021, 46, 23581–23590. [Google Scholar] [CrossRef]
- Stropnik, R.; Sekavčnik, M.; Ferriz, A.M.; Mori, M. Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy. Energy 2018, 165, 824–835. [Google Scholar] [CrossRef]
- Okada, S.; Okinaka, K.; Iwawaki, H.; Furugori, M.; Hashimoto, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Tsuboyama, A.; Takiguchi, T.; et al. Substituent effects of iridium complexes for highly efficient red OLEDs. Dalton Trans. 2005, 1583–1590. [Google Scholar] [CrossRef]
- Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sustain. Energy Rev. 2020, 133, 110043. [Google Scholar] [CrossRef]
- Schmidt, T.; Abbott, J.D. Coronary Stents: History, Design, and Construction. J. Clin. Med. 2018, 7, 126. [Google Scholar] [CrossRef] [Green Version]
- Jorge, C.; Dubois, C. Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices 2015, 8, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Walton, C.; Gergely, S.; Economides, A.P. Platinum Pacemaker Electrodes: Origins and Effects of the Electrode-Tissue Interface Impedance. Pacing Clin. Electrophysiol. 1987, 10, 87–99. [Google Scholar] [CrossRef]
- DiFilippo, F.P.; Brunken, R.C. Do implanted pacemaker leads and ICD leads cause metal-related artifact in cardiac PET/CT? J. Nucl. Med. 2005, 46, 436–443. [Google Scholar] [PubMed]
- Winslow, B.D.; Christensen, M.B.; Yang, W.-K.; Solzbacher, F.; Tresco, P.A. A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Biomaterials 2010, 31, 9163–9172. [Google Scholar] [CrossRef]
- Kang, S.K.; Murphy, R.K.J.; Hwang, S.W.; Lee, S.M.; Harburg, D.V.; Krueger, N.A.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S.; et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76. [Google Scholar] [CrossRef]
- Knosp, H.; Holliday, R.J.; Corti, C.W. Gold in dentistry: Alloys, uses and performance. Gold Bull. 2003, 36, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Nakaya Fountain Pen, Co. Available online: https://www.nakaya.org/en/manual/default.aspx?item=pensaki (accessed on 16 January 2021).
- Osmium. Available online: https://www.rsc.org/periodic-table/element/76/osmium#:~:text=Osmium%20has%20only%20a%20few,chemical%20industry%20as%20a%20catalyst (accessed on 16 January 2021).
- McIntosh Reid. Osmiridium in Tasmania; Tasmanian Department of Mines: Hobart, TAS, Australia, 1921; p. 123. [Google Scholar]
- Rudder, D. Specimen of Native Osmiridium. Available online: https://collection.maas.museum/object/218132 (accessed on 16 January 2021).
- Peters, K.R. Metal deposition by high energy sputtering for high magnification electron microscopy. In Biological Electron Microscopy III; Koehler, J.K., Ed.; Springer: Berlin, Germany, 1986. [Google Scholar]
- Tsolaki, E.; Pitta, P.; Diamadopoulos, E. Electrochemical disinfection of simulated ballast water using Artemia salina as indicator. Chem. Eng. J. 2010, 156, 305–312. [Google Scholar] [CrossRef]
- Tsolaki, E.; Diamadopoulos, E. Technologies for ballast water treatment: A review. J. Chem. Technol. Biotechnol. 2010, 85, 19–32. [Google Scholar] [CrossRef]
- Couderc, C. Platinum Group Metals in Glass Making. Platin. Met. Rev. 2010, 54, 186–191. [Google Scholar] [CrossRef]
- Chancerel, P.; Meskers, C.E.M.; Hagelüken, C.; Rotter, V.S. Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J. Ind. Ecol. 2009, 13, 791–810. [Google Scholar] [CrossRef]
- Ueda, T.; Ichiishi, S.; Okuda, A.; Matsutani, K. Refining and recycling technologies for precious metals. In Metal Sustainability: Global Challenges, Consequences, and Prospects; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 333–360. [Google Scholar]
- Johnson Matthey. Available online: http://www.platinum.matthey.com/about-pgm/applications/industrial/hard-disks (accessed on 26 February 2021).
- Reller, A.; Bublies, T.; Staudinger, T.; Oswald, I.; Meissner, S.; Allen, M. The mobile phone: Powerful communicator and potential metal dissipator. GAIA 2009, 18, 127–135. [Google Scholar] [CrossRef]
- Tan, Q.; Dong, Q.; Liu, L.; Song, Q.; Liang, Y.; Li, J. Potential recycling availability and capacity assessment on typical metals in waste mobile phones: A current research study in China. J. Clean. Prod. 2017, 148, 509–517. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 6 June 2021).
- Banham, D.; Zou, J.; Mukerjee, S.; Liu, Z.; Yang, D.; Zhang, Y.; Peng, Y.; Dong, A. Ultralow platinum loading proton exchange membrane fuel cells: Performance losses and solutions. J. Power Sources 2021, 490, 229515. [Google Scholar] [CrossRef]
- Muhler, M.; Rosowski, F.; Hinrichsen, O.; Hornung, A.; Ertl, G. Ruthenium as catalyst for ammonia synthesis. Stud. Surf. Sci. Catal. 1996, 101 A, 317–326. [Google Scholar]
- Siporin, S.E.; Davis, R.J. Use of kinetic models to explore the role of base promoters on Ru/MgO ammonia synthesis catalysts. J. Catal. 2004, 225, 359–368. [Google Scholar] [CrossRef]
- Cowley, A.; Woodward, B. A healthy future: Platinum in medical applications platinum group metals enhance the quality of life of the global population. Platin. Met. Rev. 2011, 55, 98–107. [Google Scholar] [CrossRef]
- Groothuis, J.; Ramsey, N.F.; Ramakers, G.M.J.; van der Plasse, G. Physiological Challenges for Intracortical Electrodes. Brain Stimul. 2014, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Xue, Q.-S.; Sankar, V.; Nishida, T.; Shaw, G.; Streit, W.J.; Sanchez, J.C. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J. Neural Eng. 2012, 9, 056015. [Google Scholar] [CrossRef]
- Kiilunen, M.; Aitio, A.; Santonen, T. Chapter 50—Platinum∗. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1125–1141. [Google Scholar]
- Iavicoli, I.; Leso, V. Chapter 40—Iridium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 855–878. [Google Scholar]
- Johnson, A.; Shiraishi, T. Biocompatibility of precious metals for medical applications. In Precious Metals for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2014; pp. 37–55. [Google Scholar]
- Umemura, T.; Sato, K.; Kusaka, Y.; Satoh, H. Chapter 49—Palladium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1113–1123. [Google Scholar]
- Dilruba, S.; Kalayda, G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol. 2016, 77, 1103–1124. [Google Scholar] [CrossRef] [PubMed]
- Godlewska-Żyłkiewicz, B.; Sawicka, S.; Karpińska, J. Removal of Platinum and Palladium from Wastewater by Means of Biosorption on Fungi Aspergillus sp. and Yeast Saccharomyces sp. Water 2019, 11, 1522. [Google Scholar] [CrossRef] [Green Version]
- Tytła, M. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in poland—Case study. Int. J. Environ. Res. Public Health 2019, 16, 2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldner, S. Everything You Need to Know about Recycling Your Post-Cremation Metals. Funeral Business Advisor Magazine. 2021. Available online: https://funeralbusinessadvisor.com/everything-you-need-to-know-about-recycling-your-cremation-metals/funeral-business-advisor (accessed on 16 March 2021).
- Stewart, D. Iridium Element Facts. Available online: https://www.chemicool.com/elements/iridium.html (accessed on 3 January 2021).
- Pujadó, P.R.; Rabó, J.A.; Antos, G.J.; Gembicki, S.A. Industrial catalytic applications of molecular sieves. Catal. Today 1992, 13, 113–141. [Google Scholar] [CrossRef]
- Wacławek, S.; Padil, V.V.T.; Černík, M. Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review. Ecol. Chem. Eng. S 2018, 25, 9–34. [Google Scholar] [CrossRef] [Green Version]
- Hagen, J. Industrial Catalysis: A Practical Approach; Wiley: Hoboken, NJ, USA, 2015; pp. 1–522. [Google Scholar]
- Jha, M.K.; Lee, J.C.; Kim, M.S.; Jeong, J.; Kim, B.S.; Kumar, V. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy 2013, 133, 23–32. [Google Scholar] [CrossRef]
- Bullock, R.M.; Che, J.G.; Gagliardi, L.; Chiri, P.J.; Farh, O.K.; Hendo, C.H.; Jone, C.W.; Keit, J.A.; Klosin, J.; Mintee, S.D.; et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 2020, 369, eabc3183. [Google Scholar] [CrossRef]
- Deraedt, C.; D’Halluin, M.; Astruc, D. Metathesis reactions: Recent trends and challenges. Eur. J. Inorg. Chem. 2013, 4881–4908. [Google Scholar] [CrossRef]
- Grubbs, R.H. Olefin metathesis. Tetrahedron 2004, 60, 7117–7140. [Google Scholar] [CrossRef]
- Brown, D.E.; Edmonds, T.; Joyner, R.W.; McCarroll, J.J.; Tennison, S.R. The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesis. Catal. Lett. 2014, 144, 545–552. [Google Scholar] [CrossRef]
- Bielawa, H.; Hinrichsen, O.; Birkner, A.; Muhler, M. The ammonia-synthesis catalyst of the next generation: Barium-promoted oxide-supported ruthenium. Angew. Chem. Int. Ed. 2001, 40, 1061–1063. [Google Scholar] [CrossRef]
- Giddey, S.; Badwal, S.P.S.; Munnings, C.; Dolan, M. Ammonia as a Renewable Energy Transportation Media. ACS Sustain. Chem. Eng. 2017, 5, 10231–10239. [Google Scholar] [CrossRef]
- Saadatjou, N.; Jafari, A.; Sahebdelfar, S. Ruthenium Nanocatalysts for Ammonia Synthesis: A Review. Chem. Eng. Commun. 2015, 202, 420–448. [Google Scholar] [CrossRef]
- Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. Preferential hydrogenation of aldehydes and ketones. J. Am. Chem. Soc. 1995, 117, 10417–10418. [Google Scholar] [CrossRef]
- Giarola, S.; Romain, C.; Williams, C.K.; Hallett, J.P.; Shah, N. Techno-economic assessment of the production of phthalic anhydride from corn stover. Chem. Eng. Res. Des. 2016, 107, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Monflier, E.; Bourdauducq, P.; Couturier, J.-L.; Kervennal, J.; Mortreux, A. Palladium catalyzed telomerization of butadiene with water in a two phase system: Drastic effect of the amine structure on the rate and selectivity. J. Mol. Catal. A Chem. 1995, 97, 29–33. [Google Scholar] [CrossRef]
- Lee, B.I.; Lee, K.H.; Lee, J.S. Telomerization of butadiene with water catalyzed by heterogeneous palladium catalysts. J. Mol. Catal. A Chem. 2000, 156, 283–287. [Google Scholar] [CrossRef]
- Guisnet, M.; Gnep, N.S.; Morin, S. Mechanisms of xylene isomerization over acidic solid catalysts. Microporous Mesoporous Mater. 2000, 35–36, 47–59. [Google Scholar] [CrossRef]
- Theis, J.R.; Ura, J.A.; Li, J.J.; Surnilla, G.G.; Roth, J.M.; Goralski, C.T., Jr. NOx release characteristics of lean NOx traps during rich purges. In Proceedings of the SAE 2003 World Congress & Exhibition, Detroit, MI, USA, 3–7 March 2003; pp. 758–775. [Google Scholar] [CrossRef]
- Gelles, T.; Krishnamurthy, A.; Adebayo, B.; Rownaghi, A.; Rezaei, F. Abatement of gaseous volatile organic compounds: A material perspective. Catal. Today 2020, 350, 3–18. [Google Scholar] [CrossRef]
- He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem. Rev. 2019, 119, 4471–4568. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, A.; Adebayo, B.; Gelles, T.; Rownaghi, A.; Rezaei, F. Abatement of gaseous volatile organic compounds: A process perspective. Catal. Today 2020, 350, 100–119. [Google Scholar] [CrossRef]
- Janssen, F.J. Environmental Catalysis—Stationary Sources. In Environmental Catalysis; Wiley: Hoboken, NJ, USA, 2008; pp. 119–179. [Google Scholar]
- Asakura, H.; Kirihara, M.; Fujita, K.; Hosokawa, S.; Kikkawa, S.; Teramura, K.; Tanaka, T. Fe-Modified CuNi Alloy Catalyst as a Nonprecious Metal Catalyst for Three-Way Catalysis. Ind. Eng. Chem. Res. 2020, 59, 19907–19917. [Google Scholar] [CrossRef]
- Hirakawa, T.; Shimokawa, Y.; Tokuzumi, W.; Sato, T.; Tsushida, M.; Yoshida, H.; Ohyama, J.; Machida, M. Multicomponent 3d Transition-Metal Nanoparticles as Catalysts Free of Pd, Pt, or Rh for Automotive Three-Way Catalytic Converters. ACS Appl. Nano Mater. 2020, 3, 9097–9107. [Google Scholar] [CrossRef]
- Hart, H.; Schuetz, R.D. Organic Chemistry, 4th ed.; Houghton Mifflin Company: Boston, MA, USA, 1972. [Google Scholar]
- Ichihashi, H.; Sato, H. The development of new heterogeneous catalytic processes for the production of ε-caprolactam. Appl. Catal. A Gen. 2001, 221, 359–366. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, H.; Peng, Z.; Gao, J.; Li, B.; Liu, Z.; Liu, S. Selective Hydrogenation of Benzene: Progress of Understanding for the Ru-Based Catalytic System Design. Ind. Eng. Chem. Res. 2019, 58, 13794–13803. [Google Scholar] [CrossRef]
- Neri, G.; Musolino, M.G.; Milone, C.; Pietropaolo, D.; Galvagno, S. Particle size effect in the catalytic hydrogenation of 2,4-dinitrotoluene over Pd/C catalysts. Appl. Catal. A Gen. 2001, 208, 307–316. [Google Scholar] [CrossRef]
- Look Chem, Production of Toluene Diisocyanate (TDI). Available online: https://www.lookchem.com/Chempedia/Chemical-Technology/Organic-Chemical-Technology/7800.html (accessed on 1 March 2021).
- Lakshmi Kantam, M.; Kishore, R.; Yadav, J.; Bhargava, S.K.; Jones, L.A.; Venugopal, A. Chapter 10—Hydrogenation for Fine Chemical Synthesis: Status and Future Perspectives A2—Joshi, Sunil S. In Industrial Catalytic Processes for Fine and Specialty Chemicals; Ranade, V.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 427–462. [Google Scholar]
- Chen, C.; Li, B.; Kanari, M.D.L. Epoxy Adhesives. In Adhesives and Adhesive Joints in Industry; Rudamsk, A., Ed.; Intech Open: London, UK, 2019. [Google Scholar]
- Woodbury, R.P.; Thunberg, J.C.; Van Kouwenber, S.P.; Begonis, W.B. Process for the Preparation of 3-cyano-3,5,5-Trimethylcyclohexanone. European Patent EP0558332, 26 February 1993. [Google Scholar]
- Hofer, R. In Kaisten, syngenta operates the world’s largest plant in which an enantioselective catalytic hydrogenation is performed. How did this come about? Chimia 2005, 59, 10–12. [Google Scholar] [CrossRef]
- Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: Chemical effects and scaleup. Water Res. 2003, 37, 1223–1230. [Google Scholar] [CrossRef]
- Antos, G.J.; Abdullah, M.A. Catalytic Naphtha Reforming, Revised and Expanded, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- National Research Council. Platinum Group Metals 1997; The National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- Hughes, A.E.; Pratt, K.C.; Tsai, P. Examination of de-coking of promoted (Co, Ni) Mo/γ-Al2O3 catalysts by X-ray photoelectron spectroscopy. Top. Catal. 1992, 90, 117–129. [Google Scholar] [CrossRef]
- Yang, C.-J. An impending platinum crisis and its implications for the future of the automobile. Energy Policy 2009, 37, 1805–1808. [Google Scholar] [CrossRef]
- Data, O.W.i. Cars, Planes, Trains: Where do CO2 Emissions from Transport Come from? Available online: https://ourworldindata.org/co2-emissions-from-transport (accessed on 1 March 2021).
- IEA. Global EV Outlook 2020. Available online: https://www.iea.org/reports/global-ev-outlook-2020 (accessed on 19 January 2021).
- Miller, E.L.; Thompson, S.T.; Randolph, K.; Hulvey, Z.; Rustagi, N.; Satyapal, S. US Department of Energy hydrogen and fuel cell technologies perspectives. MRS Bull. 2020, 45, 57–64. [Google Scholar] [CrossRef]
- International Partnership for Hydrogen and Fuel Cells in the Economy. Available online: https://www.iphe.net/ (accessed on 1 March 2021).
- Ju, H.; Badwal, S.; Giddey, S. A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production. Appl. Energy 2018, 231, 502–533. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts. Adv. Mater. 2019, 31, 1802234. [Google Scholar] [CrossRef] [PubMed]
- Evans, S. Platinum Potential: How Batteries Could Open the Door to a Mining Rush. Available online: https://www.mining-technology.com/features/platinum-potential-how-batteries-could-open-the-door-to-a-mining-rush/ (accessed on 17 August 2021).
- Arnold, M.; Pohjalainen, E.; Steger, S.; Kaerger, W.; Welink, J.-H. Economic Viability of Extracting High Value Metals from End of Life Vehicles. Sustainability 2021, 13, 1902. [Google Scholar] [CrossRef]
- Ortego, A.; Valero, A.; Valero, A.; Iglesias, M. Downcycling in automobile recycling process: A thermodynamic assessment. Resour. Conserv. Recycl. 2018, 136, 24–32. [Google Scholar] [CrossRef]
- Iglesias-Émbil, M.; Valero, A.; Ortego, A.; Villacampa, M.; Vilaró, J.; Villalba, G. Raw material use in a battery electric car—A thermodynamic rarity assessment. Resour. Conserv. Recycl. 2020, 158, 104820. [Google Scholar] [CrossRef]
- Choi, J.S.; Kočí, P. Automotive Emission Control Catalysts. Catalysts 2016, 6, 155. [Google Scholar] [CrossRef] [Green Version]
- Böck, R. Automotive catalysts. In Palladium Emissions in the Environment: Analytical Methods, Environmental Assessment and Health Effects; Zereini, F., Alt, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 3–23. [Google Scholar]
- Matthey, J. The Components of Autocatalyst Demand. Platinum 2013, Special Feature 31–34. Available online: http://www.platinum.matthey.com/documents/market-review/2013/special-feature-download/the-components-of-autocatalyst-demand-.pdf (accessed on 21 February 2021).
- Zhang, K.; Hu, J.; Gao, S.; Liu, Y.; Huang, X.; Bao, X. Sulfur content of gasoline and diesel fuels in northern China. Energy Policy 2010, 38, 2934–2940. [Google Scholar] [CrossRef]
- Zheng, Q.; Farrauto, R.; Deeba, M.; Valsamakis, I. Part I: A Comparative Thermal Aging Study on the Regenerability of Rh/Al2O3 and Rh/CexOy-ZrO2 as Model Catalysts for Automotive Three Way Catalysts. Catalysts 2015, 5, 1770. [Google Scholar] [CrossRef]
- Johnson, T. Vehicular Emissions in Review. SAE Int. J. Engines 2016, 9, 1258–1275. [Google Scholar] [CrossRef]
- West, B.; Huff, S.; Parks, J.; Lewis, S.; Choi, J.S.; Partridge, W.; Storey, J. Assessing reductant chemistry during in-cylinder regeneration of diesel lean NOx traps. SAE Trans. 2004, 1975–1985. [Google Scholar] [CrossRef]
- Higgins, A.; Paevere, P.; Gardner, J.; Quezada, G. Combining choice modelling and multi-criteria analysis for technology diffusion: An application to the uptake of electric vehicles. Technol. Forecast. Soc. Change 2012, 79, 1399–1412. [Google Scholar] [CrossRef]
- Ikemezu, Y. How Palladium and Platinum’s Success Is Linked to Electric Vehicles. Available online: https://www.theassay.com/articles/how-palladium-and-platinums-success-is-linked-to-electric-vehicles/ (accessed on 21 February 2021).
- International Energy Agency. Global EV Outlook 2018; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Brandon, N.P.; Parkes, M.A. Fuel cells: Materials. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Types of Fuel Cells. Available online: https://www.energy.gov/eere/fuelcells/types-fuel-cells (accessed on 17 January 2021).
- Application 28—Development of fuel cells. In Nanoparticle Technology Handbook; Hosokawa, M.; Nogi, K.; Naito, M.; Yokoyama, T. (Eds.) Elsevier: Amsterdam, The Netherlands, 2008; pp. 538–543. [Google Scholar]
- Pollet, B.G.; Kocha, S.S.; Staffell, I. Current status of automotive fuel cells for sustainable transport. Curr. Opin. Electrochem. 2019, 16, 90–95. [Google Scholar] [CrossRef]
- Eapen, D.E.; Suseendiran, S.R.; Rengaswamy, R. 2—Phosphoric acid fuel cells. In Compendium of Hydrogen Energy; Barbir, F., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing: Oxford, UK, 2016; pp. 57–70. [Google Scholar]
- Kordesch, K.; Hacker, V.; Gsellmann, J.; Cifrain, M.; Faleschini, G.; Enzinger, P.; Fankhauser, R.; Ortner, M.; Muhr, M.; Aronson, R.R. Alkaline fuel cells applications. J. Power Sources 2000, 86, 162–165. [Google Scholar] [CrossRef]
- Kruusenberg, I.; Matisen, L.; Shah, Q.; Kannan, A.M.; Tammeveski, K. Non-platinum cathode catalysts for alkaline membrane fuel cells. Int. J. Hydrog. Energy 2012, 37, 4406–4412. [Google Scholar] [CrossRef]
- Kamarudin, S.K.; Achmad, F.; Daud, W.R.W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrog. Energy 2009, 34, 6902–6916. [Google Scholar] [CrossRef]
- Munjewar, S.S.; Thombre, S.B.; Mallick, R.K. Approaches to overcome the barrier issues of passive direct methanol fuel cell—Review. Renew. Sustain. Energy Rev. 2017, 67, 1087–1104. [Google Scholar] [CrossRef]
- Klingenhof, M.; Hauke, P.; Brückner, S.; Dresp, S.; Wolf, E.; Nong, H.N.; Spöri, C.; Merzdorf, T.; Bernsmeier, D.; Teschner, D.; et al. Modular Design of Highly Active Unitized Reversible Fuel Cell Electrocatalysts. ACS Energy Lett. 2021, 6, 177–183. [Google Scholar] [CrossRef]
- Wagner, F.T.; Lakshmanan, B.; Mathias, M.F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 2010, 1, 2204–2219. [Google Scholar] [CrossRef]
- Tian, X.; Lu, X.F.; Xia, B.Y.; Lou, X.W.D. Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule 2020, 4, 45–68. [Google Scholar] [CrossRef]
- Ganesan, A.; Narayanasamy, M. Ultra-low loading of platinum in proton exchange membrane-based fuel cells: A brief review. Mater. Renew. Sustain. Energy 2019, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.L.; Randolph, K.; Peterson, D.; Rustagi, N.; Cierpik-Gold, K.; Klahr, B.; Gomez, J.C. Innovative approaches to addressing the fundamental materials challenges in hydrogen and fuel cell technologies. MRS Advances 2016, 1, 3107–3119. [Google Scholar] [CrossRef]
- Hao, H.; Geng, Y.; Tate, J.E.; Liu, F.; Sun, X.; Mu, Z.; Xun, D.; Liu, Z.; Zhao, F. Securing Platinum-Group Metals for Transport Low-Carbon Transition. One Earth 2019, 1, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Wittstock, R.; Pehlken, A.; Wark, M. Challenges in automotive fuel cells recycling. Recycling 2016, 1, 343. [Google Scholar] [CrossRef] [Green Version]
- Fairchild, M.R.; Taylor, R.; Berlin, C.; Wong, C.; Ma, B.; Balachandran, U. Thin-film high voltage capacitors on ultra-thin glass for electric drive vehicle inverter applications. SAE Tech. Pap. 2014, 1. [Google Scholar] [CrossRef]
- Slater, D. Platinum Group Metals Take Another Step Closer to Use in Battery Electric Vehicles. Available online: https://www.miningweekly.com/article/platinum-group-metals-take-another-step-closer-to-use-in-battery-electric-vehicles-2021-01-19/rep_id:3650 (accessed on 21 February 2021).
- Kurien, C.; Srivastava, A.K.; Molere, E. Emission control strategies for automotive engines with scope for deployment of solar based e-vehicle charging infrastructure. Environ. Prog. Sustain. Energy 2020, 39, 13267. [Google Scholar] [CrossRef]
- Saurat, M.; Bringezu, S. Platinum group metal flows of europe, part II exploring the technological and institutional potential for reducing environmental impacts. J. Ind. Ecol. 2009, 13, 406–421. [Google Scholar] [CrossRef]
- Evangelisti, S.; Tagliaferri, C.; Brett, D.J.L.; Lettieri, P. Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. J. Clean. Prod. 2017, 142, 4339–4355. [Google Scholar] [CrossRef]
- Bernhart, W.; Riederle, S.; Yoon, M.; Aulbur, W.G. Fuel Cells—A Realistic Alternative for Zero Emission? Auto Tech Rev. 2014, 3, 20–23. [Google Scholar] [CrossRef]
- Bermudez, J.M.H.T. Hydrogen; IEA: Paris, France, 2020. [Google Scholar]
- Wind, J. 1—Hydrogen-fueled road automobiles—Passenger cars and buses. In Compendium of Hydrogen Energy; Ball, M., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing: Oxford, UK, 2016; pp. 3–21. [Google Scholar]
- Notter, D.A.; Kouravelou, K.; Karachalios, T.; Daletou, M.K.; Haberland, N.T. Life cycle assessment of PEM FC applications: Electric mobility and μ-CHP. Energy Environ. Sci. 2015, 8, 1969–1985. [Google Scholar] [CrossRef]
- Simons, A.; Bauer, C. A life-cycle perspective on automotive fuel cells. Appl. Energy 2015, 157, 884–896. [Google Scholar] [CrossRef]
- Banham, D.; Ye, S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. ACS Energy Lett. 2017, 2, 629–638. [Google Scholar] [CrossRef]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Ren, X.; Lv, Q.; Liu, L.; Liu, B.; Wang, Y.; Liu, A.; Wu, G. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels 2020, 4, 15–30. [Google Scholar] [CrossRef]
- Kongkanand, A.; Mathias, M.F. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137. [Google Scholar] [CrossRef]
- Mortensen, J.J.; Ganduglia-Pirovano, M.V.; Hansen, L.B.; Hammer, B.; Stoltze, P.; Nørskov, J.K. Nitrogen adsorption on Fe(111), (100), and (110) surfaces. Surf. Sci. 1999, 422, 8–16. [Google Scholar] [CrossRef]
- Logadottir, A.; Rod, T.H.; Nørskov, J.K.; Hammer, B.; Dahl, S.; Jacobsen, C.J.H. The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231. [Google Scholar] [CrossRef]
- Dahl, S.; Logadottir, A.; Jacobsen, C.J.H.; Norskov, J.K. Electronic factors in catalysis: The volcano curve and the effect of promotion in catalytic ammonia synthesis. Appl. Catal. A Gen. 2001, 222, 19–29. [Google Scholar] [CrossRef]
- Strongin, D.R.; Carrazza, J.; Bare, S.R.; Somorjai, G.A. The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J. Catal. 1987, 103, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Homann, K.; Kuhlenbeck, H.; Freund, H.J. N2 adsorption and dissociation on thin iron films on W(110). Surf. Sci. 1995, 327, 216–224. [Google Scholar] [CrossRef]
- Mortensen, J.J.; Hansen, L.B.; Hammer, B.; Nørskov, J.K. Nitrogen adsorption and dissociation on Fe(111). J. Catal. 1999, 182, 479–488. [Google Scholar] [CrossRef]
- Dumesic, J.A.; Topsøe, H.; Boudart, M. Surface, catalytic and magnetic properties of small iron particles. III. Nitrogen induced surface reconstruction. J. Catal. 1975, 37, 513–522. [Google Scholar] [CrossRef]
- Imbihl, R.; Behm, R.J.; Ertl, G.; Moritz, W. The structure of atomic nitrogen adsorbed on Fe(100). Surf. Sci. 1982, 123, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Strongin, D.R.; Bare, S.R.; Somorjai, G.A. The effects of aluminum oxide in restructuring iron single crystal surfaces for ammonia synthesis. J. Catal. 1987, 103, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, C.J.H.; Dahl, S.; Clausen, B.G.S.; Bahn, S.; Logadottir, A.; Nørskov, J.K. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 2001, 123, 8404–8405. [Google Scholar] [CrossRef]
- Ertl, G. Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A Vac. Surf. Film. 1983, 1, 1247–1253. [Google Scholar] [CrossRef]
- Lubkowski, K.; Grzmil, B.; Arabczyk, W. Activation of the prereduced ammonia iron catalyst. Catal. Commun. 2008, 9, 2099–2102. [Google Scholar] [CrossRef]
- Bosch, H.; van Ommen, J.G.; Gellings, P.J. On the role of alkali metals in ammonia synthesis. Appl. Catal. 1985, 18, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Cai, T.; Hanson, J.C.; Rodriguez, J.A.; Hrbek, J. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: A study of the model catalysts for ammonia synthesis. J. Am. Chem. Soc. 2004, 126, 8576–8584. [Google Scholar] [CrossRef]
- You, Z.; Inazu, K.; Aika, K.i.; Baba, T. Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis. J. Catal. 2007, 251, 321–331. [Google Scholar] [CrossRef]
- Kowalczyk, Z.; Krukowski, M.; Raróg-Pilecka, W.; Szmigiel, D.; Zielinski, J. Carbon-based ruthenium catalyst for ammonia synthesis: Role of the barium and caesium promoters and carbon support. Appl. Catal. A Gen. 2003, 248, 67–73. [Google Scholar] [CrossRef]
- Aika, K.I.; Niwa, Y. Basic concepts and properties of new generation ammonia synthesis catalysts for industrial use. Stud. Surf. Sci. Catal. 1999, 121, 327–332. [Google Scholar] [CrossRef]
- Kurzman, J.A.; Misch, L.M.; Seshadri, R. Chemistry of precious metal oxides relevant to heterogeneous catalysis. Dalton Trans. 2013, 42, 14653–14667. [Google Scholar] [CrossRef]
- Yandulov, D.V.; Schrock, R.R.; Rheingold, A.L.; Ceccarelli, C.; Davis, W.M. Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents. Inorg. Chem. 2003, 42, 796–813. [Google Scholar] [CrossRef] [PubMed]
- Hellman, A.; Baerends, E.J.; Biczysko, M.; Bligaard, T.; Christensen, C.H.; Clary, D.C.; Dahl, S.; van Harrevelt, R.; Honkala, K.; Jonsson, H.; et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 2006, 110, 17719–17735. [Google Scholar] [CrossRef] [PubMed]
- Bibra, E.M.; Connelly, E.; Gorner, M.; Lowans, C.; Paoli, L.; Tattini, J.; Texter, J. Global EV Outlook 2021; International Energy Association: Paris, France, 2021; p. 97. [Google Scholar]
- Gröger, O.; Gasteiger, H.A.; Suchsland, J.-P. Review—Electromobility: Batteries or Fuel Cells? J. Electrochem. Soc. 2015, 162, A2605–A2622. [Google Scholar] [CrossRef]
- Saurat, M.; Bringezu, S. Platinum group metal flows of Europe, part I: Global supply, use in industry, and shifting of environmental impacts. J. Ind. Ecol. 2008, 12, 754–767. [Google Scholar] [CrossRef]
- D’Adamo, I.; Ferella, F.; Gastaldi, M.; Maggiore, F.; Rosa, P.; Terzi, S. Towards sustainable recycling processes: Wasted printed circuit boards as a source of economic opportunities. Resour. Conserv. Recycl. 2019, 149, 455–467. [Google Scholar] [CrossRef]
- Hagelüken, C. Recycling the platinum group metals: A European perspective. Platin. Met. Rev. 2012, 56, 29–35. [Google Scholar] [CrossRef]
- Bahaloo-Horeh, N.; Mousavi, S.M. Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. J. Hazard. Mater. 2020, 400, 123186. [Google Scholar] [CrossRef]
- Hagelüken, C. Closing the loop—Recycling of automotive catalysts. Metall 2007, 61, 24–39. [Google Scholar]
- Stropnik, R.; Lotrič, A.; Bernad Montenegro, A.; Sekavčnik, M.; Mori, M. Critical materials in PEMFC systems and a LCA analysis for the potential reduction of environmental impacts with EoL strategies. Energy Sci. Eng. 2019, 7, 2519–2539. [Google Scholar] [CrossRef]
- Smith, M.N. The Number of Cars is Set to Double by 2040. Available online: http://webforum.org/agenda/2016/04/the-number-of-cars-worlwide-is-set-to-double-by-2040 (accessed on 19 September 2021).
- Trinh, H.B.; Lee, J.C.; Suh, Y.J.; Lee, J. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy. Waste Manag. 2020, 114, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Parkes, G.D.; Mellor, J.W. Mellor’s Modern Inorganic Chemistry, 2nd ed.; Longmans Green and Co.: London, UK, 1946; p. 915. [Google Scholar]
- Morcali, M.H. A new approach to recover platinum-group metals from spent catalytic converters via iron matte. Resour. Conserv. Recycl. 2020, 159. [Google Scholar] [CrossRef]
- Duclos, L.; Lupsea, M.; Mandil, G.; Svecova, L.; Thivel, P.-X.; Laforest, V. Environmental assessment of proton exchange membrane fuel cell platinum catalyst recycling. J. Clean. Prod. 2017, 142, 2618–2628. [Google Scholar] [CrossRef]
- Carmo, M.; Keeley, G.P.; Holtz, D.; Grube, T.; Robinius, M.; Müller, M.; Stolten, D. PEM water electrolysis: Innovative approaches towards catalyst separation, recovery and recycling. Int. J. Hydrog. Energy 2019, 44, 3450–3455. [Google Scholar] [CrossRef]
- Duclos, L.; Svecova, L.; Laforest, V.; Mandil, G.; Thivel, P.X. Process development and optimization for platinum recovery from PEM fuel cell catalyst. Hydrometallurgy 2016, 160, 79–89. [Google Scholar] [CrossRef]
- Pawlak, J.; Lodyga-Chruścińska, E.; Chrustowicz, J. Fate of platinum metals in the environment. J. Trace Elem. Med. Biol. 2014, 28, 247–254. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F. Airborne particulate matter, platinum group elements and human health: A review of recent evidence. Sci. Total Environ. 2009, 407, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chellam, S. Estimating light-duty vehicles’ contributions to ambient PM2.5 and PM10 at a near-highway urban elementary school via elemental characterization emphasizing rhodium, palladium, and platinum. Sci. Total Environ. 2020, 747, 141268. [Google Scholar] [CrossRef] [PubMed]
- Zereini, F.; Wiseman, C.; Püttmann, W. Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ. Sci. Technol. 2007, 41, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Alsohaimi, I.H.; El-Hashemy, M.A.; Al-Ruwaili, A.G.; Seaf El-Nasr, T.A.; Almuaikel, N.S. Assessment of Trace Elements in Urban Road Dust of a City in a Border Province Concerning Their Levels, Sources, and Related Health Risks. Arch. Environ. Contam. Toxicol. 2020, 79, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Ek, K.H.; Morrison, G.M.; Rauch, S. Environmental routes for platinum group elements to biological materials—A review. Sci. Total Environ. 2004, 334–335, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Dubiella-Jackowska, A.; Kudłak, B.; Polkowska, Z.; Namieśnik, J. Environmental fate of traffic-derived platinum group metals. Crit. Rev. Anal. Chem. 2009, 39, 251–271. [Google Scholar] [CrossRef]
- Artelt, S.; Creutzenberg, O.; Kock, H.; Levsen, K.; Nachtigall, D.; Heinrich, U.; Rühle, T.; Schlögl, R. Bioavailability of fine dispersed platinum as emitted from automotive catalytic converters: A model study. Sci. Total Environ. 1999, 228, 219–242. [Google Scholar] [CrossRef]
- Beasley, D.E.; Koltz, A.M.; Lambert, J.E.; Fierer, N.; Dunn, R.R. The evolution of stomach acidity and its relevance to the human microbiome. PLoS ONE 2015, 10, e0134116. [Google Scholar] [CrossRef]
- Matodzi, V.; Legodi, M.A.; Tavengwa, N.T. Determination of platinum group metals in dust, water, soil and sediments in the vicinity of a cement manufacturing plant. SN Appl. Sci. 2020, 2, 1090. [Google Scholar] [CrossRef]
Ore Body | Pt g/t | Pd g/t | Rh g/t | Ru g/t | Ir g/t | Os g/t | Total PGM g/t | PGM Reserves Tonnes a |
---|---|---|---|---|---|---|---|---|
South Africa | 63,000 | |||||||
Merensky Reef (H) | 2.7 | 1.4 | 0.16 | 0.33 | 0.05 | 0.04 | 4.68 | |
- East Bushveld (M) | 2.32 | 1.22 | 0.13 | 0.23 | 0.04 | - | ||
- West Bushveld (M) | 3.6 | 1.6 | 0.28 | 0.63 | 0.14 | - | ||
Platreef (H) | 1.9 | 1.9 | 0.12 | 0.14 | 0.04 | 0.03 | 4.13 | |
- North Bushveld (M) | 0.82 | 1.1 | 0.08 | - | - | - | 2.0 | |
UG2 (H) | 2.0 | 1.3 | 0.34 | 0.45 | 0.13 | 0.05 | 4.27 | |
- East Bushveld (M) | 2.42 | 2.06 | 0.45 | 0.76 | 0.18 | - | ||
- West Bushveld (M) | 2.89 | 1.48 | 0.54 | 0.93 | 0.22 | - | ||
Zimbabwe | 1200 | |||||||
Hartely Complex | 2.6 | 1.8 | 0.21 | - | - | - | 4.61 | |
USA | 900 | |||||||
Stillwater Complex | 3.3 | 11 | 0.6 | 0.36 | 0.21 | - | 15.47 | |
Canada | 310 | |||||||
Sudbury Complex | 0.3 | 0.4 | 0.03 | 0.04 | 0.01 | 0.01 | 0.79 | |
Lac-des lles | 0.2 | 2.3 | - | - | - | - | 2.5 | |
Russia | 3900 | |||||||
Noril’sk | 2.5 | 7 | 0.24 | - | - | - | 9.74 | |
Reserve (tonnes) | 32,374 | 24,433 | 3909 | 6731 | 1530 | 333 | - | 69,310 |
Lifetime (years) b | 202 | 116 | 166 | 201 | 224 | - | - | - |
Element | Ru b | Rh a | Pd a | Os b | Ir b | Pt a |
---|---|---|---|---|---|---|
South Africa | 29.6 | 19.2 (19.4) | 79.1 (81.7) | 1.5 | 6.7 | 138.9 (136.8) |
Russia | - | 2.2 (2.1) | 92.6 (92.9) | 21.4 (22.4) | ||
Nth America c | 0.67 | 0.7 (0.6) | 29.8 (29.7) | 0.17 | 0.17 | 10.3 (10.1) |
Zimbabwe | - | 1.3 (1.2) | 12.2 (11.8) | - | - | 14.7 (14.0) |
Other | - | 0.2 (0.2) | 4.2 (3.8) | - | - | 4.7 (4.3) |
Total | - | 23.6 (23.5) | 217.9 (219.9) | - | - | 190.0 (187.6) |
Classification | Application | PGM | Substitution |
---|---|---|---|
Jewellery | Pt, Ir, Pd Alloys 950, 750, 590 & white gold [28,29] | Au (as a value substitute). White gold Ni, Zn & Sn [29,30] as aesthetic substitutes. | |
Bright Nickel | Rh | Rh strike for plating on soft soldered jewellery [31] | |
Glass | Dies for fibreglass | Pt-Rh (up to 40%) | Zirconia/Pt [32]. The non-wettability of Pt is a key property here, so there may be no real alternative. Dilution of the PGM content possible. |
Crucibles | Pt-Rh (up to 40%) Ir (most demanding applications) | Alumina, Zirconia [33], as with fiberglass wettability may be an issue with oxide crucibles at high temperature. Tin oxide crucibles [34] These are used in single crystal manufacture where the non-reactivity is a key property [35]. There is probably no good substitute. | |
Electronics & Electrical | Hard Discs | CrCoPt alloy, Ru layer | No direct replacement but alternative technologies, e.g., solid state devices. Dissipative |
Filters | Ir [36] | Li tantalate filters for mobile phones [37] Dissipative | |
Capacitors | Pd | Multilayer ceramic capacitors (MLCC) [38] Sub: Ni as replacement [39] Dissipative | |
Contacts | Rh, Ru, Ir | Used for hardening contacts such as in reed switches [40,41] Sub: Reversion to older technology Dissipative | |
Mobile Phones | Pd, Pt | Largely as MLCCs and connectors. 0.009–0.015 g/phone, 0.004 g/phone [42] Combine 2 phone types. Dissipative | |
Conductive pastes | Pd-Ag | Printable pastes used in circuitry [43]. Reversion to older technologies based on Au. | |
Connectors | Pd/Ni | Connectors. Pd corrosion resistance and hardness make them superior [29]. Return to hard gold. Dissipative | |
Hybrid integrated circuits | Ag-Pd connecting tracks [35] | These can be produced using conductive pastes. Again, reversion to older technologies such as Au. | |
Resistors | RuO2 [44] | Ru thick film resistors | |
Fuel Cells (NB JM classification has Fuel cells under electric and electrical) | PEM fuel cell: Pt, Pt-transition metal alloys [45] | Catalyst dilution e.g., Pt3Co, Pt3Ni [46] Sub: Fe-N-C catalyst [47], Fe(Co)-N-C [48,49] | |
Electrolysers | Pt, Ir in proton exchange Membranes [19,50] | Pt used as cathode catalyst for hydrogen evolution and Ir used as anode catalyst for oxygen evolution as catalyst There is some dissipation on the recycling side. | |
UPS | Pt [51] | Uninterrupted power supplies Reversion to older technology | |
OLEDs | Ir organometallics [52] | Pt, Pd also used [53] | |
Medical | Stents & Inserts | Pt-Cr [54] | Due to its corrosion resistance and very rare allergic reaction this is a desirable material to use in the body. Pt-Cr have an advantage due to higher X-ray absorption [55]. Alternative: Cobalt-chromium material or Nitonol for self- expanding stents [54]. Dissipative |
Pacemakers | Pt, [56] Pt-Ir (10–20%) [57] | These are used as pacing electrodes. In addition to the properties listed above, its electrical conductivity makes it desirable to use in these types of devices. Dissipative | |
Defibrillators | Pt, Pt-Ir | These are used to provide a high energy cardioversion pulse for defibrillation [57]. See entry above for properties. Alternative: Pt-coated Tantalum electrodes [57]. Dissipative | |
Brain Pacemakers | Pt-Ir | See above for properties. Alternative: Silicon electrodes are under investigation [58,59] Dissipative | |
Dental Fillings | Pt-Pd (commonly alloyed with Au) [60] Pd-alloys(Pd-Cu, Pd-Ag, Pd-Ag-Au) [29] | Composites for fillings, Au, Almagums (Au, Mg, Ag, Sn, Cu). In some jurisdictions filling compositions may be regulated [60] Dissipative | |
Other | Fountain pen nib tips | Ir, Os, Ru, Pt for hardening nibs [61,62] | Iridosmine (65% (Ir, Os, Ru) and 35%Pt) [61]. Osmiridium (for example of composition see [63] is also used [64]. These are chosen for their wear and corrosion resistance. Alternatives: Re and W Dissipative |
Scientific | Pt electrodes Pt [65] Ir | Electrochemistry—counter electrodes Alternative Ti. SEM sample coating | |
High Temperature Thermocouples | Type B, S and R PtRh Type P Pd/Pt/Au-Au/Pd | These come in a range of compositions with Pt-Rh v Pt couples or Pt-Rh v Pt-Rh where the Rh content is different. Also known as Platinel II alloy. Alternative: Perhaps Re-W based thermocouples might be able to replace the PGM thermocouples, but it depends on the voltage generated in the temperature range of interest. | |
Ballast | Pt-Ir Electrodes | Ballast sterilization anodes [66] Alternative: other sterilisation methods [67] |
Scenario | % of Market | ICEV Demand Without EV (Tonnes) 1 | EV Demand (tonnes) 2 | ICEV Demand (Tonnes) 3 | Total Pt Demand (EV + ICEV) |
---|---|---|---|---|---|
Stated Policies | 17.3 | 134.3 | 7.6 | 110.8 | 118.4 |
Sustainable Development | 36 | 134.3 | 29.5 | 85.9 | 115.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes, A.E.; Haque, N.; Northey, S.A.; Giddey, S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 93. https://doi.org/10.3390/resources10090093
Hughes AE, Haque N, Northey SA, Giddey S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources. 2021; 10(9):93. https://doi.org/10.3390/resources10090093
Chicago/Turabian StyleHughes, Anthony E., Nawshad Haque, Stephen A. Northey, and Sarbjit Giddey. 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts" Resources 10, no. 9: 93. https://doi.org/10.3390/resources10090093
APA StyleHughes, A. E., Haque, N., Northey, S. A., & Giddey, S. (2021). Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources, 10(9), 93. https://doi.org/10.3390/resources10090093