Relationship of Photosynthetic Activity of Polygonum acuminatum and Ludwigia lagunae with Physicochemical Aspects of Greywater in a Zero-Liquid Discharge System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Species
2.1.1. Irrigation Solutions
2.1.2. Experimental Set-Up
2.2. Measurements of Plant Growth
2.3. Photosynthetic Activity
2.4. Physicochemical Monitoring
2.5. Statistical Analysis
3. Results
3.1. Plant Performance with Greywater Irrigation
3.1.1. Plant Growth
3.1.2. Photosynthetic Activity
3.1.3. Photosynthetic Activity and Physicochemical Characteristics
3.1.4. Performance of the Mesocosms for the Treatment of Greywater
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samayamanthula, D.R.; Sabarathinam, C.; Bhandary, H. Treatment and Effective Utilization of Greywater. Appl. Water Sci. 2019, 9, 90. [Google Scholar] [CrossRef]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A Review of Nature-Based Solutions for Greywater Treatment: Applications, Hydraulic Design, and Environmental Benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater Recycling in Buildings Using Living Walls and Green Roofs: A Review of the Applicability and Challenges. Sci. Total Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef]
- Arden, S.; Ma, X. Constructed Wetlands for Greywater Recycle and Reuse: A Review. Sci. Total Environ. 2018, 630, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Plants Used in Constructed Wetlands with Horizontal Subsurface Flow: A Review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Paulo, P.L.; Azevedo, C.; Begosso, L.; Galbiati, A.F.; Boncz, M.A. Natural Systems Treating Greywater and Blackwater On-Site: Integrating Treatment, Reuse and Landscaping. Ecol. Eng. 2013, 50, 95–100. [Google Scholar] [CrossRef]
- Vymazal, J.; Sochacki, A.; Fučík, P.; Šereš, M.; Kaplická, M.; Hnátková, T.; Chen, Z. Constructed Wetlands with Subsurface Flow for Nitrogen Removal from Tile Drainage. Ecol. Eng. 2020, 155, 105943. [Google Scholar] [CrossRef]
- Kulshreshtha, N.M.; Verma, V.; Soti, A.; Brighu, U.; Gupta, A.B. Exploring the Contribution of Plant Species in the Performance of Constructed Wetlands for Domestic Wastewater Treatment. Bioresour. Technol. Rep. 2022, 18, 101038. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring. Sports Med. 2013, 43, 773–781. [Google Scholar] [CrossRef]
- Brix, H. Plants Used in Constructed Wetlands and Their Functions. In Proceedings of the 1st International Seminar on the Use of Aquatic Macrophites for Wastewater Treatment in Constructed Wetlands, Lisbonne, Portugal, 8–10 May 2003. [Google Scholar]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9780429137952. [Google Scholar]
- Etchepare, R.; van der Hoek, J.P. Health Risk Assessment of Organic Micropollutants in Greywater for Potable Reuse. Water Res. 2015, 72, 186–198. [Google Scholar] [CrossRef]
- Sandoval, L.; Zamora-Castro, S.; Vidal-Álvarez, M.; Marín-Muñiz, J. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef]
- Caputo, L.Z.S.; Siqueira, C.S.; Caputo, B.A.; Bacchi, C.G.V.; Magalhães Filho, F.J.C.; Paulo, P.L. Effects of Graywater on the Growth and Survival of Ornamental Plants in Nature-Based Systems. J. Environ. Sci. Health Part A 2019, 54, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.B.; de Oliveira, P.J.A.; Árpád Boncz, M.; Loureiro Paulo, P. A Modified Constructed Wetland System for Greywater Treatmen. Desalin. WATER Treat. 2017, 91, 31–39. [Google Scholar] [CrossRef]
- de Jesus, G.S.; Micheletti, A.C.; Takahashi, K.M.; Matayoshi, T.; Pott, A.; Yoshida, N.C. Antimicrobial Potential of Pectis substriata Essential Oil (Asteraceae) against Drug-Resistant Staphylococcus Strains. An. Acad. Bras. Cienc. 2020, 92, 1–10. [Google Scholar] [CrossRef]
- Takahashi, K.M.; Nakasato, J.A.; Michelletti, A.C.; Pott, A.; Yoshida, N.C.; Paulo, P.L. Uso de Macrófitas Do Pantanal Para Aprimorar Sistemas Naturais de Tratamento. In Proceedings of the 4a Simpósio Brasileiro Sobre Wetlands Construídos, Belo Horizonte, Brazil, 31 July–2 August 2019. [Google Scholar]
- Pedralli, G. Macrófitas Aquáticos: Centros de Diversidade. Ciência Hoje 1992, 14, 56–57. [Google Scholar]
- Pott, A.; Oliveira, A.; Damasceno-Junior, G.; Silva, J. Plant Diversity of the Pantanal Wetland. Braz. J. Biol. 2011, 71, 265–273. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; California Agricultural Experiment Station: Berkley, CA, USA, 1950; pp. 1–32. [Google Scholar]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Kao, W.-Y.; Tsai, T.-T. Tropic Leaf Movements, Photosynthetic Gas Exchange, Leaf Δ13C and Chlorophyll a Fluorescence of Three Soybean Species in Response to Water Availability. Plant Cell Environ. 1998, 21, 1055–1062. [Google Scholar] [CrossRef]
- Holub, O.; Sseufferheld, M.J.; Gohlke, C.; Heiss, G.J.; Clegg, R.M. Fluorescence Lifetime Imaging Microscopy of Chlamydomonas reinhardtii: Non-Photochemical Quenching Mutants and the Effect of Photosynthetic Inhibitors on the Slow Chlorophyll Fluorescence Transient. J. Microsc. 2007, 226, 90–120. [Google Scholar] [CrossRef]
- Zhao, C.-M.; Wang, G.-X.; Wei, X.-P.; Deng, J.-M.; Cheng, D.-L. Effects of Groundwater Depth Variation on Photosynthesis and Photoprotection of Elaeagnus angustifolia L. Trees 2006, 21, 55–63. [Google Scholar] [CrossRef]
- APHA, A.P.H.A. Standard Methods for the Examination of Water and Wastewater; Pharmabooks: New York, NY, USA, 2017; Volume 23, ISBN 087553287X. [Google Scholar]
- Furbank, R.T.; Hatch, M.D.; Jenkins, C.L.D. Chapter 18 Photosynthesis: Mechanism and Regulation 437. In Photosynthesis: Physiology and Metabolism; Kluwer Academic Publishers: Norwell, MA, USA, 2000; pp. 435–457. [Google Scholar]
- Lambers, H.; Oliveira, R.S. Plant Physiological Ecology; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-29638-4. [Google Scholar]
- Öquist, G.; Chow, W.S.; Anderson, J. Photoinhibition of Photosynthesis Represents a Mechanism for the Long-Term Regulation of Photosystem II. Planta 1992, 186, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Alemu, S.T. Photosynthesis Limiting Stresses under Climate Change Scenarios and Role of Chlorophyll Fluorescence: A Review Article. Cogent Food Agric. 2020, 6, 1785136. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Gulías, J.; Figueroa, C.M.; Iñiguez, C.; Clemente-Moreno, M.J.; Nunes-Nesi, A.; Fernie, A.R.; Cavieres, L.A.; Bravo, L.A.; García-Plazaola, J.I.; et al. How Do Vascular Plants Perform Photosynthesis in Extreme Environments? An Integrative Ecophysiological and Biochemical Story. Plant J. 2020, 101, 979–1000. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does It Make Any Difference the Fact to Be a C3 or C4 Species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Uzilday, B.; Turkan, I.; Sekmen, A.H.; Ozgur, R.; Karakaya, H.C. Comparison of ROS Formation and Antioxidant Enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under Drought Stress. Plant Sci. 2012, 182, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, M.A.; Rashkov, G.D.; Apostolova, E.L. Assessment of the Photosynthetic Apparatus Functions by Chlorophyll Fluorescence and P700 Absorbance in C3 and C4 Plants under Physiological Conditions and under Salt Stress. Int. J. Mol. Sci. 2022, 23, 3768. [Google Scholar] [CrossRef]
- Stepien, P.; Klobus, G. Antioxidant Defense in the Leaves of C3 and C4 Plants under Salinity Stress. Physiol. Plant. 2005, 125, 31–40. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Hikosaka, K. Estimating Leaf Photosynthesis of C3 Plants Grown under Different Environments from Pigment Index, Photochemical Reflectance Index, and Chlorophyll Fluorescence. Photosynth. Res. 2021, 148, 33–46. [Google Scholar] [CrossRef]
- Kato, M.C.; Hikosaka, K.; Hirotsu, N.; Makino, A.; Hirose, T. The Excess Light Energy That Is Neither Utilized in Photosynthesis nor Dissipated by Photoprotective Mechanisms Determines the Rate of Photoinactivation in Photosystem II. Plant Cell Physiol. 2003, 44, 318–325. [Google Scholar] [CrossRef]
- Habermann, E.; Contin, D.R.; Afonso, L.F.; Barosela, J.R.; de Pinho Costa, K.A.; Viciedo, D.O.; Groppo, M.; Martinez, C.A. Future Warming Will Change the Chemical Composition and Leaf Blade Structure of Tropical C3 and C4 Forage Species Depending on Soil Moisture Levels. Sci. Total Environ. 2022, 821, 153342. [Google Scholar] [CrossRef]
- Al-Hamaiedeh, H.; Bino, M. Effect of Treated Grey Water Reuse in Irrigation on Soil and Plants. Desalination 2010, 256, 115–119. [Google Scholar] [CrossRef]
- Pinto, U.; Maheshwari, B.L.; Grewal, H.S. Effects of Greywater Irrigation on Plant Growth, Water Use and Soil Properties. Resour. Conserv. Recycl. 2010, 54, 429–435. [Google Scholar] [CrossRef]
- Rodda, N.; Salukazana, L.; Jackson, S.A.F.; Smith, M.T. Use of Domestic Greywater for Small-Scale Irrigation of Food Crops: Effects on Plants and Soil. Phys. Chem. Earth Parts A/B/C 2011, 36, 1051–1062. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; González-Ortega, M.J.; Martin-Gorriz, B.; Soto-García, M.; Maestre-Valero, J.F. Seawater Desalination for Crop Irrigation—Current Status and Perspectives. In Emerging Technologies for Sustainable Desalination Handbook; Elsevier: Amsterdam, The Netherlands, 2018; pp. 461–492. ISBN 9780128167120. [Google Scholar]
- Lanyon, L.E.; Griffith, W.K. Nutrition and Fertilizer Use. In Alfalfa and Alfalfa Improvement; Wiley: Hoboken, NJ, USA, 1972; pp. 333–372. ISBN 9780891182221. [Google Scholar]
- Paulo, P.L.; Vieira, J.; Takahashi, K.M.; Magalhaes Filho, F.J.C.; Da Silva, J.B.; Boncz, M.Á. Technical Note 4-Reuse Water: Grey Water Treated in Constructed Wetlands. In Cadernos Técnicos Engenharia Sanitária e Ambiental; dos Santos, A.B., da Motta Sobrinho, M.A., Eds.; Zeppelini Publishers: Rio de Janeiro, Brazil, 2022; Volume 2, pp. 43–58. [Google Scholar]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the Cooling Effects of Green Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Vertical Greening Systems and the Effect on Air Flow and Temperature on the Building Envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Ocampo, C.; Oldham, C. Exploring the Evapotranspirative Cooling Effect of a Green Façade. Sustain. Cities Soc. 2022, 81, 103822. [Google Scholar] [CrossRef]
- Oquendo-Di Cosola, V.; Olivieri, F.; Ruiz-García, L. A Systematic Review of the Impact of Green Walls on Urban Comfort: Temperature Reduction and Noise Attenuation. Renew. Sustain. Energy Rev. 2022, 162, 112463. [Google Scholar] [CrossRef]
Experimental Day | Irrigation Solution | |||
---|---|---|---|---|
TW | TW* | GWL | GWL* | |
Day 0 (0%) | 100% TW | 100% TW | 100% TW | 100% TW |
Day 7 (25%) | 100% TW | 25% TW* + 75% TW | 25% GWL + 75% TW | 25% GWL* + 75% TW |
Day 14 (50%) | 100% TW | 50% TW* + 50% TW | 50% GWL + 50% TW | 50% GWL* + 50% TW |
Day 21 (75%) | 100% TW | 75% TW* + 25% TW | 75% GWL + 25% TW | 75% GWL* + 25% TW |
Day 28 (100%) | 100% TW | 100% TW* | 100% GWL | 100% GWL* |
Plant Specie | Natural Habitat (Pantanal) | Day 0 | Tap Water (TW) | Tap Water + Nutrients (TW*) | Greywater (GWL) | Greywater + Nutrients (GWL*) |
---|---|---|---|---|---|---|
P. acuminatum | 0.84 ± 0.01 | 0.80 | 0.77 ± 0.06 | 0.79 ± 0.04 | 0.79 ± 0.02 | 0.81 ± 0.02 |
L. lagunae | 0.83 ± 0.01 | 0.80 | 0.72 ± 0.04 | 0.78 ± 0.05 | 0.65 ± 0.12 | 0.78 ± 0.04 |
Parameter | TW | TW* | GWL | GWL* |
---|---|---|---|---|
pH | 6.69 ± 0.62 (70) | 5.63 ± 0.38 (20) | 6.67 ± 0.58 (77) | 5.87 ± 0.48 (16) |
Temp (°C) | 26.73 ± 3.07 (70) | 24.26 ± 3.96 (10) | 22.44 ± 4.48 (77) | 24.39 ± 2.80 (16) |
EC (µS cm−1) | 56.15 ± 8.75 (66) | 2636.35 ± 769.55 (20) | 179.92 ± 30.49 (62) | 2109.40 ± 1084.13 (16) |
ORP (mV) | 349.53 ± 178.36 (65) | 431.00 ± 88.11 (19) | 227.04 ± 173.64 (77) | 318.87 ± 27.49 (15) |
DO (mg L−1) | 6.12 ± 0.67 (70) | 6.59 ± 0.73 (19) | 4.93 ± 1.44 (76) | 5.78 ± 0.70 (16) |
COD (mg L−1) | 9.43 ± 3.21 (6) | 19.87 ± 13.74 (14) | 325.72 ± 71.37 (37) | 342.79 ± 116.12 (16) |
TS (mg L−1) | -na | 1926.71 ± 413.28 (14) | 240.00 ± 75.09 (28) | 1940.77 ± 718.02 (13) |
GWL | GWL* | |||
---|---|---|---|---|
P. acuminatum | L. lagunaea | P. acuminatum | L. lagunae | |
COD (%) | 74.15 ± 15.38 | 75.17 ± 16.09 | 82.06 ± 18.29 | 88.64 ± 6.55 |
TS (%) | 24.82 ± 35.56 | 55.13 ± 18.37 | 41.96 ± 24.72 | 57.77 ± 30.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, K.; Araújo, G.; Pott, V.; Yoshida, N.; Lima, L.; Caires, A.; Paulo, P. Relationship of Photosynthetic Activity of Polygonum acuminatum and Ludwigia lagunae with Physicochemical Aspects of Greywater in a Zero-Liquid Discharge System. Resources 2022, 11, 84. https://doi.org/10.3390/resources11100084
Takahashi K, Araújo G, Pott V, Yoshida N, Lima L, Caires A, Paulo P. Relationship of Photosynthetic Activity of Polygonum acuminatum and Ludwigia lagunae with Physicochemical Aspects of Greywater in a Zero-Liquid Discharge System. Resources. 2022; 11(10):84. https://doi.org/10.3390/resources11100084
Chicago/Turabian StyleTakahashi, Karen, Gabriela Araújo, Vali Pott, Nídia Yoshida, Liana Lima, Anderson Caires, and Paula Paulo. 2022. "Relationship of Photosynthetic Activity of Polygonum acuminatum and Ludwigia lagunae with Physicochemical Aspects of Greywater in a Zero-Liquid Discharge System" Resources 11, no. 10: 84. https://doi.org/10.3390/resources11100084
APA StyleTakahashi, K., Araújo, G., Pott, V., Yoshida, N., Lima, L., Caires, A., & Paulo, P. (2022). Relationship of Photosynthetic Activity of Polygonum acuminatum and Ludwigia lagunae with Physicochemical Aspects of Greywater in a Zero-Liquid Discharge System. Resources, 11(10), 84. https://doi.org/10.3390/resources11100084