Column Adsorption Studies for the Removal of Ammonium Using Na-Zeolite-Based Geopolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterisation Techniques and Analytical Methods
2.3. Preparation of Analcime-Based Geopolymers
2.4. Column Experiments
2.5. Regeneration
2.6. Breakthrough Curve Modelling
2.6.1. Thomas Model
2.6.2. Bohart–Adams Model
2.6.3. Yoon–Nelson Model
3. Results and Discussion
3.1. Characterisation of the Adsorbent
Adsorbent | Specific Surface Area [m2/g] | Average Pore Diameter [nm] | Cumulative Pore Volume [cm3/g] |
---|---|---|---|
GEOP 1 | 4.180 | 31.281 | 0.257 |
GEOP 2 | 10.981 | 22.494 | 0.329 |
GEOP3 | 7.784 | 12.831 | 0.302 |
3.2. Effect of Operating Conditions
3.3. Breakthrough Curve Models
3.4. Adsorption and Regeneration Studies
3.5. Evaluation of Achieved Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, C.; Zheng, Z.; Zhang, J.; Wen, D.; Tang, X. Adsorption Characteristics of Ammonium Exchange by Zeolite and the Optimal Application in the Tertiary Treatment of Coking Wastewater Using Response Surface Methodology. Water Sci. Technol. 2013, 67, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Kankanamge, N.R.; Chow, C.; Welsh, D.T.; Li, T.; Teasdale, P.R. Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review. J. Environ. Sci. 2018, 63, 174–197. [Google Scholar] [CrossRef] [PubMed]
- Rožić, M.; Cerjan-Stefanović, Š.; Kurajica, S.; Vančina, V.; Hodžić, E. Ammoniacal Nitrogen Removal from Water by Treatment with Clays and Zeolites. Water Res. 2000, 34, 3675–3681. [Google Scholar] [CrossRef]
- Luukkonen, T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; Lassi, U. Metakaolin Geopolymer Characterization and Application for Ammonium Removal from Model Solutions and Landfill Leachate. Appl. Clay Sci. 2016, 119, 266–276. [Google Scholar] [CrossRef]
- Prabesh, K.C. New Opportunities of Nutrient Recycling in Water Services; Hämeen Ammattikorkeakoulu: Hämeenlinna, Finland, 2018; ISBN 9789517847872. [Google Scholar]
- Hwang, J.H.; Oleszkiewicz, J.A. Effect of Cold-Temperature Shock on Nitrification. Water Environ. Res. 2007, 79, 964–968. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Xue, Q.; Liu, J.; Hou, L.; Ding, L. Removal of Ammonium from Swine Wastewater by Zeolite Combined with Chlorination for Regeneration. J. Environ. Manag. 2015, 160, 333–341. [Google Scholar] [CrossRef]
- Guštin, S.; Marinšek-Logar, R. Effect of PH, Temperature and Air Flow Rate on the Continuous Ammonia Stripping of the Anaerobic Digestion Effluent. Process Saf. Environ. Prot. 2011, 89, 61–66. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Ding, L.; Ren, H.; Xu, K.; Wu, Y.; Sheng, D. Modeling Assessment for Ammonium Nitrogen Recovery from Wastewater by Chemical Precipitation. J. Environ. Sci. 2011, 23, 881–890. [Google Scholar] [CrossRef]
- Huang, H.; Huang, L.; Zhang, Q.; Jiang, Y.; Ding, L. Chlorination Decomposition of Struvite and Recycling of Its Product for the Removal of Ammonium-Nitrogen from Landfill Leachate. Chemosphere 2015, 136, 289–296. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, C.; Nie, J. Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge. Polish J. Environ. Stud. 2016, 25, 419–425. [Google Scholar] [CrossRef]
- Feng, S.; Xie, S.; Zhang, X.; Yang, Z.; Ding, W.; Liao, X.; Liu, Y.; Chen, C. Ammonium Removal Pathways and Microbial Community in GAC-Sand Dual Media Filter in Drinking Water Treatment. J. Environ. Sci. 2012, 24, 1587–1593. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q. Sustainable Mechanisms of Biochar Derived from Brewers’ Spent Grain and Sewage Sludge for Ammonia- Nitrogen Capture. J. Clean. Prod. 2016, 112, 3927–3934. [Google Scholar] [CrossRef]
- Guieysse, B.; Norvill, Z.N. Sequential Chemical–Biological Processes for the Treatment of Industrial Wastewaters: Review of Recent Progresses and Critical Assessment. J. Hazard. Mater. 2014, 267, 142–152. [Google Scholar] [CrossRef]
- Rajaniemi, K.; Hu, T.; Nurmesniemi, E.-T.; Tuomikoski, S.; Lassi, U. Phosphate and Ammonium Removal from Water through Electrochemical and Chemical Precipitation of Struvite. Processes 2021, 9, 150. [Google Scholar] [CrossRef]
- Patel, H. Fixed—Bed Column Adsorption Study: A Comprehensive Review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A. A Review on Geopolymers as Emerging Materials for the Adsorption of Heavy Metals and Dyes. J. Environ. Manag. 2018, 224, 327–339. [Google Scholar] [CrossRef]
- Luukkonen, T.; Věžníková, K.; Tolonen, E.T.; Runtti, H.; Yliniemi, J.; Hu, T.; Kemppainen, K.; Lassi, U. Removal of Ammonium from Municipal Wastewater with Powdered and Granulated Metakaolin Geopolymer. Environ. Technol. 2018, 39, 414–423. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, J. Chitosan Modified Zeolite Molecular Sieve Particles as a Filter for Ammonium Nitrogen Removal from Water. Int. J. Mol. Sci. 2020, 21, 2383. [Google Scholar] [CrossRef] [Green Version]
- Sprynskyy, M.; Lebedynets, M.; Terzyk, A.P.; Kowalczyk, P.; Namieśnik, J.; Buszewski, B. Ammonium Sorption from Aqueous Solutions by the Natural Zeolite Transcarpathian Clinoptilolite Studied under Dynamic Conditions. J. Colloid Interface Sci. 2005, 284, 408–415. [Google Scholar] [CrossRef]
- Lee, W.; Yoon, S.; Choe, J.K.; Lee, M.; Choi, Y. Anionic Surfactant Modification of Activated Carbon for Enhancing Adsorption of Ammonium Ion from Aqueous Solution. Sci. Total Environ. 2018, 639, 1432–1439. [Google Scholar] [CrossRef]
- Sarkar, C.; Basu, J.K.; Samanta, A.N. Removal of Ni2+ Ion from Waste Water by Geopolymeric Adsorbent Derived from LD Slag. J. Water Process Eng. 2017, 17, 237–244. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Mustafa, M.; Abdullah, A.B.; Razak, R.A.; Vizureanu, P.; Sandu, A.V.; Matasaru, P.-D. Materials A State-of-the-Art Review on Innovative Geopolymer Composites Designed for Water and Wastewater Treatment. Materials 2021, 14, 7456. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Yuan, Y.; Wang, K.; He, Y.; Cui, X. Preparation of Geopolymer-Based Inorganic Membrane for Removing Ni2+ from Wastewater. J. Hazard. Mater. 2015, 299, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Al-Harahsheh, M.S.; Al Zboon, K.; Al-Makhadmeh, L.; Hararah, M.; Mahasneh, M. Fly Ash Based Geopolymer for Heavy Metal Removal: A Case Study on Copper Removal. J. Environ. Chem. Eng. 2015, 3, 1669–1677. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Geopolymers: Structures, Processing, Properties and Industrial Applications; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–454. [Google Scholar] [CrossRef]
- Sundhararasu, E.; Tuomikoski, S.; Runtti, H.; Hu, T.; Varila, T.; Kangas, T.; Lassi, U. Alkali-Activated Adsorbents from Slags: Column Adsorption and Regeneration Study for Nickel(II) Removal. ChemEngineering 2021, 5, 13. [Google Scholar] [CrossRef]
- Tunali Akar, S.; Koc, E.; Sayin, F.; Kara, I.; Akar, T. Design and Modeling of the Decolorization Characteristics of a Regenerable and Eco-Friendly Geopolymer: Batch and Dynamic Flow Mode Treatment Aspects. J. Environ. Manag. 2021, 298, 113548. [Google Scholar] [CrossRef]
- Guo, X.; Zeng, L.; Jin, X. Advanced Regeneration and Fixed-Bed Study of Ammonium and Potassium Removal from Anaerobic Digested Wastewater by Natural Zeolite. J. Environ. Sci. 2013, 25, 954–961. [Google Scholar] [CrossRef]
- Wang, H.; Gui, H.; Yang, W.; Li, D.; Tan, W.; Yang, M.; Barrow, C.J. Ammonia Nitrogen Removal from Aqueous Solution Using Functionalized Zeolite Columns. Desalin. Water Treat. 2014, 52, 753–758. [Google Scholar] [CrossRef]
- Irannajad, M.; Kamran Haghighi, H. Removal of Heavy Metals from Polluted Solutions by Zeolitic Adsorbents: A Review. Environ. Processes 2021, 8, 7–35. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Q.; Chen, B.; Shi, X.; Liao, T. Preparation of Lithium Carbonate from Spodumene by a Sodium Carbonate Autoclave Process. Hydrometallurgy 2011, 109, 43–46. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Wandera, S.M.; Guo, L.; Dong, R. Evaluation of Ammonium Adsorption in Biochar-Fixed Beds for Treatment of Anaerobically Digested Swine Slurry: Experimental Optimization and Modeling. Sci. Total Environ. 2016, 563–564, 1095–1104. [Google Scholar] [CrossRef]
- de Franco, M.A.E.; de Carvalho, C.B.; Bonetto, M.M.; Soares, R.d.P.; Féris, L.A. Removal of Amoxicillin from Water by Adsorption onto Activated Carbon in Batch Process and Fixed Bed Column: Kinetics, Isotherms, Experimental Design and Breakthrough Curves Modelling. J. Clean. Prod. 2017, 161, 947–956. [Google Scholar] [CrossRef]
- Fadzail, F.; Hasan, M.; Ibrahim, N.; Mokhtar, Z.; Yekti, A.; Asih, P.; Syafiuddin, A. Adsorption of Diclofenac Sodium Using Low-Cost Activated Carbon in a Fixed-Bed Column. Biointerface Res. Appl. Chem. 2022, 12, 8042–8056. [Google Scholar] [CrossRef]
- Chu, K.H. Breakthrough Curve Analysis by Simplistic Models of Fixed Bed Adsorption: In Defense of the Century-Old Bohart-Adams Model. Chem. Eng. J. 2020, 380, 122513. [Google Scholar] [CrossRef]
- Mosanefi, S.; Alavi, N.; Eslami, A.; Saadani, M.; Ghavami, A. Ammonium Removal from Landfill Fresh Leachate Using Zeolite as Adsorbent. J. Mater. Cycles Waste Manag. 2021, 23, 1383–1393. [Google Scholar] [CrossRef]
- Thomas, H.C. Heterogeneous Ion Exchange in a Flowing System. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
- Vera, M.; Juela, D.M.; Cruzat, C.; Vanegas, E. Modeling and Computational Fluid Dynamic Simulation of Acetaminophen Adsorption Using Sugarcane Bagasse. J. Environ. Chem. Eng. 2021, 9, 105056. [Google Scholar] [CrossRef]
- Bohart, G.S.; Adams, E.Q. Some Aspects of the Behavior of Charcoal with Respect to Chlorine. J. Am. Chem. Soc. 1920, 42, 523–544. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Nelson, J.H. Application of Gas Adsorption Kinetics—II. A Theoretical Model for Respirator Cartridge Service Life and Its Practical Applications. Am. Ind. Hyg. Assoc. J. 1984, 45, 517–524. [Google Scholar] [CrossRef]
- Ali, I.O.; El-Sheikh, S.M.; Salama, T.M.; Bakr, M.F.; Fodial, M.H. Controllable Synthesis of NaP Zeolite and Its Application in Calcium Adsorption. Sci. China Mater. 2015, 58, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Liu, Z.; Han, L.; Zhang, Y.; Li, L.; Zhu, S.; Li, Z.P.J.; Wang, D. Synthesis of Coal-Analcime Composite from Coal Gangue and Its Adsorption Performance on Heavy Metal Ions. J. Hazard. Mater. 2022, 423, 127027. [Google Scholar] [CrossRef] [PubMed]
- Runtti, H.; Tynjälä, P.; Tuomikoski, S.; Kangas, T.; Hu, T.; Rämö, J.; Lassi, U. Utilisation of Barium-Modified Analcime in Sulphate Removal: Isotherms, Kinetics and Thermodynamics Studies. J. Water Process Eng. 2017, 16, 319–328. [Google Scholar] [CrossRef] [Green Version]
- An, Q.; Li, Z.; Zhou, Y.; Meng, F.; Zhao, B.; Miao, Y.; Deng, S. Ammonium Removal from Groundwater Using Peanut Shell Based Modified Biochar: Mechanism Analysis and Column Experiments. J. Water Process Eng. 2021, 43, 102219. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Vu, T.M.; Le, T.T.; Trinh, V.T.; Tran, T.P.; Van, H.T. Ammonium Removal from Aqueous Solutions by Fixed-Bed Column Using Corncob-Based Modified Biochar. Environ. Technol. 2019, 40, 683–692. [Google Scholar] [CrossRef]
- Vu, M.T.; Chao, H.P.; Van Trinh, T.; Le, T.T.; Lin, C.C.; Tran, H.N. Removal of Ammonium from Groundwater Using NaOH-Treated Activated Carbon Derived from Corncob Wastes: Batch and Column Experiments. J. Clean. Prod. 2018, 180, 560–570. [Google Scholar] [CrossRef]
- Franchin, G.; Pesonen, J.; Luukkonen, T.; Bai, C.; Scanferla, P.; Botti, R.; Carturan, S.; Innocentini, M.; Colombo, P. Removal of Ammonium from Wastewater with Geopolymer Sorbents Fabricated via Additive Manufacturing. Mater. Des. 2020, 195, 109006. [Google Scholar] [CrossRef]
- Xiong, S.; Ma, L.; Jiang, L.; Hu, X.; Fu, G.; Hao, J.; Gao, H.; Liu, P.; Tan, L.; Liu, X.; et al. Low-grade sepiolite with low loading of Na/La salts for simultaneous removal of ammonia and phosphate from wastewater. J. Sci. Environ. 2023, 858, 160127. [Google Scholar] [CrossRef]
- Samarina, T.; Guagneli, L.; Takaluoma, E.; Tuomikoski, S.; Pesonen, J.; Laatikainen, O. Ammonium recovery by combined adsorption and air-stripping approach from wastewaters. Front. Environ. Sci. 2022, 10, 1033677. [Google Scholar] [CrossRef]
- Karadag, D.; Akkaya, E.; Demir, A.; Saral, A.; Turan, M.; Ozturk, M. Ammonium removal from municipal lenadfill leachate by clinoptilolite bed columns: Breakthrough modeling and error analysis. Ind. Eng. Chem. Res. 2008, 47, 9552–9557. [Google Scholar] [CrossRef]
- Mashal, A.; Abu-Dahrieh, J.; Ahmed, A.A.; Oyedele, L.; Haimour, N.; Al-Haj-Ali, A.; Rooney, D. Fixed-Bed Study of Ammonia Removal from Aqueous Solutions Using Natural Zeolite. World J. Sci. Technol. Sustain. Dev. 2014, 11, 144–158. [Google Scholar] [CrossRef]
- Halim, A.A.; Hanafiah, M.M.; Khairi, A. Ammonia Removal from Sewage Wastewater Using Chemically Modified Sand. Appl. Ecol. Environ. Res. 2017, 15, 521–528. [Google Scholar] [CrossRef]
Adsorbents | Thomas Model | Bohart–Adams Model | Yoon–Nelson Model | R2 | |||||
---|---|---|---|---|---|---|---|---|---|
Q [mL/min] | qe (mg/g) | kT × 10–3 [L/min mg] | q0 [mg/g] | kBA × 10–3 [L/mg min] | vF [cm/min] | kYN [L/min] | τ [min] | ||
GEOP1 | 5 | 3.264 | 1.550 | 3.361 | 1.550 | 0.0101 | 0.0799 | 40.860 | 0.991 |
10 | 2.198 | 5.884 | 2.303 | 5.884 | 0.0324 | 0.2645 | 14.934 | 0.976 | |
20 | 2.200 | 12.887 | 1.788 | 12.887 | 0.0617 | 0.4433 | 7.308 | 0.967 | |
GEOP2 | 5 | 2.102 | 3.220 | 1.813 | 3.220 | 0.0152 | 0.1017 | 30.509 | 0.978 |
10 | 2.071 | 7.231 | 1.612 | 7.231 | 0.0203 | 0.1865 | 19.250 | 0.951 | |
20 | 2.019 | 14.189 | 2.034 | 14.189 | 0.0708 | 0.6144 | 6.515 | 0.999 | |
GEOP3 | 5 | 2.101 | 1.946 | 2.153 | 1.946 | 0.0038 | 0.0546 | 67.132 | 0.897 |
10 | 2.067 | 6.171 | 2.009 | 6.171 | 0.0152 | 0.2133 | 20.410 | 0.936 | |
20 | 1.346 | 12.841 | 1.147 | 12.841 | 0.0624 | 0.3467 | 5.854 | 0.984 |
Adsorbent | Mass of Adsorbent [g] | Bed Height [cm] | Flow Rate [mL/min] | Initial Concentration [mg/L] | pH | Adsorption Capacity [mg/g] | References |
---|---|---|---|---|---|---|---|
Jordanian natural zeolite | 53–206 | 10–40 | 100–250 | 15–50 | 5.5–9 | 3.9–5.32 | [53] |
Chinese zeolite | - | 28 | 250 | 9.1–9.6 | [30] | ||
Clinoptilolite | 600 | 40 | 6.8–21 | 100–400 | 12 | 4.69–5.77 | [52] |
Functionalized Zeolites | 10 | - | 2 | 50 | 7.95 | [31] | |
Modified sand | 996 | 80 | 20 | - | 7 | 0.014 | [54] |
GEOP1 | 3 | 0.5 | 5–20 | 40 | 2.5 | 3.264–2.20 | This study |
GEOP2 | 3 | 0.5 | 5–20 | 40 | 2.5 | 2.102–2.019 | This study |
GEOP3 | 3 | 0.5 | 5–20 | 40 | 2.5 | 2.101–1.346 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundhararasu, E.; Runtti, H.; Kangas, T.; Pesonen, J.; Lassi, U.; Tuomikoski, S. Column Adsorption Studies for the Removal of Ammonium Using Na-Zeolite-Based Geopolymers. Resources 2022, 11, 119. https://doi.org/10.3390/resources11120119
Sundhararasu E, Runtti H, Kangas T, Pesonen J, Lassi U, Tuomikoski S. Column Adsorption Studies for the Removal of Ammonium Using Na-Zeolite-Based Geopolymers. Resources. 2022; 11(12):119. https://doi.org/10.3390/resources11120119
Chicago/Turabian StyleSundhararasu, Elavarasi, Hanna Runtti, Teija Kangas, Janne Pesonen, Ulla Lassi, and Sari Tuomikoski. 2022. "Column Adsorption Studies for the Removal of Ammonium Using Na-Zeolite-Based Geopolymers" Resources 11, no. 12: 119. https://doi.org/10.3390/resources11120119
APA StyleSundhararasu, E., Runtti, H., Kangas, T., Pesonen, J., Lassi, U., & Tuomikoski, S. (2022). Column Adsorption Studies for the Removal of Ammonium Using Na-Zeolite-Based Geopolymers. Resources, 11(12), 119. https://doi.org/10.3390/resources11120119