Using New Spare Parts for Repair of Waste Electrical and Electronic Equipment? The Material Footprint of Individual Components
Abstract
:1. Introduction
- on the one hand provides insights into the resource consumption of repairs, and on the other hand;
- provides a basis for further data collection, e.g., in the context of case studies (e.g., is it necessary to evaluate failure statistics? For large differences, yes, but for small differences, no).
2. Materials and Methods
2.1. Product Selection
- Washing machines as representatives of large household appliances;
- Flat-screen monitors with LCD technology, representing information and telecommunications technology equipment;
- Loudspeaker boxes of stereo systems as representatives of consumer electronic equipment;
- Coffee machines as representatives of small household appliances.
2.2. Definition of Product Components
- Part: independently usable unit in a system;
- Group: unit within a part that cannot be used independently;
- Element: smallest indivisible unit in a group.
2.3. Aim and Scope of the Reference Life Cycle Assessments
2.3.1. Objective and Functional Unit
2.3.2. Defining the System Boundaries
2.3.3. Allocation
2.4. Method for Impact Assessment and Modelling Basis
2.4.1. Impact Assessment with the Product Material Footprint
- Cumulative raw material input (RMI): The cumulative raw material input is the sum of the primary raw material quantities used, for example, to provide a material or product. The RMI indicates the mass turnover which ends up in the form of waste and emissions in processes and locations subsequent to resource extraction.
- Total material requirement (TMR): The total material requirement includes the sum of the primary material quantities extracted from nature, which contains both used and unused extraction (e.g., overburden). The TMR indicates the magnitude of human-induced material flows around the extraction locations, and thus the order of magnitude of environmental pressure due to landscape changes, etc.
2.4.2. Characterisation Factors and Impact Assessment with OpenLCA
2.4.3. Data Quality Requirements, Data Collection and Cut-Off Rules
- general knowledge (e.g., the fact that aluminium is relatively light compared to steel, that copper has a distinctive colour or that plastics sound different from metals) and
- information available in the literature (e.g., determining whether the magnet in the motor of the washing machine is a permanent magnet or a layered electrical sheet).
3. Life-Cycle Inventory
3.1. Structure and Material Composition of the Reference Appliances
3.2. Final Assembly, Packaging and Transport of the Units
4. Results: Product-Material-Footprint of Device Manufacturing at Component Level
4.1. Flat-Screen Monitor
- The high gold content in the electronic circuit integrated in the LC display is the main driver for the high TMRabiotic and RMIabiotic.
- Both indicators are also determined by the content of valuable metals in the printed circuit board (in the following: PCB). The higher the proportion of PCBs with surface-mounted components, the higher the value and consequently the TMRabiotic und RMIabiotic proportions. This is due to the surface-mounted boards having a higher packing density than boards with components attached with wire.
- The mass is determined by the proportion of plastic (backlight, back cover) and of sheet steel (base, inner housing).
- Sorting the respective shares of TMRabiotic and RMIabiotic by size results in only slight differences with regard to the order of the components.
4.2. Loudspeaker Boxes
4.3. Filter Coffee Machine
- The resource consumption of the temperature switch is mainly determined by the gold content in the electronic component.
- For the heater, aluminium production is the main driver for the high proportion of RMIabiotic of 35% and the TMRabiotic of almost 30%.
- Both indicators are also relatively high for the power cable. The copper contained in the cable is responsible for this.
- The mass is determined with the largest share (almost 40%) by the housing including the water tank, filter device and elements of the water flow (without bottom and lid).
4.4. Coffee Pad Machine
4.5. Washing Machine
4.6. Comparison of Results
- flat-screen monitors there are 5 (TMRabiotic) or 7 (RMIabiotic) out of 17, in
- loudspeaker boxes there are 2 (TMRabiotic and RMIabiotic) out of eight, in
- filter coffee machines there are five (TMRabiotic and RMIabiotic) out of 17, in
- coffee pad machines there are four (TMRabiotic and RMIabiotic) of 24 and in
- washing machines there are nine (TMRabiotic) or 10 (RMIabiotic) of 41 components.
5. Discussion
5.1. Findings
5.2. Methodological Challenges
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Study on the Review of the List of Critical Raw Materials; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows, and the Circular Economy Potential; United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)—Co-Hosted SCYCLE Program International Telecommunication (ITU) & International Solid Waste Association (ISWA): Bonn, Germany; Geneva, Switzerland; Rotterdam, The Netherlands, 2020. [Google Scholar]
- Longmuß, J.; Dworak, C. Reparierbarkeit im Fokus. In Geplante Obsoleszenz: Hinter den Kulissen der Produktentwicklung; Poppe, E., Longmuß, J., Eds.; Transcript Verlag: Bielefeld, Germany, 2019; pp. 73–95. [Google Scholar]
- Prakash, S.; Dehoust, G.; Gsell, M.; Schleicher, T.; Stamminger, R. Einfluss der Nutzungsdauer von Produkten auf ihre Umweltwirkung: Schaffung einer Informationsgrundlage und Entwicklung von Strategien gegen “Obsoleszenz”. UBA Texte 11/2016. 2016. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_11_2016_einfluss_der_nutzungsdauer_von_produkten_obsoleszenz.pdf (accessed on 21 December 2020).
- IRP. Re-Defining Value—The Manufacturing Revolution. Remanufacturing, Refurbishment, Repair and Direct Reuse in the Circular Economy; A Report of the International Resource Panel; United Nations Environment Programme: Nairobi, Kenya, 2018. [Google Scholar]
- EEA. Circular Economy in Europe—Developing the Knowledge Base. 2016. Available online: http://www.eea.europa.eu/publications/circular-economy-in-europe (accessed on 21 December 2020).
- Ellen MacArthur Foundation. Towards the Circular Economy—Opportunities for the Consumer Goods Sector. No. 2. 2013. Available online: http://www.ellenmacarthurfoundation.org/business/reports/ce2013 (accessed on 21 December 2020).
- Boldoczki, S.; Thorenz, A.; Tuma, A. The environmental impacts of preparation for reuse: A case study of WEEE reuse in Germany. J. Clean. Prod. 2020, 252, 119736. [Google Scholar] [CrossRef]
- Gusmerotti, N.M.; Corsini, F.; Borghini, A.; Frey, M. Assessing the role of preparation for reuse in waste-prevention strategies by analytical hierarchical process: Suggestions for an optimal implementation in waste management supply chain. Environ. Dev. Sustain. 2019, 21, 2773–2792. [Google Scholar] [CrossRef]
- Ardente, F.; Peiró, L.T.; Mathieux, F.; Polverini, D. Accounting for the environmental benefits of remanufactured products: Method and application. J. Clean. Prod. 2018, 198, 1545–1558. [Google Scholar] [CrossRef] [PubMed]
- UBA. Neue Waschmaschinen, Kühlschränke & Co ab 2021 Besser Reparierbar. 2019. Available online: https://www.umweltbundesamt.de/themen/neue-waschmaschinen-kuehlschraenke-co-ab-2021 (accessed on 21 December 2020).
- Right to Repair. The French Repair Index: Challenges and Opportunities. 2021. Available online: https://repair.eu/de/news/the-french-repair-index-challenges-and-opportunities/ (accessed on 21 March 2021).
- ECOS. EN 45554: A Standard That Works for the Environment. 2020. Available online: https://ecostandard.org/news_events/en-45554-a-standard-that-works-for-the-environment/ (accessed on 22 December 2020).
- Bracquene, E.; Peeters, J.R.; Burez, J.; De Schepper, K.; Duflou, J.R.; Dewulf, W. Repairability evaluation for energy related products. Procedia CIRP 2019, 80, 536–541. [Google Scholar] [CrossRef]
- Pini, M.; Lolli, F.; Balugani, E.; Gamberini, R.; Neri, P.; Rimini, B.; Ferrari, A.M. Preparation for reuse activity of waste electrical and electronic equipment: Environmental performance, cost externality and job creation. J. Clean. Prod. 2019, 222, 77–89. [Google Scholar] [CrossRef]
- Xue, M.; Xu, Z. Application of life cycle assessment on electronic waste management: A review. Environ. Manag. 2017, 59, 693–707. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.B.; Penteado, C.S.G. Life cycle assessment of a small WEEE reverse logistics system: Case study in the Campinas Area, Brazil. J. Clean. Prod. 2021, 314, 128092. [Google Scholar] [CrossRef]
- Ismail, H.; Hanafiah, M.M. Evaluation of e-waste management systems in Malaysia using life cycle assessment and material flow analysis. J. Clean. Prod. 2021, 308, 127358. [Google Scholar] [CrossRef]
- Pérez-Martínez, M.M.; Carrillo, C.; Rodeiro-Iglesias, J.; Soto, B. Life cycle assessment of repurposed waste electric and electronic equipment in comparison with original equipment. Sustain. Prod. Consum. 2021, 27, 1637–1649. [Google Scholar] [CrossRef]
- Withanage, S.V.; Habib, K. Life Cycle Assessment and Material Flow Analysis: Two Under-Utilized Tools for Informing E-Waste Management. Sustainability 2021, 13, 7939. [Google Scholar] [CrossRef]
- Gensch, C.-O.; Blepp, M. Betrachtungen zu Produktlebensdauer und Ersatzstrategien von Miele-Haushaltsgeräten; Öko Institut e. V.: Freiburg, Germany, 2015. [Google Scholar]
- Prakash, S.; Liu, R.; Schischke, K.; Stobbe, L. Timely Replacement of a Notebook under Consideration of Environmental Aspects. UBA Texte 44/2012. 2012. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4316.pdf (accessed on 21 December 2020).
- Von Gries, N. Ressourcenpotenziale der “Vorbereitung zur Wiederverwendung” von Elektro- und Elektronikaltgeräten. Eine vergleichende Analyse in Flandern und Nordrhein-Westfalen. Ph.D. Thesis, Kassel University, Kassel, Germany, 2020. [Google Scholar] [CrossRef]
- VDI 2343; Recycling Elektrischer und Elektronischer Geräte—Reuse. Blatt 7. VDI-Gesellschaft Energie und Umwelt: Duesseldorf, Germany, 2013.
- Tecchio, P.; Ardente, F.; Mathieux, F. Analysis of Durability, Reusability and Reparability—Application to Washing Machines and Dishwashers. JRC Technical Report. 2016. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC102632/lbna28042enn.pdf (accessed on 21 December 2020).
- Sander, K.; Marscheider-Weidemann, F.; Wilts, H.; Hobohm, J.; Hartfeil, T.; Schoeps, D.; Heymann, R. Abfallwirtschaftliche Produktverantwortung unter Ressourcenschutzaspekten. UBA Texte 52/2019. 2019. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-05-24_texte_52-2019_repro.pdf (accessed on 21 December 2020).
- Stratmann, B.; Grießhammer, R.; Bush, E. PROSA Espressomaschinen: Kriterien für das Umweltzeichen für Klimarelevante Produkte und Dienstleistungen. 2009. Available online: https://www.oeko.de/uploads/oeko/oekodoc/937/2009-043-de.pdf (accessed on 21 December 2020).
- DIN 40150; Concepts for the Arrangement in Connection with Functional and Constructional Units. DIN: Berlin, Germany, 1979. [CrossRef]
- DIN EN ISO 14040; Umweltmanagement-Ökobilanz-Grundsätze und Rahmenbedingungen. DIN: Berlin, Germany, 2009.
- DIN EN ISO 14044; Umweltmanagement-Ökobilanz-Anforderungen und Anleitungen. DIN: Berlin, Germany, 2018.
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Wernet, G. Overview and Methodology, Data Quality Guideline for the Ecoinvent Database Version 3; Ecoinvent Report No. 1(v3); The Ecoinvent Centre: St. Gallen, Switzerland, 2013. [Google Scholar]
- Ecoinvent Association. System Models in Ecoinvent 3. N.d. Available online: https://www.ecoinvent.org/database/system-models-in-ecoinvent-3/system-models-in-ecoinvent-3.html (accessed on 21 December 2020).
- Mostert, C.; Bringezu, S. Measuring Product Material Footprint as New Life Cycle Impact Assessment Method: Indicators and Abiotic Characterization Factors. Resources 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Ritthoff, M.; Rohn, H.; Liedtke, C. MIPS Berechnen: Ressourcenproduktivität von Produkten und Dienstleistungen; Wuppertal Institut für Klima, Umwelt, Energie: Wuppertal, Germany, 2002. [Google Scholar]
- Schmidt-Bleek, F. Wieviel Umwelt Braucht der Mensch? MIPS—Das Maß für Ökologisches Wirtschaften; Birkhaeuser Verlag: Berlin, Germany; Basel, Switzerland; Boston, MA, USA, 1994. [Google Scholar]
- BMU. German Resource Efficiency Program III. 2020. Available online: https://www.bmu.de/download/deutsches-ressourceneffizienzprogramm-progress-iii/ (accessed on 13 June 2021).
- Wrisberg, N.; Udo de Haes, H.A.; Triebswetter, U.; Eder, P.; Clift, R. (Eds.) Analytical Tools for Environmental Design and Management in a Systems Perspective; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Hischier, R.; Classen, M.; Lehmann, M.; Scharnhorst, W. Life Cycle Inventories of Electric and Electronic Equipment: Production, Use and Disposal; Ecoinvent Report No. 18; Technology & Society Lab, Swiss Centre for Life Cycle Inventories: Dubendorf, Switzerland, 2007. [Google Scholar]
- Cooper, D.R.; Gutowski, T.G. The environmental impacts of reuse: A review. J. Ind. Ecol. 2017, 21, 38–56. [Google Scholar] [CrossRef]
- Boeni, H.; Widmer, R. Entsorgung von Flachbildschirmen in der Schweiz. 2011. Available online: https://www.swico.ch/media/filer_public/1c/4d/1c4d7923-7c18-4023-a514-3377fc95f99a/entsorgung_von_flachbildschirmen_in_der_schweiz.pdf (accessed on 21 December 2020).
- Salhofer, S.; Spitzbart, M.; Maurer, K. Recycling of flat screens as a new challenge. Proc. ICE—Waste Resour. Manag. 2012, 165, 37–43. [Google Scholar] [CrossRef]
- Mudgal, S.; Tinetti, B.; Lyons, L.; Lavelle, P.; Cornier, A.; Sannier, C.; Jean-Jean, A. Preparatory Studies for Ecodesign Requirements of EuPs (III), Lot 25 Non-Tertiary Coffee Machines, Task 4: Technical Analysis of Existing Products; BIO Intelligence Service: Paris, France, 2011. [Google Scholar]
- Ebersberger, R. Energieoptimierte Nutzungsdauern von Produkten—Methodik, Anwendung, Beispiel; TU Muenchen: Munich, Germany, 1996. [Google Scholar]
- Presutto, M.; Stamminger, R.; Scialdoni, R.; Mebane, W.; Esposito, R. Preparatory Studies for Eco-design Requirements of EUPs, Lot 14: Domestic Washing Machines & Dishwashers; Institute of Studies for the Integration of Systems: Rome, Italy, 2007. [Google Scholar]
- Boyano, A.; Cordella, M.; Epinosa, N.; Villanueva, A.; Graulich, K.; Rudenauer, I.; Alborzi, F.; Hook, I.; Stamminger, R. Ecodesign and Energy Label for Household Washing Machines and Washer Dryers. JRC Technical Report. 2017. Available online: https://ec.europa.eu/jrc/en/publication/ecodesign-and-energy-label-household-washing-machines-and-washer-dryers (accessed on 21 December 2020).
- Kaiser, S. Kupfer- und Molybdäninput in Ecoinvent 3.1 und 3.3; Center for Environmental Systems Research, University of Kassel: Kassel, Germany, 2018; Unpublished work. [Google Scholar]
Device | Number of Components Per Device | Total Weight of the Device in g |
---|---|---|
Flat-screen monitor | 17 | 5712 |
Loudspeaker box | 8 | 2298 |
Filter coffee machine | 17 | 1472 |
Coffee pad machine | 24 | 1865 |
Washing machine | 41 | 70,122 |
Device | Weight (kg) | Material | Reference |
---|---|---|---|
Washing machine | 3.84 | 84% coarse chipboard *, 10% polystyrene, 6% cardboard | Gensch and Blepp [21] |
Flat-screen monitor | 1.5 | 45% polystyrene, 55% cardboard | Hischier et al. [38] |
Filter coffee machine, coffee pad machine, loudspeaker box | 1.5 | 45% polystyrene, 55% cardboard | Assumption as flat-screen monitor |
Device | TMRabiotic, kg/kg | RMIabiotic, kg/kg |
---|---|---|
Flat-screen monitor | 391.42 | 173.15 |
Loudspeaker box (per box) | 126.51 | 117.42 |
Filter coffee machine | 40.59 | 27.04 |
Coffee pad machine | 85.79 | 44.37 |
Washing machine | 32.05 | 18.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Gries, N.; Bringezu, S. Using New Spare Parts for Repair of Waste Electrical and Electronic Equipment? The Material Footprint of Individual Components. Resources 2022, 11, 24. https://doi.org/10.3390/resources11020024
von Gries N, Bringezu S. Using New Spare Parts for Repair of Waste Electrical and Electronic Equipment? The Material Footprint of Individual Components. Resources. 2022; 11(2):24. https://doi.org/10.3390/resources11020024
Chicago/Turabian Stylevon Gries, Nadja, and Stefan Bringezu. 2022. "Using New Spare Parts for Repair of Waste Electrical and Electronic Equipment? The Material Footprint of Individual Components" Resources 11, no. 2: 24. https://doi.org/10.3390/resources11020024
APA Stylevon Gries, N., & Bringezu, S. (2022). Using New Spare Parts for Repair of Waste Electrical and Electronic Equipment? The Material Footprint of Individual Components. Resources, 11(2), 24. https://doi.org/10.3390/resources11020024