The Ratio of Biologically Vital Areas as a Measure of the Sustainability of Urban Parks Using the Example of Budapest, Hungary
Abstract
:1. Introduction
1.1. Urban Parks in the Sustainable Development of Cities
1.2. Green Factor Tools for Sustainable Cities
1.3. Urban Parks in the Sustainable Development of Budapest
2. Materials and Methods
2.1. Case Selection
- -
- renovation of existing parks created in the 20th century: Olimpia Park, Nehru Park;
- -
- newly designed parks created as a result of brownfield reuse and development: Millenáris Park, Graphisoft Park;
- -
- newly designed parks created as a result of development of residential areas: MOM Park, Bajor Gizi Park (a complex area including the adjacent K&H Headquarters, the National Theatre, and the Palace of Arts).
2.2. Methods
- -
- buildings (B);
- -
- greenery—planted on the ground (GG); green roofs (GR);
- -
- pavement—water-permeable (sand, gravel) (PP); semi water-permeable (bricks or concrete tales overgrown with grass) (PS); water-impermeable (concrete, artificial surface of sport area and playgrounds) (PI);
- -
- water—artificial reservoirs (WA); other water features (water games, fountains, etc.) (WF).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landscape Architects Can Help the World Achieve New Sustainable Development Goals. Available online: https://dirt.asla.org/2015/09/23/landscape-architects-can-help-the-world-achieve-new-sustainable-development-goals/ (accessed on 14 January 2022).
- Teixeira, C.P.; Fernandes, C.O.; Ahern, J. Novel Urban Ecosystems: Opportunities from and to Landscape Architecture. Land 2021, 10, 844. [Google Scholar] [CrossRef]
- What Is the Role of Landscape Architects in Designing Cities, Rethinking the Future. 2021. Available online: https://www.re-thinkingthefuture.com/city-and-architecture/a3493-what-is-the-role-of-landscape-architects-in-designing-cities/ (accessed on 14 January 2022).
- Ahern, J. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landsc. Ecol. 2013, 28, 1203–1212. [Google Scholar] [CrossRef]
- Engestrom, G.; Gren, A. Capturing the value of green space in urban parks in a sustainable urban planning and design context: Pros and cons of hedonic pricing. Ecol. Soc. 2017, 22, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Smart Conservation for the 21st Century. Renew. Resour. J. 2002, 20, 12–17. Available online: https://www.merseyforest.org.uk/files/documents/1365/2002+Green+Infrastructure+Smart+Conservation+for+the+21st+Century..pdf (accessed on 12 November 2021).
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kazmiercak, A.; Niemelä, J.; James, P. Promoting ecosystem and human health in urban areas using Green infrastructure. A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Hostetler, M.; Allen, W.; Meurk, C. Conserving urban biodiversity? Creating green infrastructure is only the first step. Landsc. Urban Plan. 2011, 100, 369–371. [Google Scholar] [CrossRef]
- Hanna, E.; Comín, F.A. Urban Green Infrastructure and Sustainable Development: A Review. Sustainability 2021, 13, 11498. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Whitford, V.; Ennos, A.R.; Handley, J.F. City form and natural process—Indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landsc. Urban Plan. 2001, 57, 91–103. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Drosou, N.; Soetanto, R.; Hermawan, F.; Chmutina, K.; Bosher, L.; Hatmoko, J.U.D. Key Factors Influencing Wider Adoption of Blue–Green Infrastructure in Developing Cities. Water 2019, 11, 1234. [Google Scholar] [CrossRef] [Green Version]
- Kimic, K.; Ostrysz, K. Assessment of Blue and Green Infrastructure Solutions in Shaping Urban Public Spaces—Spatial and Functional, Environmental, and Social Aspects. Sustainability 2021, 13, 11041. [Google Scholar] [CrossRef]
- Taylor, L.; Hochuli, D.F. Creating better cities: How biodiversity and ecosystem functioning enhance urban residents’ wellbeing. Urban Ecosy. 2015, 18, 747–762. [Google Scholar] [CrossRef]
- Wenzel, A.; Grass, I.; Belavadi, V.V.; Tscharntke, T. How urbanization is driving pollinator diversity and pollination—A systematic review. Biol. Conserv. 2020, 241, 108321. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Simpson, G.; Parker, J. Data on Peer Reviewed Papers about Green Infrastructure, Urban Nature, and City Liveability. Data 2018, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Chiesura, A. The role of parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Henderson, K.A. Environmental correlates of physical activity: A review of evidence about parks and recreation. Leis. Sci. 2007, 29, 315–354. [Google Scholar] [CrossRef]
- Maas, J.; van Dillen, S.M.E.; Verheij, R.A.; Groenewegen, P.P. Social contacts as a possible mechanism behind the relation between green space and health. Health Place 2009, 15, 586–595. [Google Scholar] [CrossRef] [Green Version]
- Keniger, L.E.; Gaston, K.J.; Irvine, K.N.; Fuller, R.A. What are the Benefits of Interacting with Nature? Int. J. Environ. Res. Public Health 2013, 10, 913–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassauer, J.I.; Opdam, P. Design in science: Extending the landscape ecology paradigm. Landsc. Ecol. 2008, 23, 633–644. [Google Scholar] [CrossRef]
- Dawson, R.J. Re-engineering Cities: A Framework for Adaptation to Global Change. Philos. Trans. A Math Phys. Eng. Sci. 2007, 365, 3085–3098. [Google Scholar] [CrossRef] [PubMed]
- Termorshuizen, J.; Opdam, P. Landscape services as a bridge between landscape ecology and sustainable development. Landsc. Ecol. 2009, 24, 1037–1052. [Google Scholar] [CrossRef]
- Schwarz, N.; Haase, D.; Seppelt, R. Omnipresent Sprawl? A Review of Urban Simulation Models with Respect to Urban Shrinkage. Environ. Plan. B Plan. Des. 2010, 37, 265–283. [Google Scholar] [CrossRef]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Pincetl, S. Cities as Novel Biomes: Recognizing Urban Ecosystem Services as Anthropogenic. Front. Ecol. Evol. 2015, 3, 140. [Google Scholar] [CrossRef] [Green Version]
- Brown, I.T. Managing Cities as Urban Ecosystems: Fundamentals and a Framework for Los Angeles, California. Cities Environ. 2017, 10, 4. Available online: https://digitalcommons.lmu.edu/cate/vol10/iss2/4 (accessed on 21 December 2021).
- Klopp, J.M.; Petretta, D.L. The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities 2017, 63, 92–97. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- McDonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Santos, T.; Tenedório, J.A.; Gonçalves, J.A. Quantifying the City’s Green Area Potential Gain Using Remote Sensing Data. Sustainability 2016, 8, 1247. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Raghubanshi, A. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 2018, 93, 282–291. [Google Scholar] [CrossRef]
- Lin, P.; Laub, S.S.Y.; Qinc, H.; Gou, Z. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Wang, J.; Foley, K. Assessing the performance of urban open space for achieving sustainable and resilient cities: A pilot study of two urban parks in Dublin, Ireland. Urban For. Urban Green. 2021, 62, 127180. [Google Scholar] [CrossRef]
- Jugola, S. Planning for a green city: The Green Factor tool. Urban For. Urban Green. 2018, 34, 254–258. [Google Scholar] [CrossRef]
- Szulczewska, B.; Giedych, R.; Borowski, J.; Kuchcik, M.; Sikorski, P.; Mazurkiewicz, A.; Stańczyk, T. How much green is needed for a vital neighbourhood? In search for empirical evidence. Land Use Policy 2014, 38, 330–345. [Google Scholar] [CrossRef]
- Ring, Z.; Damyanovic, D.; Reinwald, F. Green and open space factor Vienna: A steering and evaluation tool for urban green infrastructure. Urban For. Urban Green. 2021, 62, 127131. [Google Scholar] [CrossRef]
- Thorén, K.H. ‘The green poster’. A method to evaluate the sustainability of the urban green structure. Environ. Impact Assess. Rev. 2000, 20, 359–371. [Google Scholar] [CrossRef]
- Devuyst, D.; Hens, L. (Eds.) How Green Is the City? Sustainability Assessment and the Management of Urban Environments, 1st ed.; Columbia University Press: New York, NY, USA, 2001; p. 488. [Google Scholar]
- Gil, J.; Duarte, J.P. Tools for evaluating the sustainability of urban design: A review. Proc. Inst. Civil Eng.-Urban Design Plann. 2013, 166, 311–325. [Google Scholar] [CrossRef]
- Senate Department for the Environment, Transport and Climate Protection, Landscape Planning. 2017. Available online: http://www.berlin.de/senuvk/umwelt/landschaftsplanung/bff/index_en.shtml (accessed on 17 September 2017).
- City of Helsinki, Developing a Green factor tool for City of Helsinki, Climate-Proof City—The Planner’s Workbook. 2017. Available online: http://ilmastotyokalut.fi/developing-a-green-factor-tool-for-city-of-helsinki/ (accessed on 17 September 2017).
- Grant, G. Greater London Authority: Urban Greening Factor for London. 2017. Available online: https://www.london.gov.uk/sites/default/files/urban_greening_factor_for_london_final_report (accessed on 9 July 2020).
- Slätmo, E.; Nilsson, K.; Turunen, E. Implementing Green Infrastructure in Spatial Planning in Europe. Land 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Atlas Ekofizjograficzny Miasta Stołecznego Warszawy. 2018. Available online: https://architektura.um.warszawa.pl/sites/default/files/files/atlas_ekofizjograficzny.pdf (accessed on 12 November 2021).
- Metropolitan Research Institute Budapest (MRIB). The Podmaniczky Programme. 2005–2013, Medium-Term Urban Development Programme of Budapest. 2005. Available online: http://www.varosrehabilitacio.net/new/pdf/Podmaniczky_Program.pdf (accessed on 22 December 2021).
- Finta, S. Budapest 2030. In Long Term Development Concept; Budapest Főváros Főpolgármesteri Hivatal Városépítési Főosztály: Budapest, Hungary, 2014; Available online: https://budapest.hu/Documents/V%C3%A1ros%C3%A9p%C3%ADt%C3%A9si%20F%C5%91oszt%C3%A1ly/Budapest2030_HUN_%C3%B6sszefoglal%C3%B3.pdf (accessed on 22 December 2021).
- Tatai, Z.; Sőke, B.; Niedetzky, A.; Teremy, V. Radó Dezső Terv. In Budapest Zöldinfrastruktúra Fejlesztési és Fenntartási Akcióterve; Budapest Főváros Városépítési Tervező Kft.: Budapest, Hungary, 2021; Available online: https://budapest.hu/Documents/Rado_Dezso_Terv_2021.pdf (accessed on 21 December 2021).
- Masnavi, M.R.; Gharai, F.; Hajibandeh, M. Exploring urban resilience thinking for its application in urban planning: A review of literature. Int. J. Environ. Sci. Technol. 2019, 16, 567–582. [Google Scholar] [CrossRef]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The significance of parks to physical activity and public health: A conceptual model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef]
- Massoni, E.S.; Barton, D.N.; Rusch, G.M.; Gundersen, V. Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces. Ecosyst. Serv. 2018, 31, 502–516. [Google Scholar] [CrossRef]
- Taylor, L.; Leckey, E.H.; Lead, P.J.; Hochuli, D.F. What Visitors Want From Urban Parks: Diversity, Utility, Serendipity. Front. Environ. Sci. 2020, 8, 595620. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, H.; Zheng, T.; Rong, Y.; Wang, C.; Zhang, W.; Yan, Y.; Tang, L. Vitality of Urban Parks and Its Influencing Factors from the Perspective of Recreational Service Supply, Demand, and Spatial Links. Int. J. Environ. Res. Public Health 2020, 17, 1615. [Google Scholar] [CrossRef] [Green Version]
- McCormack, G.R.; Rock, M.; Toohey, A.M.; Hignell, D. Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. Health Place 2010, 16, 712–726. [Google Scholar] [CrossRef]
- Weyland, F.; Laterra, P. Recreation potential assessment at large spatial scales: A method based in the ecosystem services approach and landscape metrics. Ecol. Indic. 2014, 39, 34–43. [Google Scholar] [CrossRef]
- Shores, K.A.; West, S.T. The relationship between built park environments and physical activity in four park locations. J. Public Health Manag. Pract. 2008, 14, e9–e16. [Google Scholar] [CrossRef]
- Reed, J.A.; Arant, C.A.; Wells, P.; Stevens, K.; Hagen, S.; Harring, H. A descriptive examination of the most frequently used activity settings in 25 community parks using direct observation. J. Phys. Act. Health 2008, 5, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, A.T.; Henderson, K.A. Parks and recreation settings and active living: A review of associations with physical activity function and intensity. J. Phys. Act. Health 2008, 5, 619–632. [Google Scholar] [CrossRef]
- Kovács, Z.; Farkas, Z.J.; Egedy, T.; Kondor, A.C.; Szabó, B.; Lennert, J.; Baka, D.; Kohán, B. Urban sprawl and land conversion in post-socialist cities: The case of metropolitan Budapest. Cities 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Kondor, A.C.; Horváth, D. Challenges and experiences of a participative green space development in Budapest-Józsefváros. Urban Izziv 2008, 19, 174–182. [Google Scholar] [CrossRef]
- Buzási, A. Will Budapest be a climate-resilient city?—Adaptation and mitigation challenges and opportunities in development plans in Budapest. Eur. J. Sustain. Dev. 2014, 3, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Buzási, A.; Pálvölgyi, T.; Szalmáné Csete, M. Assessment of climate change performance of urban development projects—Case of Budapest, Hungary. Cities 2021, 114, 103215. [Google Scholar] [CrossRef]
- Tér_Köz, Budapest, Fővárosi városrehabilitáció 2013–2019, Budapest Főváros Önkormányzata, Budapest. 2019. Available online: http://terkoz.budapest.hu/wp-content/uploads/2020/03/TER_KOZ-Fovarosi-Varosrehabilitacio-2013-2019-csokkent.pdf (accessed on 21 December 2021).
- Budapest Dialog. Available online: https://www.budapestdialog.hu/ (accessed on 20 May 2020).
- Fekete, A.; Hodor, K.; Dai, D. Urban Sustainability through Innovative Open Space Design. A Novel Approach to the Regeneration of Historic Open Spaces in Some Eastern European Countries and China. Earth 2021, 2, 405–423. [Google Scholar] [CrossRef]
- Alföldy, G.; Czeglédy, Á.; Horváth, D. Egy ébredő városrész. Részvételi típusú városmegújítás a Józsefvárodban. In Városfejlődés és Városrehabilitáció Budapesti és Lipcsei Tapasztalatok; Kondor, A., Egedy, C., Eds.; Magyar Földrajzi Társaság: Budapest, Hungary, 2007; pp. 101–110. Available online: http://www.varosrehabilitacio.net/media/files/Varosrehabilitacio/varosfelujitas_cikkek/13.pdf (accessed on 21 December 2021).
- Steind Imre Program (SIP). 2011. Available online: https://www.sipzrt.hu/a-steindl-imre-program/ (accessed on 22 December 2021).
- Helembai, M.; Braun, J.; Gábor, P.; Juhász, C.; Borbényi, Z.; Erő, Z.; Bardóczi, S.; Paunoch, R.; Germán, T.; Szegő, J.; et al. Angyalzöld+ Stratégia és Program 2015–2019, Budapest XIII. Kerületi Önkormányzat, Budapest. 2014. Available online: https://www.budapest13.hu/onkormanyzat/onkormanyzati-strategiak/angyalzold/ (accessed on 22 December 2021).
- Nemzeti Hauszmann Program (NHP, 2019) 2019–2024. Available online: https://nemzetihauszmannprogram.hu/about-the-program (accessed on 21 December 2021).
- Martone, A.; Sepe, M.; Immacolata Simeon, M. The process of urban regeneration in Budapest: Approaching 2030. J. Urban Regen. Renew. 2017, 10, 286–300. [Google Scholar]
- Budapest Urban Development Plans (BUDP, 2017). Available online: https://budapest.hu/sites/english/Lapok/2017/budapest-urban-development-plans.aspx (accessed on 22 December 2021).
- Bardóczi, S.; Dér, A. (Eds.) 2010: Landscape Odyssey—Catalogue of the Most Important Landscape Architectural Projects in Hungary 2000–2010, 1st ed.; Hungarian Association of Landscape Architects: Budapest, Hungary, 2010; pp. 1–166. [Google Scholar]
- Bardóczi, S. (Ed.) 2015: Tájodüsszeia. Katalógus a Magyar Tájépítész Szakma 2010–2015 Közötti Legfontosabb Alkotásaiból, 1st ed.; Hungarian Association of Landscape Architects: Budapest, Hungary, 2015; pp. 1–344. [Google Scholar]
- Az Olimpia Park Teljes Körű Felújítása, Építészfórum. 2014. Available online: http://epiteszforum.hu/az-olimpia-park-teljes-koru-felujitasa (accessed on 19 July 2021).
- Bagi, L. 2016, Budapest’s Riverfront Nehru Part Is Now a Pleasant Parkland. Available online: https://welovebudapest.com/en/article/2016/9/29/budapest-s-riverfront-nehru-part-is-now-a-pleasant-parkland (accessed on 5 December 2021).
- Kimic, K. In Olympic style. Zieleń Miejska 2016, 10, 26–27. [Google Scholar]
- Budapest—NBS for Climate Resilience and Pollution Control. 2018. Available online: https://oppla.eu/casestudy/19444 (accessed on 19 December 2021).
- Nehru Part. Rakpart. 2019. Available online: https://zoldkalauz.hu/nehru-part (accessed on 16 November 2021).
- Selmeczy, V.; Morante, T.B.; Bihunova, M.; Weber-Siwirska, M.; Dostal, P.; Skarżyński, D. SMART AND GREEN—ON THE SPOT IN VISEGRAD CITIES. Presenting Smart and Green City Solutions. 2019. Available online: https://www.ceeweb.org/wp-content/uploads/Smart-Green-brochure-EN.pdf (accessed on 17 November 2021).
- Adorján, A. Success and applied tools in post-industrial rehabilitations. YBL J. Built Environ. 2015, 3, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Millenary Park, by Ujirany (New Directions Landscape Architects). Available online: http://landezine.com/index.php/2015/10/millenary-park-by-ujirany-new-directions/ (accessed on 20 July 2021).
- Domonkos, C. From Factory to an Exciting Cultural Centre—Millenáris Park is 20 Years Old. 2021. Available online: https://pestbuda.hu/en/post/20210708_from_factory_to_an_exciting_cultural_centre_millenaris_park_is_20_years_old (accessed on 20 July 2021).
- Millenary Park: Motivation and Interaction. Újirány. 2021. Available online: https://urbannext.net/millenary-park/ (accessed on 19 July 2021).
- Graphisoft Park, by Garten Studio. 2013. Available online: https://landezine.com/graphisoft-park-by-garten-studio/ (accessed on 11 December 2021).
- Riverside Origami, by Garten Studio. 2012. Available online: https://landezine.com/riverside-origami-millennium-city-center-by-garten-studio/ (accessed on 12 December 2021).
- OTÉK 182/2008 (VII. 14.) kormány Rendelete. Available online: https://epitesijog.hu/1828-orszagos-teleplesrendezesi-es-epitesi-kvetelmenyek-otek (accessed on 6 February 2022).
- 1997 Évi LXXVIII. Törvény az Épített Környezet Alakításáról és Védelméről. Available online: https://njt.hu/jogszabaly/1997-78-00-00 (accessed on 6 February 2022).
- A Területek Biológiai Aktivitásértékének Számításáról Szóló 9/2007. (IV. 3.) ÖTM Rendelet/ 9/2007 on the Calculation of the Biological Activity Value of Areas. (IV. 3.) ÖTM Decree. Available online: https://uj.njt.hu/jogszabaly/2007-9-20-1V (accessed on 6 February 2022).
- 1257/2017. (VIII.30.) Fővárosi Közgyűlési Határozat. Resolution No. 1257/2017 (VIII.30.) Of the General Assembly of the Capital City. Available online: https://net.jogtar.hu/rendelet?docid=A17H1201.FOV&dbnum=104&council=fovaros (accessed on 6 February 2022).
- Artmann, M.; Kohler, M.; Meinel, G.; Gan, J.; Ioja, I.-C. How smart growth and green infrastructure can mutually support each other—A conceptual framework for compact and green cities. Ecol. Indic. 2017, 96, 10–22. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, B.H.; Sanna, D.D. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 329–343. [Google Scholar] [CrossRef]
- Lizée, M.-H.; Mauffrey, J.-F.; Tatoni, T.; Deschamps-Cottin, M. Monitoring urban environments on the basis of biological traits. Evcological Indic. 2011, 11, 353–361. [Google Scholar] [CrossRef]
- Olsen, L.M.; Washington-Allen, R.A.; Dale, V.H. Time-Series Analysis of Land Cover Using Landscape Metrics. GIScience Remote Sens. 2005, 42, 200–223. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L. Issues in using landscape indicators to assess land changes. Ecol. Ind. 2013, 28, 91–99. [Google Scholar] [CrossRef]
- Herold, M.; Couclelis, H.; Clarke, K.C. The role of spatial metrics in the analysis and modeling of urban land use change. Comput. Environ. Urban Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Ind. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable development goals: A need for relevant indicators. Ecol. Ind. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Sapena, M.; Ruiz, L.Á. Analysis of land use/land cover spatio-temporal metrics and population dynamics for urban growth characterization. Comput. Environ. Urban Syst. 2019, 73, 27–39. [Google Scholar] [CrossRef]
- Patino, J.E.; Duque, J.C. A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban Syst. 2013, 37, 1–17. [Google Scholar] [CrossRef]
- Lothian, A. Landscape and the philosophy of aesthetics: Is landscape quality inherent in the landscape or in the eye of the beholder? Landsc. Urban Plan. 1999, 44, 177–198. [Google Scholar] [CrossRef]
- Speller, G.; Ravenscroft, N. Facilitating and evaluating public participation in urban parks management. Local Environ. Int. J. Justice Sustain. 2005, 10, 41–56. [Google Scholar] [CrossRef]
- Fors, H.; Hagemann, F.A.; Sang, Å.O.; Randrup, T.B. Striving for Inclusion—A Systematic Review of Long-Term Participation in Strategic Management of Urban Green Spaces. Front. Sustain. Cities 2021, 3, 572423. [Google Scholar] [CrossRef]
- Zhang, Y.; Van den Berg, A.; Van Dijk, T.; Weitkamp, G. Quality over Quantity: Contribution of Urban Green Space to Neighborhood Satisfaction. Int. J. Environ. Res. Public Health 2017, 14, 535. [Google Scholar] [CrossRef] [PubMed]
- Ives, C.; Oke, C.; Hehir, A.; Gordon, A. Capturing residents’ values for urban green space: Mapping, analysis and guidance for practice. Landsc. Urban Plan. 2017, 161, 32–43. [Google Scholar] [CrossRef] [Green Version]
Group of Parks | Name of Park | Location(District) | Creation/Rebuilding Periods | Main Sustainable Approach |
---|---|---|---|---|
Renovation of existing parks | Olimpia Park | V |
|
|
Nehru Park | IX |
|
| |
Newly designed parks created as a result of brownfield reuse and development | Millenáris Park | II |
|
|
Graphisoft Park | III |
|
| |
Newly designed parks created as a result of development of residential areas | MOM Park | XII |
|
|
Bajor Gizi Park | IX |
|
|
Landcover Structures | Renovation of Already Existing Parks | Newly Designed Parks Created as a Result of Brownfield Reuse and Development | Newly Designed Parks Created as a Result of Development of Residential Areas | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Olimpia Park | Nehru Park | Millenáris Park | Graphisoft Park | MOM Park | Bajor Gizi Park | |||||||||
m2 | % | m2 | % | m2 | % | m2 | % | m2 | % | m2 | % | |||
Architecture | buildings (B) | 118.91 | 1.09 | 40.09 | 0.21 | 13,232.12 | 29.70 | 5136.72 | 23.45 | 11,487.71 | 40.63 | 22,398.00 | 35.57 | |
Greenery | planted on the ground (GG) | 4262.76 | 39.13 | 13,114.11 | 69.67 | 16,991.89 | 38.13 | 8073.38 | 36.86 | 4279.24 | 15.13 | 15,085.02 | 23.95 | |
green roofs (GR) | - | - | - | - | - | - | 3396.14 | 15.50 | 3262.76 | 11.54 | 3633.40 | 5.77 | ||
Pavement | water-permeable (PP) | gravel | 1079.68 | 9.18 | 3626.24 | 19.27 | 2926.71 | 6.57 | 1205.63 | 6.71 | 36.97 | 0.13 | 2080.70 | 3.30 |
sand | - | - | - | 263.57 | - | - | ||||||||
semi water-permeable (PS) | bricks or concrete tales overgrown with grass | - | - | - | - | - | - | 71.07 | 0.33 | - | - | 1294.04 | 2.06 | |
water-impermeable (PI) | concrete | 4159.40 | 50.24 | 459.63 | 10.85 | 8998.09 | 20.19 | 3099.84 | 14.15 | 9180.10 | 32.46 | 16,685.74 | 26.99 | |
artificial surface on sport fields and playgrounds | 1314.12 | 1582.53 | - | - | - | 309.13 | ||||||||
Water | artificial reservoirs (WA) | 39.42 | 0.36 | - | - | 2411.20 | 5.41 | 558.80 | 3.0 | 31.72 | 0.11 | 1470.28 | 2.36 | |
other water features (WF) | - | - | - | 98.54 | - | 17.82 | ||||||||
Total park area | 10,894.29 | 100 | 18,822.60 | 100 | 44,560.02 | 100 | 21,903.69 | 100 | 28,278.50 | 100 | 62,974.13 | 100 |
Landcover Structures | Landcover Included in the RBVA | Renovation of Already Existing Parks | Newly Designed Parks Created as a Result of Brownfield Reuse and Development | Newly Designed Parks Created as a Result of Development of Residential Areas | ||||
---|---|---|---|---|---|---|---|---|
Olimpia Park | Nehru Park | Millenáris Park | Graphisoft Park | MOM Park | Bajor Gizi Park | |||
Greenery (G) | on the ground (GG) | 100% | 39.13% | 69.67% | 38.13% | 36.86% | 15.13% | 23.95% |
green roofs (GR) | 50% | - | - | - | 7.75% | 5.77% | 2.89% | |
Pavement (P) | water-permeable (PP) | 50% | 4.59% | 9.64% | 3.29% | 3.36% | 0.07% | 1.65% |
Water (W) | artificial reservoirs (WA) | min. 10m2 | - | - | 2.71% | 1.28% | - | 1.17% |
Total RBVA: | 43.72% | 79.31% | 44.13% | 51.52% | 22.97% | 29.66% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimic, K.; Fekete, A. The Ratio of Biologically Vital Areas as a Measure of the Sustainability of Urban Parks Using the Example of Budapest, Hungary. Resources 2022, 11, 47. https://doi.org/10.3390/resources11050047
Kimic K, Fekete A. The Ratio of Biologically Vital Areas as a Measure of the Sustainability of Urban Parks Using the Example of Budapest, Hungary. Resources. 2022; 11(5):47. https://doi.org/10.3390/resources11050047
Chicago/Turabian StyleKimic, Kinga, and Albert Fekete. 2022. "The Ratio of Biologically Vital Areas as a Measure of the Sustainability of Urban Parks Using the Example of Budapest, Hungary" Resources 11, no. 5: 47. https://doi.org/10.3390/resources11050047
APA StyleKimic, K., & Fekete, A. (2022). The Ratio of Biologically Vital Areas as a Measure of the Sustainability of Urban Parks Using the Example of Budapest, Hungary. Resources, 11(5), 47. https://doi.org/10.3390/resources11050047