Analysis of Farmers’ Perceptions on Sealing Techniques for Runoff Harvesting Ponds: A Case Study from Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection on Farmers’ Perceptions
2.2.1. Waso-2 Survey Tool
2.2.2. Questionnaire
2.2.3. Sampling
2.2.4. Ethical Considerations
2.2.5. On-Site Survey Process
2.3. Data Treatment and Analysis Tools
- Shapiro–Wilk normality test hypothesis (H1)
- Bartlett’s homoscedasticity test hypothesis (H2)
- ANOVA test hypothesis (H3)
- Box plot [68]
- Multiple component analysis [69]
3. Results
3.1. Descriptive Statistics
3.2. Inferential Statistics
- Shapiro–Wilk normality test for Q2 variables
- Bartlett’s test and ANOVA for Q1 variables
- Shapiro–Wilk normality test for Q2 variables
- Bartlett’s test and ANOVA for Q2 variables
- Shapiro–Wilk normality test for Q3 variables
- Bartlett’s test and ANOVA for Q3 variables
- Shapiro–Wilk normality test for Q4 variables
- Bartlett’s test and ANOVA for Q4 variables
- Shapiro–Wilk normality test for Q5 and Q6 variables
- Shapiro–Wilk normality test for Q7 variables
- Bartlett’s test and ANOVA for Q7 variables
- Shapiro–Wilk normality test for Q8 variables
- Bartlett’s test and ANOVA for Q8 variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Waso-2 Survey Form
Simplified respondent consent form |
My name is __________ [name of investigator] and I am conducting a survey on behalf of the International Institute for Water and Environmental Engineering (2iE). Our study focuses on the techniques used to seal rainwater harvesting ponds in your province. We aim to understand how these ponds are protected from seepage, the context in which they were obtained or built, the types of liners used, the reasons behind these choices, and the overall durability of the ponds. Your insights are invaluable to us, and we would greatly appreciate your participation in this survey, which will take approximately 30 min. Rest assured, all personal information you provide will remain confidential and anonymous. Participation in this survey is entirely voluntary. You are free to skip any question or stop the survey at any time. While we hope you will share your experiences with us, please note that this survey is purely for academic and scientific purposes. We are not able to offer humanitarian aid, such as donations or financial assistance, based on your participation. Your input will help us better understand the local conditions and improve future research. Whether or not you participate will not affect any potential assistance you may receive in the future. Do you have any questions before we begin? |
- Yes
- No
- Yes
- No
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR1_1 | Wall erosion and/or slumping | ||
AR1_2 | Erosion of pond inlet: | ||
AR1_3 | High permeability: | ||
AR1_4 | Filling problem: | ||
AR1_5 | Cracks: |
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR2_1 | Maintenance work: | ||
AR2_2 | Mixed waterproofing solution: | ||
AR2_3 | Change in geomembrane: | ||
AR2_4 | Clay or bitumen resurfacing: | ||
AR2_5 | Replacing the original coating with a more suitable one: |
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR3_1 | Clay mixed with used oil: | ||
AR3_2 | Banco lump mixed with straw: | ||
AR3_3 | Clay plus bitumen: | ||
AR3_4 | Raw clay + water + cow dung: | ||
AR3_5 | Red clay + black clay + cow dung + ash + water: |
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR4_1 | Lowlands: | ||
AR4_2 | Termite mounds: | ||
AR4_3 | Stream banks: | ||
AR4_4 | Deep soils (excavations): |
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR5_1 | I have seen it before: | ||
AR5_2 | I know how to install it: | ||
AR5_3 | I know a sales outlet here in the village: | ||
AR5_4 | It is too expensive: |
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR6_1 | I have seen it before: | ||
AR6_2 | I know how to install it: | ||
AR6_3 | I know a sales outlet here in the village: | ||
AR6_4 | It is too expensive: |
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR7_1 | Geomembrane/Tarp: | ||
AR7_2 | Bitumen: | ||
AR7_3 | Masonry/Concrete: | ||
AR7_4 | Clay: |
Code | Anticipated Responses | Mark Out of 20 | Observations |
AR8_1 | 0–1000 USD: | ||
AR8_2 | 1000–1500 USD: | ||
AR8_3 | 1500–2000 USD: | ||
AR8_4 | More than 2000 USD: |
References
- Mati, B. Training Manual 2-Best Practices for Water Harvesting from Open Surfaces; Training Manual 2; NBI/NELSAP—Regional Agricultural and Trade Programme (RATP): Bujumbura, Burundi, 2012. [Google Scholar]
- Ngigi, S. What is the limit of up-scaling rainwater harvesting in a river basin? Phys. Chem. Earth Parts A/B/C 2003, 28, 943–956. [Google Scholar] [CrossRef]
- Ch, S.; Rejani, R.; Channalli, P. Climate resilient water management practices for improving water use efficiency and sustaining crop productivity. In Proceedings of the Climate Change & Water: Improving WUE 2014, Hyderabad, India, 13–14 November 2014. [Google Scholar]
- Zheng, H.; Sang, Z.; Wang, K.; Xu, Y.; Cai, Z. Distribution of Irrigated and Rainfed Agricultural Land in a Semi-Arid Sandy Area. Land 2022, 11, 1621. [Google Scholar] [CrossRef]
- Mall, R.; Singh, R.; Gupta, A.; Srinivasan, G.; Rathore, L. Impact of Climate Change on Indian Agriculture: A Review. Clim. Chang. 2007, 82, 225–231. [Google Scholar] [CrossRef]
- Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.; de Voil, P.; Nidumolu, U. The vulnerability of Australian rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ. Sci. Policy 2010, 13, 18–27. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.; Trambauer, P. A review of droughts in the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 2679–2718. [Google Scholar] [CrossRef]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- MARA. Annuaire des Statistiques Agricoles, SP-CPSA. Available online: https://www.spcpsa.bf/download/annuaire-des-statistiques-agricoles-2021-version-provisioire/ (accessed on 30 April 2024).
- Ouedraogo, M. Impact des changements climatiques sur les revenus agricoles au Burkina Faso. J. Agric. Environ. Int. Dev. 2012, 106, 3–21. [Google Scholar] [CrossRef]
- Reij, C.; Tappan, G.; Smale, M. Agroenvironmental Transformation in the Sahel: Another Kind of “Green Revolution”. 2009. Available online: https://vtechworks.lib.vt.edu/handle/10919/68985 (accessed on 8 November 2023).
- Narcise, K.; Moussa, S.; Ouédraogo, A.; Barbier, B.; Albert, B.; Kabore, P.; Narcise, S.; Moussa, O.; Amadé, B.; Bruno, B. Impacts of Intra-Seasonal Rainfall Variability and Cropping Practices on Cereal Yields in Sub-Saharan Africa. Am. J. Agric. For. 2023, 11, 190–202. [Google Scholar] [CrossRef]
- Barron, J.; Rockström, J.; Gichuki, F.; Hatibu, N. Dry spell analysis and maize yields for two semi-arid locations in east Africa. Agric. For. Meteorol. 2003, 117, 23–37. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M. Semiarid Crop Production from a Hydrological Perspective: Gap between Potential and Actual Yields. Crit. Rev. Plant Sci. 2000, 19, 319–346. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Rabbinge, R. Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Res. 1997, 52, 197–208. [Google Scholar] [CrossRef]
- Bruins, H.J.; Evenari, M.; Nessler, U. Rainwater-harvesting agriculture for food production in arid zones: The challenge of the African famine. Appl. Geogr. 1986, 6, 13–32. [Google Scholar] [CrossRef]
- Ani, A.; Shaari, N.; Sairi, A.; Zain, M.; Tahir, M. Rainwater Harvesting as an Alternative Water Supply in the Future. Eur. J. Sci. Res. 2009, 34, 132–140. Available online: https://www.semanticscholar.org/paper/Rainwater-Harvesting-as-an-Alternative-Water-Supply-Ani-Shaari/bc29ef94bbb4e8d9914115eafd86e47d26795d4a (accessed on 4 June 2024).
- Mohammed, T.; Megat Mohd Noor, M.J.; Megat Mohd Noor, M.J.; Noor, A.; Ghazali, A. Study on Potential Uses of Rainwater Harvesting in Urban Areas; Department of Civil Engineering Faculty of Engineering University Putra Malaysia 43400 UPM Serdang: Selangor, Malaysia, 2006. [Google Scholar]
- Myers, L.E. Water Harvesting by Catchments; U.S. Water Conservation Laboratory: Phoenix, AZ, USA, 1963. [Google Scholar]
- Oweis, T.; Hachum, A.; Kijne, J. Water Harvesting and Supplemental Irrigation for Improved Water Use Efficiency in Dry Areas; IWMI: Aleppo, Syria, 1999; ISBN 978-92-9090-378-9. [Google Scholar]
- Boers, T.M.; Ben-Asher, J. A review of rainwater harvesting. Agric. Water Manag. 1982, 5, 145–158. [Google Scholar] [CrossRef]
- Fink, D.H.; Frasier, G.W.; Cooley, K.R. Water harvesting by wax-treated soil surfaces: Progress, problems, and potential. Agric. Water Manag. 1980, 3, 125–134. [Google Scholar] [CrossRef]
- Ertop, H.; Kocięcka, J.; Atilgan, A.; Liberacki, D.; Niemiec, M.; Rolbiecki, R. The Importance of Rainwater Harvesting and Its Usage Possibilities: Antalya Example (Turkey). Water 2023, 15, 2194. [Google Scholar] [CrossRef]
- Olaoye, R.; Coker, A.; Mynepalli, K.; Esan, M. Examining the effectiveness of rainwater collection systems in a nigerian leper colony using the behavioural model. ARPN J. Eng. Appl. Sci. 2013, 8, 1–8. [Google Scholar]
- Zougmore, R.; Zida, Z.; Kambou, F.N. Rehabilitation des Sols Degrades: Roles des Amendements Dans le Succes des Techniques de Demi-Lune et de zai au Sahel; Bulletin du RESEAU EROSION: Guibaré, Burkina Faso, 1999; pp. 536–550. [Google Scholar]
- Bayen, P.; Traoré, S.; Bognounou, F.; Kaiser, D.; Thiombiano, A. Effet du zaï amélioré sur la productivité du sorgho en zone sahélienne. VertigO—La Rev. Électronique Sci. L’environnement 2012, 11, 1–8. [Google Scholar] [CrossRef]
- Oyetunde-Usman, Z.; Shee, A. Adoption of drought-tolerant maize varieties and interrelated climate smart agricultural practices in Nigeria. Agric. Food Secur. 2023, 12, 43. [Google Scholar] [CrossRef]
- Zouré, C.; Queloz, P.; Koïta, M.; Niang, D.; Fowé, T.; Yonaba, R.; Consuegra, D.; Yacouba, H.; Karambiri, H. Modelling the water balance on farming practices at plot scale: Case study of Tougou watershed in Northern Burkina Faso. CATENA 2019, 173, 59–70. [Google Scholar] [CrossRef]
- Abdulai, A.; Huffman, W. The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application. Land Econ. 2014, 90, 26–43. [Google Scholar] [CrossRef]
- Zongo, B.; Barro, A.; Moyenga, S.; Simporé, S. Techno-economic performance of motorization for sustainable agricultural water management: Case of zaï practice in the central region of Burkina Faso. Int. J. Innov. Appl. Stud. 2023, 41, 660–669. [Google Scholar]
- Fox, P.; Rockström, J. Water-harvesting for supplementary irrigation of cereal crops to overcome intra-seasonal dry-spells in the Sahel. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 289–296. [Google Scholar] [CrossRef]
- Some, L.; Ouattara, K. Irrigation de complément pour améliorer la culture du sorgho au Burkina Faso. Agron. Afr. 2009, 17, 201–209. [Google Scholar] [CrossRef]
- Fossi, S.; Da Silveira, S.; Kokole, K. Design and Implementation of Runoff Harvesting Basins for Supplemental Irrigation in the Burkinabe Sahel. 2013. Available online: http://hdl.handle.net/10625/52227 (accessed on 13 August 2024).
- Barbier, B.; Zongo, B.; Dugue, P.; Zangré, A. L’irrigation de complément à partir de petits bassins individuels: Synthèse des travaux réalisés au Burkina Faso. AGRIDAPE 2015, 31, 9–11. [Google Scholar]
- Gana, A. Caractérisation des Matériaux Latéritiques Indurés Pour Une Meilleure Utilisation Dans L’habitat en Afrique. 2014. Available online: https://www.semanticscholar.org/paper/Caract%C3%A8risation-des-mat%C3%A9riaux-lat%C3%A9ritiques-indur%C3%A9s-Gana/dc043dded0eb65d540fd1742db290c464c31936d (accessed on 2 May 2024).
- Zabidi, H.A.; Goh, H.W.; Chang, C.K.; Chan, N.W.; Zakaria, N.A. A Review of Roof and Pond Rainwater Harvesting Systems for Water Security: The Design, Performance and Way Forward. Water 2020, 12, 3163. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Keita, A.; Mahamadou, K.; Niang, D.; Lidon, B.P.M. Waso: An Innovative Device to Uncover Independent Converging Opinions of Irrigation System Farmers. Irrig. Drain. 2019, 68, 496–506. [Google Scholar] [CrossRef]
- Neya, T. SP/CNDD Première Communication du Burkina Faso sur l Adaptation (AdCom Burkina); Secrétariat Permanent du Conseil National pour le Développement Durable (SP/CNDD): Ouagadougou, Burkina Faso, 2022. [CrossRef]
- Pallo, F.J.P.; Lamourdia, T. Les sols ferrugineux tropicaux lessivés à concrétions du Burkina Faso: Caractéristiques et contraintes pour l’utilisation agricole. Soltrop 1989, 89, 307–327. [Google Scholar]
- Traore, A. Changement Climatique et Agriculture en Afrique Subsaharienne. Perception des Agriculteurs et Impact de L’association Entre une Céréale et une Légumineuse sur les Rendements des Deux Espèces et Leur Variabilité Inter-Annuelle sous Climat Actuel et Futur. Cas du Sorgho et du Niébé Dans L’environnement Soudano-Sahélien. Ph.D. Thesis, Sorbonne Université, Paris, France, 2022. Available online: https://theses.hal.science/tel-03847646 (accessed on 13 November 2023).
- INSD. Enquête Régionale Intégrée sur L’emploi et le Secteur Informel 2018: Rapport Final. Ouagadougou, Burkina Faso et Bamako, Mali. Institut Nationale de la Statistique et de la Démographie et AFRISTAT. Available online: https://www.insd.bf/sites/default/files/2022-09/Burkina_ERI-ESI_RapportFinal.pdf (accessed on 4 March 2024).
- Beugre, A.M.D.-A. Analyse de la Perception de L’exploitation et la Maintenance de Périmètre Irrigue et de sa Solution Selon les Exploitants. Master’s Thesis, Institut 2iE, Ouagadougou, Burkina Faso, 2022. [Google Scholar]
- Gbetofia, K.F.B. Etude Technique Détaillée pour L’aménagement Hydro-Agricole de 15 ha (10 ha en Semi-Californien et 5 ha en Goutte-à-Goutte) en Aval du Barrage de Rakaye-Kassiri Dans la Commune de Doulougou (Burkina-Faso). Master’s Thesis, Institut 2iE, Ouagadougou, Burkina Faso, 2021. [Google Scholar]
- Koualet Pehemait, S.M. Améliorer la Disponibilité des Coupeurs de Canne à Sucre sur un Périmètre Industriel cas de la SUCAF-CI/Ferké (Côte d’Ivoire). Master’s Thesis, Institut 2iE, Ouagadougou, Burkina Faso, 2017. [Google Scholar]
- Rutabara, H. La Perception de L’entretien du Réseau de Drainage et sa Solution Selon les Agriculteurs: Cas de Baguineda Amont. Master’s Thesis, Institut 2iE, Ouagadougou, Burkina Faso, 2016. [Google Scholar]
- Sandwidi, S.A. La Perception de L’entretien du Réseau de Drainage et sa Solution Selon les Agriculteurs: Cas de Baguineda Aval. Master’s Thesis, Institut 2iE, Ouagadougou, Burkina Faso, 2016. [Google Scholar]
- Baki, B.C.; Wellens, J.; Tychon, B. Nexus Eau-(Energie)-Alimentation: Implémentation d’un Dispositif Innovant pour L’implication des Agriculteurs, Présenté à Colloque International Changements Globaux et Gestion de la Transition: Au Singulier ou au Pluriel? 20–21 October 2022; Institut de Géographie Quartier Village Clos Mercator, 3 (B11) 4000 Liège, Belgique: Liège, Belgium, 2022; Available online: https://orbi.uliege.be/handle/2268/300600 (accessed on 1 October 2024).
- Doggett, M. Root Cause Analysis: A Framework for Tool Selection. Mark Doggett 2006, 12, 34–45. [Google Scholar] [CrossRef]
- Sakdiyah, S.; Eltivia, N.; Afandi, A. Root Cause Analysis Using Fishbone Diagram: Company Management Decision Making. J. Appl. Bus. Tax. Econ. Res. 2022, 1, 566–576. [Google Scholar] [CrossRef]
- Percarpio, K.; Watts, B.; Weeks, W. The Effectiveness of Root Cause Analysis: What Does the Literature Tell Us? Jt. Comm. J. Qual. Patient Saf./Jt. Comm. Resour. 2008, 34, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Ciocoiu, C.; Ilie, G. Application of Fishbone Diagram to Determine the Risk of An Event with Multiple Causes. Manag. Res. Pract. 2010, 2, 1–20. [Google Scholar]
- Montgomery, D.; Runger, G. Applied Statistics and Probability for Engineers; Wiley and Sons, Inc.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-74412-3. [Google Scholar]
- Adam, A. Sample Size Determination in Survey Research. J. Sci. Res. Rep. 2020, 26, 90–97. [Google Scholar] [CrossRef]
- Machin, D.; Campbell, M.J.; Fayers, P.; Pinol, A. Sample Size Tables for Clinical Studies; Blackwell Science: Hoboken, NJ, USA, 1997; Available online: https://abdn.elsevierpure.com/en/publications/sample-size-tables-for-clinical-studies (accessed on 17 November 2023).
- Kish, L. Survey Sampling. John Wiley & Sons, Inc., New York, London 1965, IX + 643 S., 31 Pages, 56 Tables. Available online: https://doi.org/10.1002/bimj.19680100122 (accessed on 20 November 2023).
- Groves, R.M. Survey Errors and Survey Costs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1989; Available online: https://www.wiley.com/en-us/Survey+Errors+and+Survey+Costs-p-9780471678519 (accessed on 20 November 2023).
- Ouedraogo, R. Analyse des Déterminants Socioéconomiques et Psychosociaux de la Décision D’adoption D’innovations par les Agriculteurs: Cas de L’irrigation de Complément au Burkina Faso. Ph.D. Thesis, Montpellier SupAgro, Montpellier, France, 2021. Available online: https://agritrop.cirad.fr/600854/ (accessed on 20 November 2023).
- Okafor, J.C.; Ononogbu, O.A.; Ojimba, A.C.; Ani, C.C. Trans-border Mobility and Security in the Sahel: Exploring the Dynamics of Forced Migration and Population Displacements in Burkina Faso and Mali. Society 2023, 60, 345–358. [Google Scholar] [CrossRef]
- Adjamagbo, A.; Antoine, P. Démographie et Politiques Sociales; Actes du XVIIe Colloque AIDELF: Ouagadougou, Burkina Faso, 2012; ISBN 978-2-9521220-4-7. [Google Scholar]
- Bocquier, P. L’essentiel de Stata. 1998. Available online: https://dial.uclouvain.be/pr/boreal/object/boreal:78558 (accessed on 17 November 2023).
- Turkey, J.W. Exploratory Data Analysis; Addison-Wesley Series in Behavioral Science: Quantitative Methods; Addison-Wesley Publishing Company: Manila, Philippines, 1977. [Google Scholar]
- Davison, A.; Hinkley, D. Bootstrap Methods and Their Application. J. Am. Stat. Assoc. 1997, 94, 216. [Google Scholar] [CrossRef]
- Roca-Pardiñas, J.; Cadarso-Suárez, C.; González-Manteiga, W. 1.06—Resampling and Testing in Regression Models with Environmetrical Applications. In Comprehensive Chemometrics; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; pp. 171–187. ISBN 978-0-444-52701-1. [Google Scholar]
- Davison, A.; Hinkley, D.; Young, G. Recent Developments in Bootstrap Methodology. Stat. Sci. 2003, 18, 141–157. [Google Scholar] [CrossRef]
- Bobbitt, Z. Bartlett’s Test for Homogeneity of Variances (Definition & Example). 2021. Available online: https://www.statology.org/bartletts-test/ (accessed on 29 August 2024).
- O’brien, R.G. A General ANOVA Method for Robust Tests of Additive Models for Variances. J. Am. Stat. Assoc. 1979, 74, 877–880. [Google Scholar] [CrossRef]
- Edwards, T.G.; Özgün-Koca, A.; Barr, J. Interpretations of Boxplots: Helping Middle School Students to Think Outside the Box. J. Stat. Educ. 2017, 25, 21–28. [Google Scholar] [CrossRef]
- Berger, J.-L. Analyse Factorielle Exploratoire et Analyse en Composantes Principales: Guide Pratique. hal-03436771v1. HAL Open Sci. 2022, 78558. [Google Scholar] [CrossRef]
- Adesina, A.A.; Mbila, D.; Nkamleu, G.B.; Endamana, D. Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of southwest Cameroon. Agric. Ecosyst. Environ. 2000, 80, 255–265. [Google Scholar] [CrossRef]
- Ghazalian, P.; Larue, B.; West, G. Best Management Practices to Enhance Water Quality: Who is Adopting Them? J. Agric. Appl. Econ. 2009, 41, 663–682. [Google Scholar] [CrossRef]
- Birba, M. Droits Fonciers et Biodiversité au Burkina Faso: Le cas de la Province de la Sissili. Ph.D. Thesis, Université de Limoges, Limoges, France, 2020. [Google Scholar]
- Bidou, J.E.; Droy, I. Les Inégalités Intrafamiliales, Une Source de Tension dans les Sociétés Rurales: Exemples en Afrique de l’Ouest. Dynamiques Internationales ISSN 2105-2646. 2017. Available online: https://www.researchgate.net/publication/313371377 (accessed on 19 July 2024).
- Bittner, A. Analysis-of-Variance (ANOVA) Assumptions Review: Normality, Variance Equality, and Independence. In Proceedings of the XXXIVth Annual International Occupational Ergonomics and Safety Conference, Virtual, 15–16 September 2022; p. 33. [Google Scholar] [CrossRef]
- Odoi, B.; Twumasi-Ankrah, S.; Al-Hassan, S.; Samita, S. Efficiency of Bartlett and levenes Test for testing HOV under varying number of replicate and groups in One- Way ANOVA. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 1219–1223. [Google Scholar] [CrossRef]
- Mishra, S.; Sarkar, U.; Taraphder, S.; Datta, S.; Swain, D.; Saikhom, R.; Panda, S.; Laishram, M. Principal Component Analysis. Int. J. Livest. Res. 2017, 5, 1. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Nordstokke, D.; Zumbo, B. A Cautionary Tale About Levene’s Tests for Equal Variances. J. Educ. Res. Policy Stud. 2007, 7, 1–14. [Google Scholar]
- Baguma, D.; Loiskandl, W. Rainwater harvesting technologies and practices in rural Uganda: A case study. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 355–369. [Google Scholar] [CrossRef]
- Bunclark, L.; Gowing, J.; Oughton, E.; Ouattara, K.; Ouoba, S.; Benao, D. Understanding farmers’ decisions on adaptation to climate change: Exploring adoption of water harvesting technologies in Burkina Faso. Glob. Environ. Chang. 2018, 48, 243–254. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-delaFuente, A.; Fidelibus, M.D. Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11, 1320. [Google Scholar] [CrossRef]
- Fox, P.; Rockström, J.; Barron, J. Risk analysis and economic viability of water harvesting for supplemental irrigation in semi-arid Burkina Faso and Kenya. Agric. Syst. 2005, 83, 231–250. [Google Scholar] [CrossRef]
- Adhikari, S.; Pani, K.C.; Jayasankar, P. Water gain and water loss of some freshwater aquaculture ponds at Kausalyaganga, Orissa, India. Appl. Water Sci. 2019, 9, 121. [Google Scholar] [CrossRef]
- Odhiambo, K.O.; Iro Ong’or, B.T.; Kanda, E.K. Optimization of rainwater harvesting system design for smallholder irrigation farmers in Kenya: A review. AQUA—Water Infrastruct. Ecosyst. Soc. 2021, 70, 483–492. [Google Scholar] [CrossRef]
- Sharma, K.K.; Mohapatra, B.C.; Das, P.C.; Sarkar, B.; Chand, S. Water budgets for freshwater aquaculture ponds with reference to effluent volume. Agric. Sci. 2013, 4, 353–359. [Google Scholar] [CrossRef]
- Yoo, K.H.; Boyd, C.E. Hydrology and Water Supply for Pond Aquaculture; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 978-1-4615-2640-7. [Google Scholar]
- Zongo, B. Stratégies Innovantes D’adaptation à la Variabilité et au Changement Climatiques au Sahel: Cas de L’irrigation de Complément et de L’information Climatique Dans les Exploitations Agricoles du Burkina Faso. Ph.D. Thesis, University of Liege, Liège, Belgium, 2016. [Google Scholar]
- Belayneh, L.; Dewitte, O.; Gulie, G.; Poesen, J.; O’Hara, D.; Kassaye, A.; Endale, T.; Kervyn, M. Landslides and Gullies Interact as Sources of Lake Sediments in a Rifting Context: Insights from a Highly Degraded Mountain Environment. Geosciences 2022, 12, 274. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth-Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Schütt, B.; Förch, G.; Bekele, S.; Thiemann, S. Modern Water Level and Sediment Accumulation Changes of Lake Abaya, Southern Ethiopia-A Case Study from the Northern Lake Area. Water Res. Environ. 2002, 2, 418–422. Available online: https://www.researchgate.net/publication/228968345_Modern_water_level_and_Sediment_accumulation_changes_of_Lake_Abaya_southern_Ethiopia-A_case_study_from_the_northern_lake_area- (accessed on 23 April 2024).
- Efole Ewoukem, T.; Mikolasek, O.; Aubin, J.; Tomedi Eyango, M.; Pouomogne, V.; Ombredane, D. Sustainability of fishpond culture in rural farming systems of Central and Western Cameroon. Int. J. Agric. Sustain. 2017, 15, 208–222. [Google Scholar] [CrossRef]
- Gomes, L.C.d.F.; Gomes, H.C.; Reis, E.D. Surface Waterproofing Techniques: A Case Study in Nova Lima, Brazil. Eng 2023, 4, 1871–1890. [Google Scholar] [CrossRef]
- Kere, B. Architecture et Cultures Constructives du Burkina Faso—UNESCO Bibliothèque Numérique. Houndé, Burkina Faso. 1995. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000109992 (accessed on 12 February 2024).
- Lidón de Miguel, M.; Vegas, F.; Mileto, C.; García-Soriano, L. Return to the Native Earth: Historical Analysis of Foreign Influences on Traditional Architecture in Burkina Faso. Sustainability 2021, 13, 757. [Google Scholar] [CrossRef]
- Saurabh, B.; Ghadge, A.N. Comparative Study of Conventional and Modern Waterproofing Techniques. Int. J. Eng. Res. 2016, 5, 32–36. [Google Scholar]
- Raunet, M. Bas-Fonds et Riziculture; ORSTOM: Paris, France, 1991; p. 125. [Google Scholar]
- Duc, M. Les Argiles Dans le Génie Civil: Pathologies et Propriétés Remarquables. Ph.D. Thesis, Université Paris Est—Marne-la-Vallée, Paris, France, 2020. Available online: https://theses.hal.science/tel-03089797 (accessed on 2 May 2024).
- Song, J.; Oh, K.; Kim, B.; Oh, S. Performance Evaluation of Waterproofing Membrane Systems Subject to the Concrete Joint Load Behavior of Below-Grade Concrete Structures. Appl. Sci. 2017, 7, 1147. [Google Scholar] [CrossRef]
- DIN 18195-1:2000-08; Waterproofing of Buildings-Part 1: Principles, Definitions, Attribution of Waterproofing Types, 2000–2008. DIN: Berlin, Germany, 2008. Available online: https://www.din.de/en/getting-involved/standards-committees/nabau/publications (accessed on 26 April 2024).
- Nývlt, M.; Pazderka, J.; Reiterman, P. Comparative Study of Different Types of Waterproofing Screeds with a Focus on Cohesion with Selected Building Materials after the Freeze-Thaw Exposure. Appl. Sci. 2021, 11, 11256. [Google Scholar] [CrossRef]
- Cui, P.; Schito, G.; Cui, Q. VOC emissions from asphalt pavement and health risks to construction workers. J. Clean. Prod. 2020, 244, 118757. [Google Scholar] [CrossRef]
- Partanen, T.; Boffetta, P. Cancer risk in asphalt workers and roofers: Review and meta-analysis of epidemiologic studies. Am. J. Ind. Med. 1994, 26, 721–740. [Google Scholar] [CrossRef]
- Binet, S.; Pfohl-Leszkowicz, A.; Brandt, H.; Lafontaine, M.; Castegnaro, M. Bitumen fumes: Review of work on the potential risk to workers and the present knowledge on its origin. Sci. Total Environ. 2002, 300, 37–49. [Google Scholar] [CrossRef]
- Atojunere, E.E. Incidences of bitumen contamination of water sources in some communities of Ondo state, Nigeria. Malays. J. Civ. Eng. 2021, 33, 27–33. [Google Scholar] [CrossRef]
- Omale, R.P.; Oguntade, A.A. Comparative Analysis of Concrete Water-Proofing Materials. J. Civ. Eng. Res. Technol. 2022, 122, 2–9. [Google Scholar]
- Fox, P.; Rockström, J. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel. Agric. Water Manag. 2003, 61, 29–50. [Google Scholar] [CrossRef]
- Rozaki, Z.; Senge, M.; Yoshiyama, K.; Komariah, K. Feasibility and adoption of rainwater harvesting by farmers. Rev. Agric. Sci. 2017, 5, 56–64. [Google Scholar] [CrossRef]
- Genet, A.; Getaneh, M. Comparative analysis of lining materials for reduction of seepage in water harvesting structures, Adet, Ethiopia. Int. J. Dev. Sustain. 2013, 2, 1623–1635. [Google Scholar]
- Roy, L.; Hanson, T.; Bott, L.; Chappell, J. Production and economic comparison of single versus multiple harvests of hybrid catfish in a commercial in-pond raceway system in west Alabama targeting two market outlets. JSAFWA 2019, 6, 58–66. [Google Scholar]
Variables | Measures | Percentage |
---|---|---|
Gender | Men | 95% |
Women | 5% | |
Age of interviewed farmers | from 18 to 35 years old | 5% |
from 36 to 60 years old | 66% | |
More than 60 years old | 29% | |
Functionality of the RWHP | Functional | 27% |
To be repaired | 44% | |
Abandoned | 29% | |
Owner of the farm | Yes | 100% |
No | 0% |
Variables/Anticipated Responses | Code | p-Value | |||
---|---|---|---|---|---|
Stratum 1 | Stratum 2 | Stratum 3 | Overall | ||
Wall gullies/or slumping | AR1_1 | 0.286 | 0.887 | 0.572 | 0.3715 |
Erosion of pond inlet: | AR1_2 | 0.324 | 0.466 | 0.188 | 0.07181 |
High permeability: | AR1_3 | 0.0527 | 0.240 | 0.0791 | 0.05781 |
Filling problem: | AR1_4 | 0.446 | 0.613 | 0.207 | 0.09566 |
Cracks: | AR1_5 | 0.738 | 0.300 | 0.580 | 0.06779 |
- | Decision at 5% threshold | Normally distributed into stratum 1 | Normally distributed into stratum 2 | Normally distributed into stratum 3 | Normally distributed. |
Variables | Bartlett’s Homoscedasticity Test | ANOVA Test | ||||
---|---|---|---|---|---|---|
K-Squared | p-Value | df | F Value | Pr (>F) | df | |
AR1_1 | 1.5336 | 0.4645 | 2 | 0.619 | 0.539 | 2 |
AR1_2 | 1.2209 | 0.5431 | 2 | 0.62 | 0.528 | 2 |
AR1_3 | 0.58195 | 0.7475 | 2 | 0.409 | 0.664 | 2 |
AR1_4 | 0.13891 | 0.9329 | 2 | 0.57 | 0.566 | 2 |
AR1_5 | 2.1342 | 0.344 | 2 | 0.448 | 0.618 | 2 |
Decision at 5% threshold | The variances are not significantly heterogeneous across the strata. | The variances do not differ significantly across the strata |
Variables | Code | p-Value | |||
---|---|---|---|---|---|
Stratum 1 | Stratum 2 | Stratum 3 | Overall | ||
Maintenance work: | AR2_1 | 0.683 | 0.400 | 0.0157 | 0.1632 |
Mixed waterproofing solution: | AR2_2 | 0.172 | 0.92 | 0.907 | 0.05835 |
Change of geomembrane: | AR2_3 | 0.404 | 0.302 | 0.05977 | 0.05977 |
Clay or bitumen resurfacing: | AR2_4 | 0.431 | 0.356 | 0.787 | 0.05679 |
Replacing the original coating with a more suitable one: | AR2_5 | 0.612 | 0.351 | 0.387 | 0.1374 |
Decision at 5% threshold | Normally distributed into stratum 1 | Normally distributed into stratum 2 | Normally distributed into stratum 3 | Normally distributed. |
Variables | Bartlett’s Homoscedasticity Test | ANOVA Test | ||||
---|---|---|---|---|---|---|
K-Squared | p-Value | df | F Value | Pr (>F) | df | |
AR2_1 | 1.4246 | 0.4905 | 2 | 0.751 | 0.472 | 2 |
AR2_2 | 0.81096 | 0.6667 | 2 | 1.315 | 0.269 | 2 |
AR2_3 | 0.7433 | 0.6896 | 2 | 3.904 | 0.0205 | 2 |
AR2_4 | 3.2966 | 0.1924 | 2 | 0.092 | 0.912 | 2 |
AR2_5 | 0.12881 | 0.9376 | 2 | 0.506 | 0.603 | 2 |
Decision at 5% threshold | The variances are not significantly heterogeneous across the strata. | The variances do not differ significantly across the strata |
Variables | Code | p-Value | |||
---|---|---|---|---|---|
Stratum 1 | Stratum 2 | Stratum 3 | Overall | ||
Clay + used oil: | AR3_1 | 0.0657 | 0.203 | 0.744 | 0.1144 |
Banco lump +with straw: | AR3_2 | 0.238 | 0.0805 | 0.316 | 0.1097 |
Clay + bitumen: | AR3_3 | 0.370 | 0.385 | 0.109 | 0.0603 |
Raw clay + water + cow dung: | AR3_4 | 0.00394 | 0.586 | 0.216 | 0.05699 |
Red clay + black clay + cow dung + ash + water: | AR3_5 | 0.481 | 0.650 | 0.190 | 0.07433 |
- | Decision at 5% threshold | Normally distributed into stratum 1 | Normally distributed into stratum 2 | Normally distributed into stratum 3 | Normally distributed. |
Variables | Bartlett’s Homoscedasticity Test | ANOVA Test | ||||
---|---|---|---|---|---|---|
K-Squarted | p-Value | df | F Value | Pr (>F) | df | |
AR3_1 | 0.64007 | 0.7261 | 2 | 0.621 | 0.538 | 2 |
AR3_2 | 1.803 | 0.406 | 2 | 5.139 | 0.00602 | 2 |
AR3_3 | 0.87264 | 0.6464 | 2 | 0.523 | 0.593 | 2 |
AR3_4 | 1.0603 | 0.5885 | 2 | 1.184 | 0.306 | 2 |
AR3_5 | 1.5934 | 0.4508 | 2 | 0.887 | 0.412 | 2 |
Decision at 5% threshold | The variances are not significantly heterogeneous across the strata. | The variances do not differ significantly across the strata |
Variables | Code | p-Value | |||
---|---|---|---|---|---|
Stratum 1 | Stratum 2 | Stratum 3 | Overall | ||
Lowlands | AR4_1 | 0.151 | 0.419 | 0.706 | 0.06531 |
Termite mounds | AR4_2 | 0.565 | 0.315 | 0.071 | 0.1193 |
Stream banks | AR4_3 | 0.881 | 0.192 | 0.248 | 0.05382 |
Deep soils | AR4_4 | 0.468 | 0.667 | 0.257 | 0.1046 |
Decision at 5% threshold | Normally distributed into stratum 1 | Normally distributed into stratum 2 | Normally distributed into stratum 3 | Normally distributed. |
Variables | Bartlett’s Homoscedasticity Test | ANOVA Test | ||||
---|---|---|---|---|---|---|
K-Squared | p-Value | df | F Value | Pr (>F) | df | |
AR4_1 | 3.0454 | 0.2181 | 2 | 1.386 | 0.251 | 2 |
AR4_2 | 2.8822 | 0.2367 | 2 | 1.63 | 0.197 | 2 |
AR4_3 | 1.7499 | 0.4169 | 2 | 0.26 | 0.771 | 2 |
AR4_4 | 0.73059 | 0.694 | 2 | 0.24 | 0.786 | 2 |
Decision at 5% threshold | The variances are not significantly heterogeneous across the strata. | The variances do not differ significantly across the strata |
Variables | Code | p-Value | |||
---|---|---|---|---|---|
Stratum 1 | Stratum 2 | Stratum 3 | Overall | ||
I have seen it before: | AR5_1 | 0.164 | 0.127 | 0.416 | 0.0697 |
I know how to install it: | AR5_2 | 0.0569 | 0.652 | 0.163 | 0.0569 |
I know a sales outlet here in the village: | AR5_3 | 0.311 | 0.271 | 0.578 | 0.09771 |
It is too expensive: | AR5_4 | 0.092 | 0.434 | 0.300 | 0.09909 |
I have seen it before: | AR6_1 | 0.323 | 0.431 | 0.494 | 0.1004 |
I know how to install it: | AR6_2 | 0.425 | 0.287 | 0.111 | 0.1013 |
I know a sales outlet here in the village: | AR6_3 | 0.365 | 0.418 | 0.183 | 0.1348 |
It is too expensive: | AR6_4 | 0.06408 | 0.0006358 | 0.002482 | 0.1797 |
- | Decision at 5% threshold | Normally distributed into stratum 1 | Normally distributed into stratum 2 | Normally distributed into stratum 3 | Normally distributed. |
TESTS | Codes | AR5_1 | AR5_2 | AR5_3 | AR5_4 | AR6_1 | AR6_2 | AR6_3 | AR6_4 | |
---|---|---|---|---|---|---|---|---|---|---|
Parameters | ||||||||||
Bartlett’s test | df | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
p-value | 0.4611 | 0.8063 | 0.3771 | 0.08552 | 0.6023 | 0.5407 | 0.9669 | 0.168 | ||
Decision at 5% threshold | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted | ||
ANOVA test | df | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
p-value | 0.383 | 2.319 | 0.833 | 0.607 | 0.282 | 0.002 | 0.424 | 2.505 | ||
Decision at 5% threshold | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted | h0 accepted |
Variables | Codes | p-Value | |||
---|---|---|---|---|---|
Stratum 1 | Stratum 2 | Stratum 3 | Overall | ||
Geomembrane | AR7_1 | 0.363 | 0.205 | 0.865 | 0.06404 |
Bitumen | AR7_2 | 0.558 | 0.073 | 0.0125 | 0.1282 |
Masonry/Concrete | AR7_3 | 0.593 | 0.104 | 0.559 | 0.05763 |
Clay | AR7_4 | 0.167 | 0.906 | 0.119 | 0.06368 |
- | Decision at 5% threshold | Normally distributed into stratum 1 | Normally distributed into stratum 2 | Normally distributed into stratum 3 | Normally distributed. |
Variables | Bartlett’s Homoscedasticity Test | ANOVA Test | ||||
---|---|---|---|---|---|---|
K-Squared | p-Value | df | F Value | Pr (>F) | df | |
AR7_1 | 1. 8386 | 0.3988 | 2 | 0.864 | 0.422 | 2 |
AR7_2 | 1.1807 | 0.5541 | 2 | 1.322 | 0.267 | 2 |
AR7_3 | 3.2225 | 0.1996 | 2 | 0.026 | 0.974 | 2 |
AR7_4 | 1.4707 | 0.4793 | 2 | 0.071 | 0.931 | 2 |
Decision at 5% threshold | The variances are not significantly heterogeneous across the strata. | The variances do not differ significantly across the strata |
Variables | Codes | p-Value | |||
---|---|---|---|---|---|
Stratum 1 | Stratum 2 | Stratum 3 | Overall | ||
0–1000 USD: | AR8_1 | 0.260 | 0.261 | 0.708 | 0.059 |
1000–1500 USD: | AR8_2 | 0.465 | 0.163 | 0.429 | 0.05467 |
1500–2000 USD: | AR8_3 | 0.580 | 0.377 | 0.804 | 0.1481 |
More than 2000 USD: | AR8_4 | 0.606 | 0.0501 | 0.448 | 0.05935 |
- | Decision at 5% threshold | Normally distributed into stratum 1 | Normally distributed into stratum 2 | Normally distributed into stratum 3 | Normally distributed. |
Variables | Bartlett’s Homoscedasticity Test | ANOVA Test | ||||
---|---|---|---|---|---|---|
K-Squared | p-Value | df | F Value | Pr (>F) | df | |
AR8_1 | 0.90562 | 0.6358 | 2 | 1.062 | 0.346 | 2 |
AR8_2 | 1.1162 | 0.5723 | 2 | 0.793 | 0.453 | 2 |
AR8_3 | 2.2002 | 0.3328 | 2 | 1.294 | 0.275 | 2 |
AR8_4 | 0.14805 | 0.9286 | 2 | 0.095 | 0.91 | 2 |
Decision at 5% threshold | The variances are not significantly heterogeneous across the strata. | The variances do not differ significantly across the strata |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaboré, T.V.R.; Keïta, A.; Lawane Gana, A.; Niang, D.; Boubé, B. Analysis of Farmers’ Perceptions on Sealing Techniques for Runoff Harvesting Ponds: A Case Study from Burkina Faso. Resources 2024, 13, 144. https://doi.org/10.3390/resources13100144
Kaboré TVR, Keïta A, Lawane Gana A, Niang D, Boubé B. Analysis of Farmers’ Perceptions on Sealing Techniques for Runoff Harvesting Ponds: A Case Study from Burkina Faso. Resources. 2024; 13(10):144. https://doi.org/10.3390/resources13100144
Chicago/Turabian StyleKaboré, Tégawindé Vanessa Rosette, Amadou Keïta, Abdou Lawane Gana, Dial Niang, and Bassirou Boubé. 2024. "Analysis of Farmers’ Perceptions on Sealing Techniques for Runoff Harvesting Ponds: A Case Study from Burkina Faso" Resources 13, no. 10: 144. https://doi.org/10.3390/resources13100144
APA StyleKaboré, T. V. R., Keïta, A., Lawane Gana, A., Niang, D., & Boubé, B. (2024). Analysis of Farmers’ Perceptions on Sealing Techniques for Runoff Harvesting Ponds: A Case Study from Burkina Faso. Resources, 13(10), 144. https://doi.org/10.3390/resources13100144