Equivalence—A Useful Yet Complex Concept in Natural Resource Science
Abstract
:1. Introduction
Emissions Metric | Metric Value for Methane * | Basis of Equivalence |
---|---|---|
GWP20 | 84 | Integral of radiative forcing over a future 20-year time horizon following a pulse emission |
GWP100 | 28 | Integral of radiative forcing over a future 100-year time horizon following a pulse emission |
GTP20 | 67 | Change in global mean temperature at a point in time 20 years following a pulse emission |
GTP50 | 14 | Change in global mean temperature at a point in time 50 years following a pulse emission |
GTP100 | 4 | Change in global mean temperature at a point in time 100 years following a pulse emission |
2. Materials and Methods
2.1. GHG Emissions Data
2.2. Qunatifying Radiative Forcing (RF) Footprints
2.3. Product-Level Analysis
3. Results
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Damiani, M.; Ferrara, N.; Ardente, F. Understanding Product Environmental Footprint and Organisation Environmental Footprint Methods; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Klinglmair, M.; Sala, S.; Brandão, M. Assessing resource depletion in LCA: A review of methods and methodological issues. Int. J. Life Cycle Assess. 2014, 19, 580–592. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob. Environ. Chang. 2010, 20, 113–120. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- Ridoutt, B.; Navarro Garcia, J. Cropland footprints from the perspective of productive land scarcity, malnutrition-related health impacts and biodiversity loss. J. Clean. Prod. 2020, 260, 121150. [Google Scholar] [CrossRef]
- Chaudhary, A.; Brooks, T.M. Land use intensity-specific global characterization factors to assess product biodiversity footprints. Environ. Sci. Technol. 2018, 52, 5094–5104. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox–the UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 4 July 2023).
- IPCC. Climate Change Widespread, Rapid, and Intensifying—IPCC. 2021. Available online: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (accessed on 4 July 2023).
- Archer, D.; Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2. Clim. Change 2008, 90, 283–297. [Google Scholar] [CrossRef]
- Eby, M.; Zickfeld, K.; Montenegro, A.; Archer, D.; Meissner, K.J.; Weaver, A.J. Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. J. Clim. 2009, 22, 2501–2511. [Google Scholar] [CrossRef]
- IPCC. Short-Lived Climate Forcers (SLCF). In Report of the Expert Meeting on Short-Lived Climate Forcers; Blain, D., Calvo Buendia, E., Fuglestvedt, J.S., Gómez, D., Masson-Delmotte, V., Tanabe, K., Yassaa, N., Zhai, P., Kranjc, A., Jamsranjav, B., et al., Eds.; IGES: Hayama, Japan, 2018. [Google Scholar]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, I., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 923–1054. [Google Scholar]
- Tanaka, K.; O’Neill, B.C. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperature targets. Nat. Clim. Chang. 2018, 8, 319–324. [Google Scholar] [CrossRef]
- FAO. Methane Emissions in Livestock and Rice Systems—Sources, Quantification, Mitigation and Metrics; Livestock Environmental Assessment and Performance (LEAP) Partnership: Rome, Italy, 2023. [Google Scholar]
- Balcombe, P.; Speirs, J.F.; Brandon, N.P.; Hawkes, A.D. Methane emissions: Choosing the right climate metric and time horizon. Environ. Sci. Process. Impacts 2018, 20, 1323. [Google Scholar] [CrossRef]
- United Nations Climate Change. Common Metrics. 2024. Available online: https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review/methods-for-climate-change-transparency/common-metrics (accessed on 8 July 2024).
- Abernethy, S.; Jackson, R.B. Global temperature goals should determine the time horizons for greenhouse gas emission metrics. Environ. Res. Lett. 2022, 17, 024019. [Google Scholar] [CrossRef]
- Cherubini, F.; Tanaka, K. Amending the inadequacy of a single indicator for climate impact analyses. Environ. Sci. Technol. 2016, 50, 12530–12531. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.R.; Trancik, J.E. Consequences of equivalency metric design for energy transitions and climate change. Clim. Change 2022, 175, 4. [Google Scholar] [CrossRef]
- Peters, G.P.; Aamaas, B.; Berntsen, T.; Fuglestvedt, J.S. The integrated global temperature change potential (iGTP) and relationships between emission metrics. Environ. Res. Lett. 2011, 6, 044021. [Google Scholar] [CrossRef]
- Shine, K.P. The global warming potential-the need for an interdisciplinary retrial. Clim. Change 2009, 96, 467–472. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and natural radiative forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group. I to the Fifth Assessment Report. of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- del Prado, A.; Lynch, J.; Liu, S.; Ridoutt, B.; Pardo, G.; Mitloehner, F. Opportunities and challenges in using GWP* to report the impact of ruminant livestock on global temperature change. Animal 2023, 17, 100790. [Google Scholar] [CrossRef]
- Liu, S.; Proudman, J.; Mitloehner, F.M. Rethinking methane from animal agriculture. CABI Agric. Biosci. 2021, 2, 22. [Google Scholar] [CrossRef]
- Beck, M.R.; Thompson, L.R.; Campbell, T.N.; Stackhouse-Lawson, K.A.; Archibeque, S.L. Implied climate warming contributions of enteric methane emissions are dependent on the estimate source and accounting methodology. Appl. Anim. Sci. 2022, 38, 639–647. [Google Scholar] [CrossRef]
- Cain, M.; Jenkins, S.; Allen, M.R.; Lynch, J.; Frame, D.J.; Macey, A.H.; Peters, G.P. Methane and the Paris Agreement temperature goals. Phil. Trans. R. Soc. A 2021, 380, 20200456. [Google Scholar] [CrossRef]
- Brazzola, N.; Wohland, J.; Patt, A. Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets. PLoS ONE 2021, 16, e0247887. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Caratzu, M.F.; Pulina, G. Recalculating the global warming impact of Italian livestock methane emissions with new metrics. Italian J. Animal Sci. 2023, 22, 125–135. [Google Scholar] [CrossRef]
- del Prado, A.; Lindsay, B.; Tricarico, J. Retrospective and projected warming-equivalent emissions from global livestock and cattle calculated with an alternative climate metric denoted GWP*. PLoS ONE 2023, 18, e0288341. [Google Scholar] [CrossRef] [PubMed]
- Hörtenhuber, S.J.; Seiringer, M.; Theurl, M.C.; Größbacher, V.; Piringer, G.; Kral, I.; Zollitsch, W.J. Implementing an appropriate metric for the assessment of greenhouse gas emissions from livestock production: A national case study. Animal 2022, 16, 100638. [Google Scholar] [CrossRef] [PubMed]
- McKenna, P.; Banwart, S. Reassessing the warming impact of methane emissions from Irish livestock using GWP*: Historical trends and sustainable futures. Irish J. Agric. Food Res. 2024, 62, 96–107. [Google Scholar] [CrossRef]
- Samsonstuen, S.; Møller, H.; Aamaas, B.; Knudsen, M.T.; Mogensen, L.; Olsen, H.F. Choice of metrics matters—Future scenarios on milk and beef production in Norway using an LCA approach. Livest. Sci. 2024, 279, 105393. [Google Scholar] [CrossRef]
- Ridoutt, B. Climate impact of Australian livestock production assessed using the GWP* climate metric. Livest. Sci. 2021, 246, 104459. [Google Scholar] [CrossRef]
- Pressman, E.M.; Liu, S.; Mitloehner, F.M. Methane emissions from California dairies estimated using novel climate metric Global Warming Potential Star show improved agreement with modeled warming dynamics. Front. Sustain. Food Syst. 2023, 6, 1072805. [Google Scholar] [CrossRef]
- Place, S.E.; McCabe, C.J.; Mitloehner, F.M. Symposium review: Defining a pathway to climate neutrality for US dairy cattle production. J. Dairy. Sci. 2022, 105, 8558–8568. [Google Scholar] [CrossRef]
- Ridoutt, B.; Huang, J. When climate metrics and climate stabilization goals do not align. Environ. Sci. Technol. 2019, 53, 14093–14094. [Google Scholar] [CrossRef]
- Ridoutt, B. Climate neutral livestock production—A radiative forcing-based climate footprint approach. J. Clean. Prod. 2021, 291, 125260. [Google Scholar] [CrossRef]
- Ridoutt, B.; Lehnert, S.A.; Denman, S.; Charmley, E.; Kinley, R.; Dominik, S. Potential GHG emission benefits of Asparagopsis taxiformis feed supplement in Australian beef cattle feedlots. J. Clean. Prod. 2022, 337, 130499. [Google Scholar] [CrossRef]
- Ridoutt, B. Pathways toward climate-neutral red meat production. Methane 2024, 3, 397–409. [Google Scholar] [CrossRef]
- Allen, M.R.; Shine, K.P.; Fuglestvedt, J.S.; Millar, R.J.; Cain, M.; Frame, D.J.; Macey, A.H. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim. Atmos. Sci. 2018, 1, 16. [Google Scholar] [CrossRef]
- Cain, M.; Lynch, J.; Allen, M.R.; Fuglestvedt, J.S.; Frame, D.J.; Macey, A.H. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ Clim. Atmos. Sci. 2019, 2, 29. [Google Scholar] [CrossRef]
- Mayberry, D. Red Meat Greenhouse Gas Emissions Update 2021; Meat and Livestock Australia: Sydney, Australia, 2024; Available online: https://www.mla.com.au/research-and-development/reports/2026/b.cch.2124---2021-greenhouse-gas-footprint-of-the-red-meat-industry/#:~:text=In%202021%2C%20net%20greenhouse%20gas,were%20145%20Mt%20CO2%2Dequivalents (accessed on 22 July 2024).
- Australian Government. Australia’s National Greenhouse Accounts. 2024. Available online: https://greenhouseaccounts.climatechange.gov.au/ (accessed on 22 July 2024).
- DISER. National Inventory Report 2021; Australian Government Department of Industry, Science, Energy and Resources: Canberra, Australia, 2023; Volume 1. [Google Scholar]
- DISER. National Inventory Report 2021; Australian Government Department of Industry, Science, Energy and Resources: Canberra, Australia, 2023; Volume 2. [Google Scholar]
- Luo, X.; Xia, T.; Huang, J.; Xiong, D.L.; Ridoutt, B. Radiative forcing climate footprints in the agricultural sector: Comparison of models from the IPCC 5th and 6th Assessment Reports. Farming Syst. 2023, 1, 100057. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Livestock Products, Australia. 2024. Available online: https://www.abs.gov.au/statistics/industry/agriculture/livestock-products-australia/latest-release#data-downloads (accessed on 15 July 2024).
- Australian Government. All Livestock Exports. 2024. Available online: https://www.agriculture.gov.au/biosecurity-trade/export/controlled-goods/live-animals/live-animal-export-statistics/livestock-exports-by-market#collapsible_inner_link_excelspreadsheet (accessed on 15 July 2024).
- Mach, K.J.; Planton, S.; von Stechow, C. Annex II: Glossary. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 117–130. [Google Scholar]
- Matthews, J.R.; Moller, V.; van Diemen, R.; Fuglestvedt, J.; Masson-Delmotte, V.; Méndez, C.; Reisinger, A.; Semenov, S. Annex VII: Glossary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2023; Available online: https://www.ipcc.ch/ (accessed on 22 May 2023).
- Bjørn, A.; Matthews, H.D.; Hadziosmanovic, M.; Desmoitier, N.; Addas, A.; Lloyd, S.M. Increased transparency is needed for corporate science-based targets to be effective. Nat. Clim. Change 2023, 13, 756–759. [Google Scholar] [CrossRef]
- Bjørn, A.; Lloyd, S.; Schenker, U.; Margni, M.; Levasseur, A.; Agez, M.; Matthews, H.D. Differentiation of greenhouse gases in corporate science-based targets improves alignment with Paris temperature goal. Environ. Res. Lett. 2023, 18, 084007. [Google Scholar] [CrossRef]
- Brazzola, N.; Patt, A.; Wohland, J. Definitions and implications of climate-neutral aviation. Nat. Clim. Change 2022, 12, 761–767. [Google Scholar] [CrossRef]
- Megill, L.; Deck, K.; Grewe, V. Alternative climate metrics to the Global Warming Potential are more suitable for assessing aviation non-CO2 effects. Commun. Earth Environ. 2024, 5, 249. [Google Scholar] [CrossRef]
- Levasseur, A.; de Schryver, A.; Hauschild, M.; Kabe, Y.; Sahnoune, A.; Tanaka, K.; Cherubini, F. Greenhouse Gas Emissions and Climate Change Impacts. In Global Guidance for Life Cycle Impact Assessment Indicators; Frischknecht, R., Jolliet, O., Eds.; UNEP: Paris, France, 2016; Volume 1. [Google Scholar]
- Levasseur, A.; Cavalett, O.; Fuglestvedt, J.S.; Gasser, T.; Johansson, D.J.A.; Jørgensen, S.V.; Raugei, M.; Reisinger, A.; Schivley, G.; Strømman, A.; et al. Enhancing life cycle impact assessment from climate science: Review of recent findings and recommendations for application to LCA. Ecol. Ind. 2016, 71, 163–174. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Pierrehumbert, R.; Allen, M. Demonstrating GWP*: A means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 2020, 15, 044023. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Goal 12: Ensure sustainable consumption and production patterns. 2024. Available online: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/ (accessed on 26 July 2024).
- United Nations. Consumer information for sustainable consumption and production. 2024. Available online: https://www.oneplanetnetwork.org/programmes/consumer-information-scp (accessed on 26 July 2024).
- Qin, Y.; Yang, Y.; Cucurachi, S.; Suh, S. Non-linearity in marginal LCA: Application of a spatial optimization model. Front. Sustain. 2021, 2, 631080. [Google Scholar] [CrossRef]
- Donnison, C.L.; Murphy-Bokern, D. Are climate neutrality claims in the livestock sector too good to be true? Environ. Res. Lett. 2024, 19, 011001. [Google Scholar] [CrossRef]
Emission Source | CO2 kt | CH4 kt | N2O kt |
---|---|---|---|
Enteric fermentation | 1213.5 | ||
Manure management | 110.0 | 1.1 | |
Agricultural soils—fertilizer to pasture | 3.1 | ||
Agricultural soils—urine and dung | 7.1 | ||
Agricultural soils—cropping | 0.8 | ||
Agricultural soils—pasture residue | 4.2 | ||
Field burning of agricultural residues | 0.4 | <0.1 | |
Liming | 237.3 | ||
Urea applications | 158.9 | ||
Electricity, fuel | 1748.4 | ||
LULUCF—cropland | 181.7 | <0.1 | <0.1 |
LULUCF—grassland | 8998.1 | 141.1 | 5.2 |
LULUCF—forestland | −34,191.7 | 84.9 | 1.9 |
Constructed water body methane | 18.4 | ||
TOTAL | −22,867.4 | 1568.4 | 23.5 |
Emission Source | CO2 kt | CH4 kt | N2O kt |
---|---|---|---|
Enteric fermentation | 277.9 | ||
Manure management | 14.1 | ||
Agricultural soils—fertilizer to pasture | 0.7 | ||
Agricultural soils—urine and dung | 2.5 | ||
Agricultural soils—pasture residue | 1.0 | ||
Liming | 105.5 | ||
Urea applications | 53.0 | ||
Electricity, fuel | 685.1 | ||
LULUCF—grassland | 2282.9 | 21.2 | 0.9 |
LULUCF—forestland | −10,371.9 | 21.1 | 0.5 |
Constructed water body methane | 4.4 | ||
TOTAL | −7245.5 | 338.7 | 5.6 |
Radiative Efficiency | W/m2/ppb | W/m2/kg |
---|---|---|
IPCC 5th Assessment Report | 1.37 × 10−05 1 | 1.76 × 10−15 |
IPCC 6th Assessment Report | 1.33 × 10−05 2 | 1.70 × 10−15 |
GWP100 | RF Footprint | ||||
---|---|---|---|---|---|
AR5 | AR6 | AR5 | AR6 | ||
Beef cattle | Sector (Mt CO2e) | 27.3 | 25.9 | −31.7 | −33.6 |
Product (kg CO2e/kg LW) 1 | 6.4 | 6.1 | −7.5 | −7.9 | |
Product (kg CO2e/kg edible) 2 | 15.2 | 14.4 | −17.7 | −18.7 | |
Sheep meat | Sector (Mt CO2e) | 3.73 | 3.44 | −8.0 | −8.2 |
Product (kg CO2e/kg LW) | 2.5 | 2.3 | −5.2 | −5.4 | |
Product (kg CO2e/kg edible) | 6.8 | 6.3 | −14.5 | −15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridoutt, B. Equivalence—A Useful Yet Complex Concept in Natural Resource Science. Resources 2024, 13, 145. https://doi.org/10.3390/resources13100145
Ridoutt B. Equivalence—A Useful Yet Complex Concept in Natural Resource Science. Resources. 2024; 13(10):145. https://doi.org/10.3390/resources13100145
Chicago/Turabian StyleRidoutt, Bradley. 2024. "Equivalence—A Useful Yet Complex Concept in Natural Resource Science" Resources 13, no. 10: 145. https://doi.org/10.3390/resources13100145
APA StyleRidoutt, B. (2024). Equivalence—A Useful Yet Complex Concept in Natural Resource Science. Resources, 13(10), 145. https://doi.org/10.3390/resources13100145