Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects
Abstract
:1. Introduction
2. Global Lithium Reserves and Availability
2.1. Lithium Brine Deposits
2.2. Lithium Pegmatite Deposits
2.3. Lithium Sedimentary Deposits
2.4. New Potential Lithium Sources
3. Extraction and Processing Technologies
4. Lithium-Ion Battery Technology in Electric Vehicles
5. Challenges and Environmental Considerations
Safety Hazards in Lithium-Ion Batteries
6. Market Dynamics and Industry Applications
7. LiBs Reuse and Recycling for Sustainable Electric Mobility
8. Conclusions and Future Perspectives
- ▪
- Promote Research and Development (R&D) in Extraction and Processing Technologies: Industry stakeholders should invest in R&D to improve the extraction methods and to reduce the environmental impact. The development of less intrusive extraction techniques, such as lithium extraction from brines, which is a more sustainable alternative to traditional mining, is an ideal option.
- ▪
- Promote Battery Recycling: The implementation of policies and investment in infrastructure is essential to ensure that valuable materials can be properly recycled. Initiatives to standardize and optimize recycling processes can increase the recovery rate and reduce the costs associated with recycling.
- ▪
- Establish Strategic Partnerships: Cooperation between manufacturers, lithium suppliers, and government authorities can help create a regulatory framework to promote sustainability in the supply chain. Public and private partnerships will promote sustainable practices and implement innovative technologies.
- ▪
- Implement Sustainability Policies and Certification: Governments and international organizations should implement policies that support sustainability. Grants for responsible mining practices and compliance with environmental regulations will ensure that lithium is obtained ethically and sustainably.
- ▪
- Educate and Raise Awareness among Stakeholders: It is critical to educate all participants involved on the importance of a sustainable lithium supply chain. Awareness can encourage the adoption of responsible practices, and it will compel consumers to demand ethically manufactured products.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar]
- United Nations Framework Convention on Climate Change. Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- EU Must End New Petrol and Diesel Car Sales by 2030 to Meet Climate Targets—Report; The Guardian: London, UK, 2018.
- Brown, S.; Pyke, D.; Steenhof, P. Electric vehicles: The role and importance of standards in an emerging market. Energy Policy 2010, 38, 3797–3806. [Google Scholar] [CrossRef]
- Sperling, D. Electric vehicles: Approaching the tipping point. Bull. At. Sci. 2018, 74, 11–18. [Google Scholar] [CrossRef]
- Mazur, C.; Offer, G.; Contestabile, M.; Brandon, N. Comparing the effects of vehicle automation, policy-making and changed user preferences on the uptake of electric cars and emissions from transport. Sustainability 2018, 10, 676. [Google Scholar] [CrossRef]
- Parker, D. The ascendency of electric motive power as a gradual replacement for the internal combustion engine (ICE), ‘Ockham’s Electric Razor. Int. J. Environ. Stud. 2018, 75, 532–536. [Google Scholar] [CrossRef]
- Volvo Cars Global Media Newsroom. Volvo Cars to Go All Electric; Volvo Car Corporation: Gothenburg, Sweden, 2017. [Google Scholar]
- Vaughan, A. Jaguar Land Rover to Make Only Electric or Hybrid Cars from 2020; The Guardian: London, UK, 2017. [Google Scholar]
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef]
- Lowe, M.; Tokuoka, S.; Trigg, T.; Gereffi, G. Lithium-Ion Batteries for Electric Vehicles: The U.S. Value Chain; Contributing CGGC Researcher: Ansam Abayechi; Duke University Center on Globalization, Governance & Competitiveness: Durham, NC, USA, 2010. [Google Scholar]
- GB/T 31485-2015; Safety Requirements and Test Methods for Traction Battery of Electric Vehicle. Road Vehicles: Tianjin, China, 2015. (In English)
- Azevedo, M.; BaczyÅska, M.; Hoffman, K.; Krauze, A. Lithium Mining: How New Production Technologies Could Fuel the Global EV Revolution; McKinsey & Company: Brussels, Belgium, 2022. [Google Scholar]
- Liu, W.; Agusdinata, D.B. Interdependencies of lithium mining and communities sustainability in Salar de Atacama, Chile. J. Clean. Prod. 2010, 260, 120838. [Google Scholar] [CrossRef]
- Martin, G.; Rentsch, L.; Höck, M.; Bertau, M. Lithium market research—Global supply, future demand and price development. Energy Storage Mater. 2017, 6, 171–179. [Google Scholar] [CrossRef]
- Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef]
- Sakunai, T.; Ito, L.; Tokai, A. Environmental impact assessment on production and material supply stages of lithium-ion batteries with increasing demands for electric vehicles. J. Mater. Cycles Waste Manag. 2021, 23, 470–479. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Obaya, M.; Mauricio, C. Análisis de las Redes Globales de Producción de Baterías de Ion de Litio: Implicaciones para los Países del Triángulo del Litio; Comisión Económica para América Latina y el Caribe: Santiago, Chile, 2021. [Google Scholar]
- Mineral Commodity Summaries. U.S. Geological Survey Publications Warehouse: Washington, DC, USA, 2024.
- Meng, F.; McNeice, J.; Zadeh, S.S.; Ghahreman, A. review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Miner. Process. Extr. Metall. Rev. 2019, 42, 123–141. [Google Scholar] [CrossRef]
- Chen, Z.; Yildizbasi, A.; Wang, Y.; Sarkis, J. Safety Concerns for the Management of End-of-Life Lithium-Ion Batteries. Glob. Chall. 2022, 6, 2200049. [Google Scholar] [CrossRef] [PubMed]
- Balaram, V.; Santosh, M.; Satyanarayanan, M.; Srinivas, N.; Gupta, H. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact. Geosci. Front. 2024, 15, 101868. [Google Scholar] [CrossRef]
- Stephenson, L. Tectonic related lithium deposits another major region found north east Tanzania—A new area with close association to the dominant areas: The fourth of four. Nat. Resour. 2023, 14, 161–191. [Google Scholar] [CrossRef]
- Hard Rock Lithium, vs. Brine—How Do Their Carbon Curves Compare? Benchmark Source: London, UK, 2023. [Google Scholar]
- Yaksic, A.; Tilton, J.E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resour. Policy 2009, 34, 185–194. [Google Scholar] [CrossRef]
- Munk, L.A.; Hynek, S.A.; Bradley, D.C.; Boutt, D.; Labay, K.; Jochens, H. Lithium brines: A global perspective. In Rare Earth and Critical Elements in Ore Deposits; Society of Economic Geologists: Littleton, CO, USA, 2016. [Google Scholar]
- Kaya, M. State-of-the-art lithium-ion battery recycling technologies. Circ. Econ. 2022, 1, 100015. [Google Scholar] [CrossRef]
- Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global lithium availability. J. Ind. Ecol. 2011, 15, 760–775. [Google Scholar] [CrossRef]
- Szlugaj, J.; Radwanek-Bąk, B. Lithium sources and their current use. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2023, 31, 61–88. [Google Scholar]
- Xue, F.; Tan, H.; Zhang, X.; Santosh, M.; Cong, P.; Ge, L.; Li, C.; Chen, G.; Zhang, Y. Contrasting sources and enrichment mechanisms in lithium-rich salt lakes: A Li-H-O isotopic and geochemical study from northern Tibetan Plateau. Geosci. Front. 2023, 15, 101768. [Google Scholar] [CrossRef]
- Parker, S.S.; Franklin, B.; Williams, A.; Cohen, B.S.; Clifford, M.; Rohde, M.M. Potential Lithium Extraction in the United States: Environmental, Economic, and Policy Implications; The Nature Conservancy: Arlington, VA, USA, 2022. [Google Scholar]
- Al-Jawad, J.; Ford, J.; Petavratzi, E.; Hughes, A. Understanding the spatial variation in lithium concentration of high Andean Salars using diagnostic factors. Sci. Total Environ. 2023, 906, 167647. [Google Scholar] [CrossRef]
- Gourcerol, B.; Gloaguen, E.; Melleton, J.; Tuduri, J.; Galiegue, X. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geol. Rev. 2019, 109, 494–519. [Google Scholar] [CrossRef]
- Keyser, W.; Müller, A.; Steiner, R.; Erambert, M.; Kristoffersen, M.; Unterweissacher, T. Alpine eclogite-facies modification of Li-Cs-Ta pegmatite from the Wolfsberg lithium deposit, Austria. Miner. Depos. 2023, 58, 1191–1210. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, S.; Wang, D.; Li, X.; Liu, T.; Zhang, Y.; Fu, X.; Hao, X.; Hou, K.; Zhao, Y.; et al. Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite–pegmatite deposit, Sichuan, China. Ore Geol. Rev. 2021, 134, 104139. [Google Scholar] [CrossRef]
- Dini, A.; Lattanzi, P.; Ruggieri, G.; Trumpy, E. Lithium Occurrence in Italy—An Overview. Minerals 2022, 12, 945. [Google Scholar] [CrossRef]
- Toupal, J.; Vann, D.R.; Zhu, C.; Gieré, R. Geochemistry of surface waters around four hard-rock lithium deposits in Central Europe. J. Geochem. Explor. 2022, 234, 106937. [Google Scholar] [CrossRef]
- Garcia, L.V.; Ho, Y.-C.; Myo Thant, M.M.; Han, D.S.; Lim, J.W. Lithium in a sustainable circular economy: A comprehensive review. Processes 2023, 11, 418. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A.; Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 2020, 1, 158–169. [Google Scholar] [CrossRef]
- Stefanović, N.; Danilović Hristić, N.; Petrić, J. Spatial planning, environmental activism, and politics—Case study of the Jadar project for lithium exploitation in Serbia. Sustainability 2023, 15, 1736. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Wu, T.; Luo, Y.; Zhao, J.; Li, X.; Yang, W.; Chen, X. Metallogenic characteristics and formation mechanism of naomugeng clay-type lithium deposit in Central Inner Mongolia, China. Minerals 2021, 11, 238. [Google Scholar] [CrossRef]
- Kramer, D. Fears of a lithium supply crunch may be overblown. Phys. Today 2021, 74, 20–22. [Google Scholar] [CrossRef]
- Cao, H.-W.; Pei, Q.-M.; Santosh, M.; Li, G.-M.; Zhang, L.-K.; Zhang, X.-F.; Zhang, Y.-H.; Zou, H.; Dai, Z.-W.; Lin, B.; et al. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization. Earth-Sci. Rev. 2022, 234, 104229. [Google Scholar] [CrossRef]
- Galliski, M.Á.; Márquez-Zavalía, M.F.; Roda-Robles, E.; von Quadt, A. The Li-bearing pegmatites from the Pampean Pegmatite Province, Argentina: Metallogenesis and Resources. Minerals 2022, 12, 841. [Google Scholar] [CrossRef]
- Ding, T.; Zheng, M.; Peng, S.; Lin, Y.; Zhang, X.; Li, M. Lithium extraction from salt lakes with different hydrochemical types in the Tibet Plateau. Geosci. Front. 2022, 14, 101485. [Google Scholar] [CrossRef]
- van de Ven, M.; Gazley, M.; Sterk, R.; Aldrich, S.; Werner, E. Exploration for lithium-caesium-tantalum (LCT) pegmatites in New Zealand. In Proceedings of the Conference Paper New Zealand Minerals Forum, Hamilton, ON, Canada, 13–14 October 2020; pp. 87–91. [Google Scholar]
- Nicolas, M.P.B. Preliminary investigation of the potential for lithium in groundwater in sedimentary rocks in southwestern Manitoba. In Report of Activities 2017; Manitoba Growth, Enterprise and Trade, Manitoba Geological Survey: Reed Lake, MB, Canada, 2017; pp. 183–190. [Google Scholar]
- Cheng, H.; Zakaria, M.; Aris, A.Z.; Tan, S. Lithium levels in peninsular Malaysian Coastal Areas: An assessment based on mangrove Snail Nerita lineata and surface sediments. Pertanika J. Trop. Agric. Sci. 2015, 38, 1–10. [Google Scholar]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Sari, N.A.; Warmada, I.W.; Anggara, F. The potential of lithium enrichment in lapindo brantas, mount anyar, and buncitan mud volcanoes, sidoarjo district, east java province. IOP Conf. Ser. Earth Environ. Sci. 2021, 851, 012040. [Google Scholar] [CrossRef]
- Dugamin, E.J.M.; Cathelineau, M.; Boiron, M.-C.; Richard, A.; Despinois, F. Lithium enrichment processes in sedimentary formation waters. Chem. Geol. 2023, 635, 121626. [Google Scholar] [CrossRef]
- Zhang, W.; Noble, A.; Yang, X.; Honaker, R. Lithium leaching recovery and mechanisms from density fractions of an Illinois Basin bituminous coal. Fuel 2020, 268, 117319. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Zhao, C.; Lin, M.; Wang, J.; Qin, S. Concentrations of lithium in Chinese coals. Energy Explor. Exploit. 2010, 28, 97–104. [Google Scholar] [CrossRef]
- Zhao, H.; Ling, K.; Qin, S.; Lei, M.; Wen, H. Modes of occurrence of lithium in black shale in the Nandan area, Guangxi, SW China: Implications for clay-type resources. Ore Geol. Rev. 2023, 157, 105409. [Google Scholar] [CrossRef]
- Mends, E.A.; Chu, P. Lithium extraction from unconventional aqueous resources—A review on recent technological development for seawater and geothermal brines. J. Environ. Chem. Eng. 2023, 11, 110710. [Google Scholar] [CrossRef]
- Dallas, J.A.; Raval, S.; Saydam, S.; Dempster, A.G. Investigating extraterrestrial bodies as a source of critical minerals for renewable energy technology. Acta Astronaut. 2021, 186, 74–86. [Google Scholar] [CrossRef]
- Dang, C.; Helal, A.S.; Zhu, L.; Xu, G.; Zhu, M. Industrial pathways to lithium extraction from seawater: Challenges and perspectives. Nano Res. Energy 2023, 2, e9120059. [Google Scholar] [CrossRef]
- Telsnig, T.; Potz, C.; Hass, J.; Eltrop, L.; Palma-Behnke, R. Opportunities to integrate solar technologies into the Chilean lithium mining industry—Reducing process related GHG emissions of a strategic storage resource. AIP Conf. Proc. 2017, 1850, 110017. [Google Scholar]
- Vara, A.M. A South American approach to metamorphosis as a horizon of equality: Focusing on controversies over lithium. Curr. Sociol. 2014, 63, 100–104. [Google Scholar] [CrossRef]
- Alera, A.C.; Benitez, J.P.; Fernandez, R.J.; Pascual, C.K.; Policarpio, F.; Lopez, E.C.R. Recent Advances in Lithium Extraction. Eng. Procedings 2024, 67, 52. [Google Scholar] [CrossRef]
- Kundu, T.; Rath, S.S.; Das, S.K.; Parhi, P.K.; Angadi, S.I. Recovery of lithium from spodumene-bearing pegmatites: A comprehensive review on geological reserves, beneficiation, and extraction. Powder Technol. 2023, 415, 118142. [Google Scholar] [CrossRef]
- Gao, T.; Fan, N.; Dai, T. Lithium extraction from hard rock lithium ores: Technology, resources, environment and cost. China Geol. 2022, 6, 137–153. [Google Scholar]
- Guo, H.; Kuang, G.; Wang, H.; Yu, H.; Zhao, X. Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid. Minerals 2017, 7, 205. [Google Scholar] [CrossRef]
- Fosu, A.Y.; Kanari, N.; Vaughan, J.; Chagnes, A. Literature review and thermodynamic modelling of roasting processes for lithium extraction from spodumene. Metals 2020, 10, 1312. [Google Scholar] [CrossRef]
- Margarido, F.; Vieceli, N.; Durão, F.; Guimarães, C.; Nogueira, C.A. Minerometallurgical processes for lithium recovery from pegmatitic ores. Comun. Geológicas 2014, 101, 795–798. [Google Scholar]
- Baspineiro, C.F.; Franco, J.; Flexer, V. Potential water recovery during lithium mining from high salinity brines. Sci. Total Environ. 2020, 720, 137523. [Google Scholar] [CrossRef] [PubMed]
- Reich, R.; Slunitschek, K.; Danisi, R.M.; Eiche, E.; Kolb, J. Lithium extraction techniques and the application potential of different sorbents for lithium recovery from brines. Miner. Process. Extr. Metall. Rev. 2022, 44, 261–280. [Google Scholar] [CrossRef]
- Reich, R.; Danisi, R.M.; Kluge, T.; Eiche, E.; Kolb, J. Structural and compositional variation of zeolite 13X in lithium sorption experiments using synthetic solutions and geothermal brine. Microporous Mesoporous Mater. 2023, 359, 112623. [Google Scholar] [CrossRef]
- Ding, T.; Zheng, M.; Peng, S.; Nie, Z.; Lin, Y.; Wu, Q. Recovery of lithium ions from salt lakes using nanofibers containing zeolite carriers. Front. Energy Res. 2022, 10, 895681. [Google Scholar] [CrossRef]
- Necke, T.; Stein, J.; Kleebe, H.-J.; Balke-Grünewald, B. Lithium extraction and zeolite synthesis via mechanochemical treatment of the silicate minerals lepidolite, spodumene, and petalite. Minerals 2023, 13, 1030. [Google Scholar] [CrossRef]
- Paranthaman, M.P.; Li, L.; Luo, J.; Hoke, T.; Ucar, H.; Moyer, B.A.; Harrison, S. Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents. Environ. Sci. Technol. 2017, 51, 13481–13486. [Google Scholar] [CrossRef]
- Kölbel, L.; Kölbel, T.; Herrmann, L.; Kaymakci, E.; Ghergut, I.; Poirel, A.; Schneider, J. Lithium extraction from geothermal brines in the Upper Rhine Graben: A case study of potential and current state of the art. Hydrometallurgy 2023, 221, 106131. [Google Scholar] [CrossRef]
- Li, H.; Eksteen, J.; Kuang, G. Recovery of lithium from mineral resources: State-of-the-art and perspectives—A review. Hydrometallurgy 2019, 189, 105129. [Google Scholar] [CrossRef]
- Li, X.; Mo, Y.; Qing, W.; Shao, S.; Tang, C.Y.; Li, J. Membrane-based technologies for lithium recovery from water lithium resources: A review. J. Membr. Sci. 2019, 591, 117317. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Miao, Y.; Yang, Y.; Li, P. Alkaline resins enhancing li+/h+ ion exchange for lithium recovery from brines using granular titanium-type lithium ion-sieves. Ind. Eng. Chem. Res. 2021, 60, 16457–16468. [Google Scholar] [CrossRef]
- Zandevakili, S.; Ranjbar, M.; Ehteshamzadeh, M. Recovery of lithium from Urmia Lake by a nanostructure MnO2 ion sieve. Hydrometallurgy 2014, 149, 148–152. [Google Scholar] [CrossRef]
- Yang, S.; Liu, G.; Wang, J.; Cui, L.; Chen, Y. Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. Fluid Phase Equilibria 2019, 493, 129–136. [Google Scholar] [CrossRef]
- Song, J.; Nghiem, L.D.; Li, X.; He, T. Lithium extraction from Chinese salt-lake brines: Opportunities, challenges, and future outlook. Environ. Sci. Water Res. Technol. 2017, 3, 593–597. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Cheng, H. Recent advances in lithium extraction from lithium-bearing clay minerals. Hydrometallurgy 2023, 217, 106025. [Google Scholar] [CrossRef]
- S&P Global Market Intelligence. Essential Insights: Lithium Costs & Margins; Market Intelligence|S&P Global: New York, NY, USA, 2019. [Google Scholar]
- The Battle between Spodumene and Brine—Lithium Mining; Essential Intelligence S&P Global: New York, NY, USA, 2024.
- Adeel, M.; Zain, M.; Shakoor, N.; Ahmad, M.A.; Azeem, I.; Aziz, M.A.; Tulcan, R.X.S.; Rathore, A.; Tahir, M.; Horton, R.; et al. Global navigation of lithium in water bodies and emerging human health crisis. NPJ Clean Water 2023, 6, 33. [Google Scholar] [CrossRef]
- Moran, B.J.; Boutt, D.F.; McKnight, S.V.; Jenckes, J.; Munk, L.A.; Corkran, D.; Kirshen, A. Relic groundwater and prolonged drought confound interpretations of water sustainability and lithium extraction in arid lands. Earth’s Future 2022, 10, e2021EF002555. [Google Scholar] [CrossRef]
- Kavanagh, L.; Keohane, J.; Cleary, J.; Garcia Cbellos, G.; Lleoyd, A. Lithium in the natural waters of the south east of Ireland. Int. J. Environ. Res. Public Health 2017, 14, 561. [Google Scholar] [CrossRef]
- Gutiérrez, J.S.; Moore, J.N.; Donnelly, J.P.; Dorador, C.; Navedo, J.G.; Senner, N.R. Climate change and lithium mining influence flamingo abundance in the Lithium Triangle. Proc. R. Soc. B Biol. Sci. 2022, 289, 20212388. [Google Scholar] [CrossRef]
- Wanger, T.C. The Lithium future-resources, recycling, and the environment. Conserv. Lett. 2011, 4, 202–206. [Google Scholar] [CrossRef]
- Katwala, A. The Spiraling Environmental Cost of Our Lithium Battery Addiction; Wired Energy: Boone, IA, USA, 2018; pp. 1–15. [Google Scholar]
- Vera, M.L.; Torres, W.R.; Galli, C.I.; Chagnes, A.; Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 2023, 4, 149–165. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Tanveer, M.; Wang, L.; Bolan, S.; Sooriyakumar, P.; Robinson, B.; Wijesekara, H.; Wijesooriya, M.; Keerthanan, S.; et al. From mine to mind and mobiles—Lithium contamination and its risk management. Environ. Pollut. 2021, 290, 118067. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities—A review. Plant Physiol. Biochem. 2016, 107, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.C.; Wang, M.; Dai, Q.; Winjobi, O. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium-ion battery cathodes and lithium-ion batteries. Resour. Conserv. Recycl. 2021, 174, 105762. [Google Scholar] [CrossRef]
- Macedonio, F.; Drioli, E. Chap. 6: Advanced membrane-based desalination systems for water and minerals extracted from the sea. In Desalination Sustainability a Technical, Socioeconomic, and Environmental Approach; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ling, Z.; Shi, C.; Li, F.; Fu, Y.; Zhao, J.; Dong, H.; Yang, Y.; Zhou, H.; Wang, S.; Song, Y. Desalination and Li+ enrichment via formation of cyclopentane hydrate. Sep. Purif. Technol. 2020, 231, 115921. [Google Scholar] [CrossRef]
- Wang, R.; Song, Y.; Xu, H.; Li, Y.; Liu, J. Life cycle assessment of energy consumption and CO2 emission from HEV, PHEV and BEV for China in the past, present and future. Energies 2022, 15, 6853. [Google Scholar] [CrossRef]
- Eftekhari, A. Lithium batteries for electric vehicles: From economy to research strategy. ACS Sustain. Chem. Eng. 2019, 7, 5602–5613. [Google Scholar] [CrossRef]
- Eftekhari, A. Lithium-Ion batteries with high-rate capabilities. ACS Sustain. Chem. Eng. 2017, 5, 2799–2816. [Google Scholar] [CrossRef]
- Wisner, M. Fisker Patents Car Battery with 500-Mile Range on a Minute’s Charge; Fox Business: New York, NY, USA, 2017. [Google Scholar]
- Chi, X.; Zhang, Y.; Hao, F.; Kmiec, S.; Dong, H.; Xu, R.; Zhao, K.; Ai, Q.; Terlier, T.; Wang, L.; et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun. 2022, 13, 2854. [Google Scholar] [CrossRef]
- Wang, Y.; Kuchena, S.F. Recent progress in aqueous ammonium-ion batteries. ACS Omega 2022, 7, 33732–33748. [Google Scholar] [CrossRef]
- Zheng, M.-P.; Xing, E.-Y.; Zhang, X.-F.; Li, M.-M.; Che, D.; Bu, L.-Z.; Han, J.-H.; Ye, C.-Y. Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits. China Geol. 2023, 6, 547–566. [Google Scholar]
- Kawaguchi, T.; Bian, X.; Hatakeyama, T.; Li, H.; Ichitsubo, T. Influences of enhanced entropy in layered rocksalt oxide cathodes for lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 4369–4381. [Google Scholar] [CrossRef]
- Nakamura, N.; Ahn, S.; Momma, T.; Osaka, T. Future potential for lithium-sulfur batteries. J. Power Sources 2023, 558, 232566. [Google Scholar] [CrossRef]
- Notter, D.A.; Gauch, M.; Widmer, R.; Wäger, P.; Stamp, A.; Zah, R.; Althaus, H.-J. Contribution of li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 2010, 44, 6550–6556. [Google Scholar] [CrossRef] [PubMed]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef]
- Dunn, J.; Gaines, L.; Barnes, M.; Sullivan, J.; Wang, M. Material and Energy Flows in the Materials Production, Assembly and End of Life Stages of the Automotive Lithium-Ion Battery Life Cycle; Energy Systems Division: Oak Ridge, TN, USA, 2012. [Google Scholar]
- Kushnir, D.; Sandén, B.A. The time dimension and lithium resource constraints for electric vehicles. Resour. Policy 2012, 37, 93–103. [Google Scholar] [CrossRef]
- Liu, C.; Lin, J.; Cao, H.; Zhang, Y.; Sun, Z. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod 2019, 228, 801–813. [Google Scholar] [CrossRef]
- Heelan, J.; Gratz, E.; Zheng, Z.; Wang, Q.; Chen, M.; Apelian, D.; Wang, Y. Current and prospective li-ion battery recycling and recovery processes. JOM 2016, 68, 2632–2638. [Google Scholar] [CrossRef]
- Ordoñez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Singh, N. Recycling of spent lithium-ion battery: A critical review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1129–1165. [Google Scholar] [CrossRef]
- Agusdinata, D.B.; Liu, W.; Eakin, H.; Romero, H. Socio-environmental impacts of lithium mineral extraction: Towards a research agenda. Environ. Res. Lett. 2018, 13, 123001. [Google Scholar] [CrossRef]
- Steward, D.; Mayyas, A.; Mann, M. Economics and challenges of Li-ion battery recycling from end-of-life vehicles. Procedia Manuf. 2019, 33, 272–279. [Google Scholar] [CrossRef]
- Olivetti, E.A.; Ceder, G.; Gaustad, G.G.; Fu, X. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243. [Google Scholar] [CrossRef]
- Celadon, A.; Sun, H.; Sun, S.; Zhang, G. Batteries for electric vehicles: Technical advancements, environmental challenges, and market perspectives. SusMat 2024, e234. [Google Scholar] [CrossRef]
- Yin, R.; Hu, S.; Yang, Y. Life cycle inventories of the commonly used materials for lithium-ion batteries in China. J. Clean. Prod. 2019, 227, 960–971. [Google Scholar] [CrossRef]
- Love, C.T.; Buesser, C.; Johannes, M.D.; Swider-Lyons, K.E. Innovating Safe Lithium-Ion Batteries Through Basic to Applied Research. J. Electrochem. Energy Convers. Storage 2017, 15, 011006. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, R.; Lu, J.; Li, X. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application. Appl. Energy 2018, 213, 375–383. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Williard, N.; He, W.; Hendricks, C.; Pecht, M. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability. Energies 2013, 6, 4682–4695. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Z.; Wu, Y.; Wang, L.; Han, Z.; Ma, X.; Zhu, Y.; Cao, C. Hierarchical flower-like spinel manganese-based oxide nanosheets for high-performance lithium-ion battery. Sci. China Mater. 2019, 62, 1385–1392. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G.-L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z.; et al. Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule 2018, 2, 2047–2064. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Winter, M.; Barnett, B.; Xu, K. Before li ion batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Kim, G.-H.; Yang, C.; Pesaran, A. Comparison of different cooling methods for lithium-ion battery cells. Appl. Therm. Eng. 2016, 94, 846–854. [Google Scholar] [CrossRef]
- WMW|Recycling: How to Handle Li-Ion Batteries. WMW. 2021. Available online: https://waste-management-world.com/recycling/how-to-handle-li-ion/ (accessed on 15 June 2024).
- Marshall, J.; Gastol, D.; Sommerville, R.; Middleton, B.; Goodship, V.; Kendrick, E. Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme. Metals 2020, 10, 773. [Google Scholar] [CrossRef]
- Weithmann, S. Standardization in China: Electric vehicle technology as driver for change in China’s automotive standardization. Int. J. Stand. Res. (IJSR) 2016, 14, 20–32. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. Waste Manag. Res. 2021, 39, 156–164. [Google Scholar] [CrossRef]
- Hu, S.; Wen, Z. Why does the informal sector of end-of-life vehicle treatment thrive? A case study of China and lessons for developing countries in motorization process. Resour. Conserv. Recycl. 2015, 95, 91–99. [Google Scholar] [CrossRef]
- Ehsan, F.; Habib, S.; Gulzar, M.M.; Guo, J.; Muyeen, S.M.; Kamwa, I. Assessing policy influence on electric vehicle adoption in China: An in-Depth study. Energy Strategy Rev. 2024, 54, 101471. [Google Scholar] [CrossRef]
- Gaines, L.; Richa, K.; Spangenberger, J. Key issues for Li-ion battery recycling. MRS Energy Sustain. 2018, 5, E14. [Google Scholar] [CrossRef]
- Chatterjee, S. Sustainable electronics waste management in India. In Paradigm Shift in E-Waste Managemen; CRC Press: Boca Raton, FL, USA, 2022; pp. 79–106. [Google Scholar]
- Battery Pack Prices Cited Below $100/kWh for the First Time in 2020, While Market Average Sits at $137/kWh|BloombergNEF; BloombergNEF: New York, NY, USA, 2020.
- Electric Vehicle Outlook 2020; Bloomberg New Energy Finance: New York, NY, USA, 2020.
- Wang, S.; Yu, J. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry. Waste Manag. Res. 2021, 39, 818–827. [Google Scholar] [CrossRef]
- Baars, J.; Domenech, T.; Bleischwitz, R.; Melin, H.E.; Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 2020, 4, 71–79. [Google Scholar] [CrossRef]
- Ricardo Energy & Environment. Europe’s Clean Mobility Outlook: Scenarios for the EU Light-Duty Vehicle Fleet, Associated Energy Needs and Emissions, 2020–2050; Ricardo Energy & Environment: Didcot, UK, 2018. [Google Scholar]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Ziemann, S.; Müller, D.B.; Schebek, L.; Weil, M. Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach. Resour. Conserv. Recycl. 2018, 133, 76–85. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060. Appl. Energy 2018, 212, 663–679. [Google Scholar] [CrossRef]
- Miedema, J.H.; Moll, H.C. Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until 2050. Resour. Policy 2013, 38, 204–211. [Google Scholar] [CrossRef]
- Melin, H.E. State-of-the-Art in Reuse and Recycling of Lithium-Ion Batteries—A Research Review; Circular Energy Storage: London, UK, 2019. [Google Scholar]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. J. Solid-State Electrochem. 2017, 21, 1939–1964. [Google Scholar] [CrossRef]
- Dun, G.; Pridmore, A.; Gibson, G.; Kollamthodi, S.; Skinner, I. Data Gathering and Analysis to Assess the Impact of Mileage on the Cost Efectiveness of the LDV CO2 Regulation; Ricardo AEA: Harwell, UK, 2014. [Google Scholar]
- Neubauer, J.S.; Smith, K.; Wood, E.; Pesaran, A. Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries; National Renewable Energy Laboratory: Golden, CO, USA, 2015. [Google Scholar]
- Saxena, S.; Le Floch, C.; MacDonald, J.; Moura, S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J. Power Sources 2015, 282, 265–276. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Martinez-Laserna, E.; Sarasketa-Zabala, E.; Villarreal Sarria, I.; Stroe, D.-I.; Swierczynski, M.; Warnecke, A.; Timmermans, J.-M.; Goutam, S.; Omar, N.; Rodriguez, P. Technical Viability of Battery Second Life: A Study from the Ageing Perspective. IEEE Trans. Ind. Appl. 2018, 54, 2703–2713. [Google Scholar] [CrossRef]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2015, 22, 111–124. [Google Scholar] [CrossRef]
- Casals, L.C.; García, B.A.; Aguesse, F.; Iturrondobeitia, A. Second life of electric vehicle batteries: Relation between materials degradation and environmental impact. Int. J. Life Cycle Assess. 2015, 22, 82–93. [Google Scholar] [CrossRef]
- Bunsen, T.; Cazzola, P.; Gorner, M.; Paoli, L.; Scheffer, S.; Schuitmaker, R.; Tattini, J.; Teter, J. Global EV Outlook 2018: Towards Cross-Modal Electrification; IEA: Paris, France, 2018. [Google Scholar]
- EU. Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on Batteries and Accumulators and Waste Batteries and Accumulators and Repealing Directive 91/157/EEC; OJ L 266 2006; The Stationery Office Limited: London, UK, 2020. [Google Scholar]
- Bobba, S.; Mathieux, F.; Ardente, F.; Blengini, G.A.; Cusenza, M.A.; Podias, A.; Pfrang, A. Life Cycle Assessment of repurposed electric vehicle batteries: An adapted method based on modelling energy flows. J. Energy Storage 2018, 19, 213–225. [Google Scholar] [CrossRef]
- Faria, R.; Marques, P.; Garcia, R.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A.T. Primary and secondary use of electric mobility batteries from a life cycle perspective. J. Power Sources 2014, 262, 169–177. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef]
- Richa, K.; Babbitt, C.W.; Nenadic, N.G.; Gaustad, G. Environmental trade-offs across cascading lithium-ion battery life cycles. Int. J. Life Cycle Assess. 2015, 22, 66–81. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Ferraro, M.; Cellura, M. Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles. J. Energy Storage 2019, 25, 100845. [Google Scholar] [CrossRef]
- Bach, T.C.; Schuster, S.F.; Fleder, E.; Müller, J.; Brand, M.J.; Lorrmann, H.; Jossen, A.; Sextl, G. Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression. J. Energy Storage 2016, 5, 212–223. [Google Scholar] [CrossRef]
- Dubarry, M.; Baure, G.; Pastor-Fernández, C.; Yu, T.F.; Widanage, W.D.; Marco, J. Battery energy storage system modeling: A combined comprehensive approach. J. Energy Storage 2019, 21, 172–185. [Google Scholar] [CrossRef]
- Kabir, M.M.; Demirocak, D.E. Degradation mechanisms in Li-ion batteries: A state-of-the-art review. Int. J. Energy Res. 2017, 41, 1963–1986. [Google Scholar] [CrossRef]
- Liu, Z.; Ivanco, A.; Onori, S. Aging characterization and modeling of nickel-manganese-cobalt lithium-ion batteries for 48V mild hybrid electric vehicle applications. J. Energy Storage 2019, 21, 519–527. [Google Scholar] [CrossRef]
- Yang, J.; Gu, F.; Guo, J. Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations. Resour. Conserv. Recycl. 2020, 156, 104713. [Google Scholar] [CrossRef]
- Reid, G.; Julve, J. Second Life-Batteries as Flexible Storage for Renewables Energies; Bundesverband Erneuerbare Energie e.V. (BEE): Berlin, Germany, 2016. [Google Scholar]
- Hein, R.; Kleindorfer, P.R.; Spinler, S. Valuation of electric vehicle batteries in vehicle-to-grid and battery-to-grid systems. Technol. Forecast. Soc. Change 2012, 79, 1654–1671. [Google Scholar] [CrossRef]
- Lacey, G.; Putrus, G.; Salim, A. The use of second life electric vehicle batteries for grid support. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013; pp. 1255–1261. [Google Scholar]
- Alves, B. Global Battery Recycling Market Value 2021–2031; Statista: Hamburg, Germany, 2024. [Google Scholar]
- Amount of Spent Lithium-Ion Batteries from Electric Vehicles and Storage in the Sustainable Development Scenario, 2020–2040; Charts—Data & Statistics; IEA: Paris, France, 2021.
- Foster, M.; Isely, P.; Standridge, C.R.; Hasan, M.M. Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries. J. Ind. Eng. Manag. 2014, 7, 698–715. [Google Scholar] [CrossRef]
- Insights—Circular Energy Storage; Circular Energy Storage: London, UK, 2020.
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the art and trends in electric and hybrid electric vehicles. Proc. IEEE 2021, 109, 967–984. [Google Scholar] [CrossRef]
- Yu, J.; Wang, S.; Toshiki, K.; Serrona KR, B.; Fan, G.; Erdenedalai, B. Latest trends and new challenges in end-of-life vehicle recycling. In Environmental Impacts of Road Vehicles: Past, Present and Future; The Royal Society of Chemistry: Cambridge, UK, 2017; pp. 174–213. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Muratalla, V.O.; Ramírez-Márquez, C.; Lira-Barragán, L.F.; Ponce-Ortega, J.M. Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects. Resources 2024, 13, 148. https://doi.org/10.3390/resources13110148
Vega-Muratalla VO, Ramírez-Márquez C, Lira-Barragán LF, Ponce-Ortega JM. Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects. Resources. 2024; 13(11):148. https://doi.org/10.3390/resources13110148
Chicago/Turabian StyleVega-Muratalla, Victor Osvaldo, César Ramírez-Márquez, Luis Fernando Lira-Barragán, and José María Ponce-Ortega. 2024. "Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects" Resources 13, no. 11: 148. https://doi.org/10.3390/resources13110148
APA StyleVega-Muratalla, V. O., Ramírez-Márquez, C., Lira-Barragán, L. F., & Ponce-Ortega, J. M. (2024). Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects. Resources, 13(11), 148. https://doi.org/10.3390/resources13110148