Water Quality of Rainwater Harvesting Systems and Acceptance of Their Reuse in Young Users: An Exploratory Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. RWH Systems
2.3. Sampling Points and Data Collections
2.3.1. In Situ and Physicochemical Characterization of Water Samples
2.3.2. Statistical Analysis
2.4. Acceptance Study of Harvested Rainwater Use
2.4.1. Characteristics of Study Area and Participants of the Survey
2.4.2. Preparation of Informed Consent
2.4.3. Questionnaire Design
2.4.4. Adaptation and Validation of the Survey
2.4.5. Application of the Survey
2.4.6. Data Analysis
3. Results and Discussion
3.1. Water Quality of RWH Systems
3.2. Acceptance of Harvested Rainwater Use
3.2.1. Surveys’ Results
3.2.2. Correlation Analyses from Surveys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Molden, D. Scarcity of Water or Scarcity of Management? Int. J. Water Resour. Dev. 2020, 36, 258–268. [Google Scholar] [CrossRef]
- Tengan, B.M.; Akoto, O. Comprehensive evaluation of the possible impact of roofing materials on the quality of harvested rainwater for human consumption. Sci. Total Environ. 2022, 819, 152966. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Setu, S.; Das, S.; Hossain, M.I.; Rahman, A.K.; Rahman, M.M. Decision support system for community managed rainwater harvesting: A case study in the salinity-prone coastal region of Bangladesh. Heliyon 2024, 10, e30455. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Galván, M.; Ortiz Medel, J.; Arias Hernández, L. Roof rainwater harvesting in central Mexico: Uses, benefits, and factors of adoption. Water 2018, 10, 116. [Google Scholar] [CrossRef]
- Khanal, G.; Thapa, A.; Devkota, N.; Paudel, U.R. A review on harvesting and harnessing rainwater: An alternative strategy to cope with drinking water scarcity. Water Supply 2020, 20, 2951–2963. [Google Scholar] [CrossRef]
- Mukarram, M.M.T.; Al Kafy, A.; Mukarram, M.M.T.; Rukiya, Q.U.; Almulhim, A.I.; Das, A.; Fattah, M.A.; Rahman, M.T.; Chowdhury, M.A. Perception of Coastal citizens on the prospect of community-based rainwater harvesting system for sustainable water resource management. Resour. Conserv. Recycl. 2023, 198, 107196. [Google Scholar] [CrossRef]
- Charters, F.J.; Cochrane, T.A.; O’Sullivan, A.D. The Influence of Urban Surface Type and Characteristics on Runoff Water Quality. Sci. Total Environ. 2021, 755, 142470. [Google Scholar] [CrossRef]
- Barriga, F.; Gómez, G.; Diez, M.C.; Fernandez, L.; Vidal, G. Influence of Catchment Surface Material on Quality of Harvested Rainwater. Sustainability 2024, 16, 6586. [Google Scholar] [CrossRef]
- Ghosh, S.; Ahmed, T. Assessment of household rainwater harvesting systems in the southwestern coastal region of bangladesh: Existing practices and household perception. Water 2022, 14, 3462. [Google Scholar] [CrossRef]
- Ignacio, J.J.; Malenab, R.A.; Pausta, C.M.; Beltran, A.; Belo, L.; Tanhueco, R.M.; Promentilla, M.A.; Orbecido, A. A perception study of an integrated water system project in a water scarce community in the Philippines. Water 2019, 11, 1593. [Google Scholar] [CrossRef]
- González-Padrón, S.K.; Lerner, A.M.; Mazari-Hiriart, M. Improving water access and health through rainwater harvesting: Perceptions of an indigenous community in Jalisco, Mexico. Sustainability 2019, 11, 4884. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Zeng, P.; Zhang, X.; Tian, T.; Feng, H.; Che, Y. Challenge of rainwater harvesting in shanghai, china: A public psychological perspective. J. Environ. Manag. 2022, 318, 115584. [Google Scholar] [CrossRef] [PubMed]
- Baawain, M.S.; Al-Mamun, A.; Omidvarborna, H.; Al-Sabti, A.; Choudri, B.S. Public perceptions of reusing treated wastewater for urban and industrial applications: Challenges and opportunities. Environ. Dev. Sustain. 2020, 22, 1859–1871. [Google Scholar] [CrossRef]
- Dao, D.A.; Tran, S.H.; Dang, H.T.T.; Nguyen, V.-A.; Nguyen, V.A.; Do, C.V.; Han, M. Assessment of rainwater harvesting and maintenance practice for better drinking water quality in rural areas. AQUA—Water Infrastruct. Ecosyst. Soc. 2021, 70, 202–216. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Wang, Y.; Jv, X.; Dzakpasu, M.; Wang, X.C. Evolution of water quality in rainwater harvesting systems during long-term storage in non-rainy seasons. Sci. Total Environ. 2024, 912, 168784. [Google Scholar] [CrossRef]
- Sheikh, V. Perception of Domestic Rainwater Harvesting by Iranian Citizens. Sustain. Cities Soc. 2020, 60, 102278. [Google Scholar] [CrossRef]
- Dzvene, A.R.; Tesfuhuney, W.; Walker, S.; Fourie, A.; Botha, C.; Ceronio, G. Farmers’ knowledge, attitudes, and perceptions for the adoption of in-field rainwater harvesting (IRWH) technique in Thaba Nchu, South Africa. Afr. J. Sci. Technol. Innov. Dev. 2022, 14, 1458–1475. [Google Scholar] [CrossRef]
- Puppala, H.; Ahuja, J.; Tamvada, J.P.; Peddinti, P.R. New technology adoption in rural areas of emerging economies: The case of rainwater harvesting systems in India. Technol. Forecast. Soc. Chang. 2023, 196, 122832. [Google Scholar] [CrossRef]
- Lestari, N.A.; Widodo, A.; Eliyawati, E. Promoting students’ anticipatory competency through the rainwater harvesting system learning project. J. Sci. Educ. Res. 2024, 8, 106–113. [Google Scholar] [CrossRef]
- EPA. Guidelines for Water Reuse; US Environmental Protection Agency Edition: Washington, DC, USA, 2012; pp. 1–643. [Google Scholar]
- FAO. Wastewater Quality Guidelines for Agricultural Use; Food and Agriculture Organization Edition: Rome, Italy, 1999; pp. 1–207. [Google Scholar]
- ISO. Guidelines for Treated Wastewater Use for Irrigation Projects; ISO Edition: Geneva, Switzerland, 2015; pp. 1–32. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005; ISBN 0875530478. [Google Scholar]
- Stump, B.; McBroom, M.; Darville, R. Demographics, Practices and Water Quality from Domestic Potable Rainwater Harvesting Systems. J. Water Supply Res. Technol.—AQUA 2012, 61, 261–271. [Google Scholar] [CrossRef]
- de Kwaadsteniet, M.; Dobrowsky, P.H.; van Deventer, A.; Khan, W.; Cloete, T.E. Domestic rainwater harvesting: Microbial and chemical water quality and point-of-use treatment systems. Water Air Soil Pollut. 2013, 224, 1629. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.; Han, M. Importance of maintenance in rainwater harvesting systems: A case study. Water Sci. Technol. Water Supply 2016, 16, 97–103. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide regulations and guidelines for agricultural water reuse: A critical review. Water 2020, 12, 971. [Google Scholar] [CrossRef]
- De Buyck, P.J.; Van Hulle, S.W.; Dumoulin, A.; Rousseau, D.P. Roof runoff contamination: A review on pollutant nature, material leaching and deposition. Rev. Environ. Sci. Bio. Technol. 2021, 20, 549–606. [Google Scholar] [CrossRef]
- Dissanayake, J.; Han, M. The Effect of number of tanks on water quality in rainwater harvesting systems under sudden contaminant input. Sci. Total Environ. 2021, 769, 144553. [Google Scholar] [CrossRef]
- Ministerio de Educación, Centro de Estudios. Análisis de la Educación Rural en Chile. Evidencias 61; Fundación para la Superación de la Pobreza: Santiago, Chile, 2024; pp. 1–27. [Google Scholar]
- Ahmed, T.; Sipra, H.; Zahir, M.; Ahmad, A.; Ahmed, M. Consumer perception and behavior toward water supply, demand, water tariff, water quality, and willingness-to-pay: A cross sectional study. Water Resour. Manag. 2022, 36, 1339–1354. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, A.; Wang, H. Public perception and acceptability of reclaimed water: The case of shandong province, China. J. Water Reuse Desalin. 2018, 8, 308–330. [Google Scholar] [CrossRef]
- Segura, D.; Carrillo, V.; Remonsellez, F.; Araya, M.; Vidal, G. Comparison of public perception in desert and rainy regions of Chile regarding the reuse of treated sewage water. Water 2018, 10, 334. [Google Scholar] [CrossRef]
- López, D.; Fuenzalida, D.; Vera, L.; Rojas, K.; Vidal, G. Relationship between the removal of organic matter and the production of methane in subsurface flow constructed wetlands designed for wastewater treatment. Ecol. Eng. 2015, 83, 296–304. [Google Scholar] [CrossRef]
- González, T.; Puigagut, J.; Vidal, G. Organic matter removal and nitrogen transformation by a constructed wetland-microbial fuel cell system with simultaneous bioelectricity generation. Sci. Total Environ. 2021, 753, 142075. [Google Scholar] [CrossRef]
Parameters | Unit | RWH1 | RWH2 | RWH3 | Regulatory Limits [21,22,23] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Flush Diverter | Storage Tank | Outlet Tap | Flush Diverter | Storage Tank | Outlet Tap | Flush Diverter | Storage Tank | Outlet Tap | |||
pH | - | 7.6 ± 1.3 | 5.9 ± 2.9 | 6.7 ± 0.5 | 7.1 ± 0.9 | 7.6 ± 0.5 | 7.0 ± 0.3 | 6.8 ± 1.3 | 7.2 ± 0.5 | 6.6 ± 0.5 | 6.0–9.0 |
T | °C | 14.3 ± 5.3 | 12 ± 3.4 | 10.3 ± 1.3 | 14.2 ± 4.7 | 13.7 ± 4.7 | 14.6 ± 4.0 | 12.6 ± 3.3 | 13.0 ± 3.9 | 13.4 ± 3.6 | NC |
EC | µS/cm | 87.7 ± 7.7 | 61.8 ± 7.6 | 60.4 ± 19.6 | 78.2 ± 39.0 | 27.5 ± 5.6 | 21.2 ± 0.3 | 70.6 ± 46.4 | 39.1 ± 24.1 | 50.9 ± 23.1 | 700–3000 |
redox | mV | 149.8 ± 27.9 | 143.6 ± 67.7 | 156.2 ± 34.2 | 257.2 ± 127.0 | 274.8 ± 186.8 | 189.9 ± 79.1 | 262.3 ± 59.5 | 306.2 ± 66.4 | 297.0 ± 57.4 | NC |
DO | mg/L | 8.7 ± 0.2 | 9.1 ± 0.1 | 8.9 ± 0.2 | 7.8 ± 1.1 | 7.5 ± 1.4 | 8.1 ± 1.5 | 5.9 ± 2.1 | 6.3 ± 2.6 | 5.6 ± 2.9 | NC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, P.; Leiva, A.M.; Gómez, G.; Salgado, M.; Vidal, G. Water Quality of Rainwater Harvesting Systems and Acceptance of Their Reuse in Young Users: An Exploratory Approach. Resources 2024, 13, 159. https://doi.org/10.3390/resources13110159
Vidal P, Leiva AM, Gómez G, Salgado M, Vidal G. Water Quality of Rainwater Harvesting Systems and Acceptance of Their Reuse in Young Users: An Exploratory Approach. Resources. 2024; 13(11):159. https://doi.org/10.3390/resources13110159
Chicago/Turabian StyleVidal, Pablo, Ana María Leiva, Gloria Gómez, Marcela Salgado, and Gladys Vidal. 2024. "Water Quality of Rainwater Harvesting Systems and Acceptance of Their Reuse in Young Users: An Exploratory Approach" Resources 13, no. 11: 159. https://doi.org/10.3390/resources13110159
APA StyleVidal, P., Leiva, A. M., Gómez, G., Salgado, M., & Vidal, G. (2024). Water Quality of Rainwater Harvesting Systems and Acceptance of Their Reuse in Young Users: An Exploratory Approach. Resources, 13(11), 159. https://doi.org/10.3390/resources13110159