Unlocking Economic and Environmental Gains Through Lithium-Ion Battery Recycling for Electric Vehicles
Abstract
:1. Introduction
2. Empirical Literature
2.1. Economic and Environmental Benefits of LIB Recycling
2.2. Key Challenges Facing LIB Recycling in Developing Countries
2.3. Opportunities for Developing Countries
2.4. Theoretical Framework: Transition Management, Circular Economy, and Industrial Ecology
3. Materials and Methods
4. Results: Sustainable Innovation and Job Creation in South Africa’s LIB Recycling Ecosystem
4.1. Lithium-Ion Battery Recycling Landscape in South Africa
4.1.1. Current State of LIB Recycling Infrastructure
4.1.2. Challenges and Opportunities
4.1.3. Policy and Strategic Framework
4.1.4. Future Outlook
4.2. Employment Creation Within the Refining and Recycling Sector of Lithium-Ion Batteries in South Africa
4.2.1. Collection and Transportation
4.2.2. Battery Disassembly and Testing
4.2.3. Mechanical Crushing
4.2.4. Hydrometallurgical Processes
4.2.5. Recovery of Valuable Metals (e.g., Black Mass)
4.2.6. Manufacturing and Reuse
4.2.7. Research and Development
4.2.8. Administrative and Management Roles
4.2.9. Factors Influencing Employment Potential
5. Discussion
Implications of the Study
6. Conclusions
Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Liu, W.; Liu, W.; Chen, Z.; Cui, Z. To what extent can recycling batteries help alleviate metal supply shortages and environmental pressures in China? Sustain. Prod. Consum. 2023, 36, 139–147. [Google Scholar] [CrossRef]
- Pagliaro, M.; Meneguzzo, F. Lithium battery reusing and recycling: A circular economy insight. Heliyon 2019, 5, e01866. [Google Scholar] [CrossRef] [PubMed]
- Shafique, M.; Ateeq, M.; Rafiq, M.; Azam, A.; Luo, X. Prospects of recycling from end-of-life of Li-ion batteries on alleviating materials demand-supply gap in new electric vehicles in Asia. Waste Manag. 2023, 171, 207–217. [Google Scholar] [CrossRef]
- Yang, H.; Hu, X.; Zhang, G.; Dou, B.; Cui, G.; Yang, Q.; Yan, X. Life cycle assessment of secondary use and physical recycling of lithium-ion batteries retired from electric vehicles in China. Waste Manag. 2024, 178, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Trade & Industrial Policy Strategies. Opportunities to Develop the Lithium-Ion Battery Value Chain in South Africa; TIPS: Pretoria, South Africa, 2021. [Google Scholar]
- Tawonezvi, T.; Nomnqa, M.; Petrik, L.; Bladergroen, B.J. Recovery and Recycling of Valuable Metals from Spent Lithium-Ion Batteries: A Comprehensive Review and Analysis. Energies 2023, 16, 1365. [Google Scholar] [CrossRef]
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.C.C.; Pontes, L.P.; Vasconcelos, A.S.M.; de Araujo Silva Junior, W.; Wu, K. Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles. Energies 2022, 15, 2203. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Shruti, V.C.; Pérez-Guevara, F. Citizen involvement in reducing end-of-life product waste in Mexico City. Sustain. Prod. Consum. 2023, 41, 167–178. [Google Scholar] [CrossRef]
- Drabik, E.; Rizos, V. Prospects for Electric Vehicle Batteries in a Circular Economy. Available online: www.ceps.eu (accessed on 10 December 2023).
- DTIC. SA Committed to Speedily Finalising Electric Vehicle Policy—Deputy Minister Gina. Available online: https://www.thedtic.gov.za/sa-committed-to-speedily-finalising-electric-vehicle-policy-deputy-minister-gina/ (accessed on 11 December 2023).
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Chirumalla, K.; Kulkov, I.; Vu, F.; Rahic, M. Second life use of Li-ion batteries in the heavy-duty vehicle industry: Feasibilities of remanufacturing, repurposing, and reusing approaches. Sustain. Prod. Consum. 2023, 42, 351–366. [Google Scholar] [CrossRef]
- Chun, Y.Y.; Chinen, K.; Matsumoto, M. How to attract newness-conscious consumers to a circular electric vehicle economy. Sustain. Prod. Consum. 2023, 40, 147–158. [Google Scholar] [CrossRef]
- Hagelüken, C. Recycling of Electronic Scrap at Umicore’s Integrated Metals Smelter and Refinery. Erzmetall 2006, 59, 152–161. [Google Scholar]
- Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar]
- Maris, J.; Bourdon, S.; Brossard, J.M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 2018, 147, 245–266. [Google Scholar]
- De Feo, G.; Malvano, C. The use of LCA in selecting the best MSW management system. Waste Manag. 2009, 29, 1901–1915. [Google Scholar] [CrossRef]
- Silvestri, L.; Forcina, A.; Silvestri, C.; Traverso, M. Circularity potential of rare earths for sustainable mobility: Recent developments, challenges and future prospects. J. Clean. Prod. 2021, 292, 126089. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Singh, N. Recycling of spent lithium-ion battery: A critical review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1129–1165. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Li, M.; Chen, R.; Wu, F.; Amine, K.; Lu, J. The Recycling of Spent Lithium-Ion Batteries: A Review of Current Processes and Technologies. Electrochem. Energy Rev. 2018, 1, 461–482. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef]
- Akil, A.M.; Foziah, J.; Ho, C.S. The Effects of Socio-Economic Influences on Households Recycling Behaviour in Iskandar Malaysia. Procedia Soc. Behav. Sci. 2015, 202, 124–134. [Google Scholar] [CrossRef]
- Haas, W.; Krausmann, F.; Wiedenhofer, D.; Heinz, M. How circular is the global economy?: An assessment of material flows, waste production, and recycling in the European union and the world in 2005. J. Ind. Ecol. 2015, 19, 765–777. [Google Scholar] [CrossRef]
- Stephens, J.C.; Graham, A.C. Toward an empirical research agenda for sustainability in higher education: Exploring the transition management framework. J. Clean. Prod. 2010, 18, 611–618. [Google Scholar] [CrossRef]
- Loorbach, D.; Meadowcroft, J. Governing societal transitions to sustainability. Int. J. Sustain. Dev. 2012, 15, 19–36. [Google Scholar]
- Islam, M.T.; Iyer-Raniga, U. Lithium-Ion Battery Recycling in the Circular Economy: A Review. Recycling 2022, 7, 33. [Google Scholar] [CrossRef]
- Skeete, J.-P.; Wells, P.; Dong, X.; Heidrich, O.; Harper, G. Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Res. Soc. Sci. 2020, 69, 101581. [Google Scholar] [CrossRef]
- Zeng, X.; Li, J.; Liu, L. Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 52, 1759–1767. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, T.; He, Y.; Zhao, Y.; Wang, S.; Zhang, G.; Zhang, Y.; Feng, Y. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment. J. Clean. Prod. 2018, 185, 646–652. [Google Scholar] [CrossRef]
- Bruno, M.; Fiore, S. Material flow analysis of lithium-ion battery recycling in Europe: Environmental and economic implications. Batteries 2023, 9, 231. [Google Scholar] [CrossRef]
- Sun, Y. Lithium-Ion Battery Recycling: Challenges and Opportunities. Highlights Sci. Eng. Technol. 2023, 58, 365–370. [Google Scholar] [CrossRef]
- Chen, X.; Ma, H.; Luo, C.; Zhou, T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. J. Hazard. Mater. 2017, 326, 77–86. [Google Scholar] [CrossRef]
- Li, L.; Zhai, L.; Zhang, X.; Lu, J.; Chen, R.; Wu, F.; Amine, K. Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J. Power Sources 2014, 262, 380–385. [Google Scholar] [CrossRef]
- Gao, W.; Song, J.; Cao, H.; Lin, X.; Zhang, X.; Zheng, X.; Zhang, Y.; Sun, Z. Selective recovery of valuable metals from spent lithium-ion batteries–Process development and kinetics evaluation. J. Clean. Prod. 2018, 178, 833–845. [Google Scholar] [CrossRef]
- He, L.-P.; Sun, S.-Y.; Song, X.-F.; Yu, J.G. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Manag. 2017, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Bahaloo-Horeh, N.; Vakilchap, F.; Mousavi, S.M. Bio-hydrometallurgical methods for recycling spent lithium-ion batteries. In Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts; Springer: Berlin/Heidelberg, Germany, 2019; pp. 161–197. [Google Scholar]
- Qi, Y.; Meng, F.; Yi, X.; Shu, J.; Chen, M.; Sun, Z.; Sun, S.; Xiu, F.R. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. J. Clean. Prod. 2020, 251, 119665. [Google Scholar] [CrossRef]
- Alipanah, M.; Saha, A.K.; Vahidi, E.; Jin, H. Value recovery from spent lithium-ion batteries: A review on technologies, environmental impacts, economics, and supply chain. Clean. Technol. Recycl. 2021, 1, 152–184. [Google Scholar] [CrossRef]
- Meshram, P.; Mishra, A.; Sahu, R. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids–A review. Chemosphere 2020, 242, 125291. [Google Scholar] [CrossRef]
- Yu, M.; Bai, B.; Xiong, S.; Liao, X. Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries. J. Clean. Prod. 2021, 321, 128935. [Google Scholar] [CrossRef]
- Wang, Y.; Diao, W.; Fan, C.; Wu, X.L.; Zhang, J.P. Benign Recycling of Spent Batteries towards All-Solid-State Lithium Batteries. Chem. Eur. J. 2019, 25, 8975–8981. [Google Scholar] [CrossRef]
- Mayyas, A.; Steward, D.; Mann, M. The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustain. Mater. Technol. 2019, 19, e00087. [Google Scholar] [CrossRef]
- Harun, I.; Bahrudin, F.I.; Daud, N.; Zin, N.B.; Yunus, N.M.; Mahat, M.M.; Shaffee, S.N.A. Opportunities and challenges of recycling and reusing lithium-ion batteries for sustainable mobility. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; p. 012009. [Google Scholar]
- Kala, S.; Mishra, A. Battery recycling opportunity and challenges in India. Mater. Today Proc. 2021, 46, 1543–1556. [Google Scholar] [CrossRef]
- Azimi, G.; Chan, K.H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resour. Conserv. Recycl. 2024, 209, 107825. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.W.F.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef]
- Coyle, J.; Fink, K.; Colclasure, A.; Keyser, M. Recycling electric vehicle batteries: Opportunities and challenges. AMP Tech. Artic. 2023, 181, 19–23. [Google Scholar] [CrossRef]
- Noudeng, V.; Quan NVan Xuan, T.D. A future perspective on waste management of lithium-ion batteries for electric vehicles in Lao PDR: Current status and challenges. Int. J. Environ. Res. Public Health 2022, 19, 16169. [Google Scholar] [CrossRef]
- Miedema, J.H.; Moll, H.C. Lithium availability in the EU27 for battery-driven vehicles: The impact of recycling and substitution on the confrontation between supply and demand until2050. Resour. Policy 2013, 38, 204–211. [Google Scholar] [CrossRef]
- Panda, N.; Cueva-Sola, A.B.; Dzulqornain, A.M.; Thenepalli, T.; Lee, J.Y.; Yoon, H.S.; Jyothi, R.K. Review on lithium ion battery recycling: Challenges and possibilities. Geosystem. Eng. 2023, 26, 101–118. [Google Scholar] [CrossRef]
- Kang, Z.; Huang, Z.; Peng, Q.; Shi, Z.; Xiao, H.; Yin, R.; Fu, G.; Zhao, J. Recycling technologies, policies, prospects, and challenges for spent batteries. iScience 2023, 26, 108072. [Google Scholar] [CrossRef] [PubMed]
- Chigbu, B.I. Advancing sustainable development through circular economy and skill development in EV lithium-ion battery recycling: A comprehensive review. Front. Sustain. 2024, 5, 1409498. [Google Scholar] [CrossRef]
- Yu, X.; Li, W.; Gupta, V.; Gao, H.; Tran, D.; Sarwar, S.; Chen, Z. Current Challenges in Efficient Lithium-Ion Batteries’ Recycling: A Perspective. Glob. Chall. 2022, 6, 2200099. [Google Scholar] [CrossRef] [PubMed]
- Chagnes, A. Recent Insights on Lithium-Ion Batteries Recycling. Asp. Min. Miner. Sci. 2020, 4, 539–542. [Google Scholar] [CrossRef]
- Bai, Y.; Qian, Q.; Jiao, J.; Li, L.; Li, F.; Yang, R. Can environmental innovation benefit from outward foreign direct investment to developed countries? Evidence from Chinese manufacturing enterprises. Environ. Sci. Pollut. Res. 2020, 27, 13790–13808. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Yang, W. Optimal design of electric vehicle battery recycling network–From the perspective of electric vehicle manufacturers. Appl. Energy 2020, 275, 115328. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, C.; He, W.; Li, G.; Huang, J. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manag. Res. 2018, 36, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Pan, Z.; Su, X.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Jackson, M.; Lederwasch, A.; Giurco, D. Transitions in theory and practice: Managing metals in the circular economy. Resources 2014, 3, 516–543. [Google Scholar] [CrossRef]
- Loorbach, D.; Rotmans, J. The practice of transition management: Examples and lessons from four distinct cases. Futures 2010, 42, 237–246. [Google Scholar] [CrossRef]
- Jean-Paul, F.; Martine, D. For Good Measure Advancing Research on Well-Being Metrics Beyond GDP: Advancing Research on Well-being Metrics Beyond GDP; OECD Publishing: Washington, DC, USA, 2018. [Google Scholar]
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar] [CrossRef]
- Agyabeng-Mensah, Y.; Tang, L.; Afum, E.; Baah, C.; Dacosta, E. Organisational identity and circular economy: Are inter and intra organisational learning, lean management and zero waste practices worth pursuing? Sustain. Prod. Consum. 2021, 28, 648–662. [Google Scholar] [CrossRef]
- Wu, C.Y.; Hu, M.C.; Ni, F.C. Supporting a circular economy: Insights from Taiwan’s plastic waste sector and lessons for developing countries. Sustain. Prod. Consum. 2021, 26, 228–238. [Google Scholar] [CrossRef]
- Despeisse, M.; Ball, P.D.; Evans, S. Strategies and Ecosystem View for Industrial Sustainability. In Proceedings of the 20th CIRP International Conference on Life Cycle Engineering, Singapore, 17–19 April 2013; Springer: Signapore, 2013. [Google Scholar]
- Scheel, C.; Vazquez, M. The Role of Innovation and Technology in Industrial Ecology Systems for the Sustainable Development of Emerging Regions. J. Sustain. Dev. 2011, 4, 197. [Google Scholar] [CrossRef]
- Al-Thani, N.A.; Al-Ansari, T. Comparing the convergence and divergence within industrial ecology, circular economy, and the energy-water-food nexus based on resource management objectives. Sustain. Prod. Consum. 2021, 27, 1743–1761. [Google Scholar] [CrossRef]
- Viles, E.; Kalemkerian, F.; Garza-Reyes, J.A.; Antony, J.; Santos, J. Theorizing the Principles of Sustainable Production in the context of Circular Economy and Industry 4.0. Sustain. Prod. Consum. 2022, 33, 1043–1058. [Google Scholar] [CrossRef]
- Dresner, S. The Principles of Sustainability; Routledge: London, UK, 2012. [Google Scholar]
- Hossain, N.; Scott-Villiers, P. Ethical and methodological issues in large qualitative participatory studies. Am. Behav. Sci. 2019, 63, 584–603. [Google Scholar] [CrossRef]
- Creswell, J.W.; Poth, C. Qualitative Inquiry & Research Design: Choosing Among Five Approaches, 2nd ed.; Sage Publications: London, UK, 2016. [Google Scholar]
- Campbell, S.; Greenwood, M.; Prior, S.; Shearer, T.; Walkem, K.; Young, S.; Bywaters, D.; Walker, K. Purposive sampling: Complex or simple? Research case examples. J. Res. Nurs. 2020, 25, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Aluwihare-Samaranayake, D. Article Ethics in Qualitative Research: A View of the Participants’ and Researchers’ World from a Critical Standpoint. Int. J. Qual. Methods 2012, 11, 64–81. [Google Scholar] [CrossRef]
- Hennink, M.M.; Kaiser, B.N.; Marconi, V.C. Code Saturation Versus Meaning Saturation: How Many Interviews Are Enough? Qual. Health Res. 2017, 27, 591–608. [Google Scholar] [CrossRef]
- Weller, S.C.; Vickers, B.; Russell Bernard, H.; Blackburn, A.M.; Borgatti, S.; Gravlee, C.C.; Johnson, J.C. Open-ended interview questions and saturation. PLoS ONE 2018, 13, e0198606. [Google Scholar] [CrossRef]
- Terry, G.; Hayfield, N.; Clarke, V.; Braun, V. Thematic Analysis. In The SAGE Handbook of Qualitative Research in Psychology; SAGE: New York, NY, USA, 2017; pp. 17–37. [Google Scholar]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef]
- Brown, G.; Strickland-Munro, J.; Kobryn, H.; Moore, S.A. Mixed methods participatory GIS: An evaluation of the validity of qualitative and quantitative mapping methods. Appl. Geogr. 2017, 79, 153–166. [Google Scholar] [CrossRef]
- Chigbu, B.I.; Nekhwevha, F.H.; Umejesi, I. Electric Vehicle Battery Remanufacturing: Circular Economy Leadership and Workforce Development. World Electr. Veh. J. 2024, 15, 441. [Google Scholar] [CrossRef]
- Hua, Y.; Zhou, S.; Huang, Y.; Liu, X.; Ling, H.; Zhou, X.; Zhang, C.; Yang, S. Sustainable value chain of retired lithium-ion batteries for electric vehicles. J. Power Sources 2020, 478, 228753. [Google Scholar] [CrossRef]
- Pražanová, A.; Knap, V.; Stroe, D.I. Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part I: Recycling Technology. Energies 2022, 15, 1086. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Guarino, F.; Longo, S.; Ferraro, M.; Cellura, M. Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles. J. Energy Storage 2019, 25, 100845. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Sani, S.B.; Celvakumaran, P.; Ramachandaramurthy, V.K.; Walker, S.; Alrazi, B.; Ying, Y.J.; Dahlan, N.Y.; Rahman, M.H.A. Energy storage system policies: Way forward and opportunities for emerging economies. J. Energy Storage 2020, 32, 101902. [Google Scholar] [CrossRef]
- Natarajan, S.; Aravindan, V. Burgeoning prospects of spent lithium-ion batteries in multifarious applications. Adv. Energy Mater. 2018, 8, 1802303. [Google Scholar] [CrossRef]
- Wu, X.; Ma, J.; Wang, J.; Zhang, X.; Zhou, G.; Liang, Z. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling. Glob. Chall. 2022, 6, 2200067. [Google Scholar] [CrossRef]
- Fichtner, M.; Edström, K.; Ayerbe, E.; Berecibar, M.; Bhowmik, A.; Castelli, I.E.; Clark, S.; Dominko, R.; Erakca, M.; Franco, A.A.; et al. Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Adv. Energy Mater. 2022, 12, 2102904. [Google Scholar] [CrossRef]
- Cordisco, A.; Melloni, R.; Botti, L. Sustainable Circular Economy for the Integration of Disadvantaged People: A Preliminary Study on the Reuse of Lithium-Ion Batteries. Sustainability 2022, 14, 8158. [Google Scholar] [CrossRef]
- Aurbach, D. Advanced Batteries: A Dynamic Field. J. Electrochem. Soc. 2015, 162, A2379. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Li, Y.; Han, Y. Used-battery management with integrated battery building block system. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition, Charlotte, NC, USA, 15–19 March 2015; pp. 3177–3182. [Google Scholar]
- Camuffo, A.; Micelli, S. Mediterranean Lean Production. In Supervisors, Teamwork and New Forms of Work Organization in Three European Car Makers; Kluwer Academic Publishers: Norwell, MA, USA, 1997. [Google Scholar]
- Liubarskaia, M.; Ghosh, S.K.; Klunko, N.; Regent, T.; Egorova, L.; Ipatova, D. The Role of Leadership and Collaboration in Innovative Changes in the Solid Waste Recycling Industry: Corporate and Regional Levels. J. Solid Waste Technol. Manag. 2023, 49, 215–224. [Google Scholar] [CrossRef]
- Chigbu, B.; Nekhwevha, F. The extent of job automation in the automobile sector in South Africa. Econ. Ind. Democr. 2022, 43, 726–747. [Google Scholar] [CrossRef]
- Chigbu, B.; Nekhwevha, F.H. The future of work and uncertain labour alternatives as we live through the industrial age of possible singularity: Evidence from South Africa. Technol. Soc. 2021, 67, 101715. [Google Scholar] [CrossRef]
- Chigbu, B.I.; Nekhwevha, F. Exploring the concepts of decent work through the lens of SDG 8: Addressing challenges and inadequacies. Front. Sociol. 2023, 8, 1266141. [Google Scholar] [CrossRef]
- Li, D.; Zhu, J. The role of environmental regulation and technological innovation in the employment of manufacturing enterprises: Evidence from China. Sustainability 2019, 11, 2982. [Google Scholar] [CrossRef]
- Hellmuth, J.F.; DiFilippo, N.M.; Jouaneh, M.K. Assessment of the automation potential of electric vehicle battery disassembly. J. Manuf. Syst. 2021, 59, 398–412. [Google Scholar] [CrossRef]
- Sonoc, A.; Jeswiet, J.; Soo, V.K. Opportunities to improve recycling of automotive lithium ion batteries. Procedia CIRP 2015, 29, 752–757. [Google Scholar] [CrossRef]
- Wegener, K.; Chen, W.H.; Dietrich, F.; Dröder, K.; Kara, S. Robot assisted disassembly for the recycling of electric vehicle batteries. Procedia CIRP 2015, 29, 716–721. [Google Scholar] [CrossRef]
- Martins, L.S.; Guimarães, L.F.; Botelho Junior, A.B.; Tenório, J.A.S.; Espinosa, D.C.R. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manag. 2021, 295, 113091. [Google Scholar] [CrossRef] [PubMed]
- Sommerville, R.; Zhu, P.; Rajaeifar, M.A.; Heidrich, O.; Goodship, V.; Kendrick, E. A qualitative assessment of lithium ion battery recycling processes. Resour. Conserv. Recycl. 2021, 165, 105219. [Google Scholar] [CrossRef]
- Steward, D.; Mayyas, A.; Mann, M. Economics and challenges of Li-ion battery recycling from end-of-life vehicles. Procedia Manuf. 2019, 33, 272–279. [Google Scholar] [CrossRef]
- Li, J.; Ku, Y.; Liu, C.; Zhou, Y. Dual credit policy: Promoting new energy vehicles with battery recycling in a competitive environment? J. Clean. Prod. 2020, 243, 118456. [Google Scholar] [CrossRef]
- Murakami, F.; Sulzbach, A.; Pereira, G.M.; Borchardt, M.; Sellitto, M.A. How the Brazilian government can use public policies to induce recycling and still save money? J. Clean. Prod. 2015, 96, 94–101. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Q.; Li, Y.; Wang, G.; Li, Y. Recycling mechanisms and policy suggestions for spent electric vehicles’ power battery -A case of Beijing. J. Clean. Prod. 2018, 186, 388–406. [Google Scholar] [CrossRef]
- Numfor, S.A.; Omosa, G.B.; Zhang, Z.; Matsubae, K. A review of challenges and opportunities for end-of-life vehicle recycling in developing countries and emerging economies: A SWOT analysis. Sustainability 2021, 13, 4918. [Google Scholar] [CrossRef]
- Thakur, S.S.; Nel, A. Between the market and the developmental state—The place and limits of pro-poor ENGO led “waste-preneurship” in South Africa. Local. Environ. 2022, 27, 1446–1460. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Apata, O.P.; Okonta, F.N.; Freeman, N. Economic Estimation for a Glass Waste Recycling Facility in Johannesburg, South Africa. In Waste Management Policies and Practices in BRICS Nations; CRC Press: Boca Raton, FL, USA, 2021; pp. 37–46. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chigbu, B.I.; Umejesi, I. Unlocking Economic and Environmental Gains Through Lithium-Ion Battery Recycling for Electric Vehicles. Resources 2024, 13, 163. https://doi.org/10.3390/resources13120163
Chigbu BI, Umejesi I. Unlocking Economic and Environmental Gains Through Lithium-Ion Battery Recycling for Electric Vehicles. Resources. 2024; 13(12):163. https://doi.org/10.3390/resources13120163
Chicago/Turabian StyleChigbu, Bianca Ifeoma, and Ikechukwu Umejesi. 2024. "Unlocking Economic and Environmental Gains Through Lithium-Ion Battery Recycling for Electric Vehicles" Resources 13, no. 12: 163. https://doi.org/10.3390/resources13120163
APA StyleChigbu, B. I., & Umejesi, I. (2024). Unlocking Economic and Environmental Gains Through Lithium-Ion Battery Recycling for Electric Vehicles. Resources, 13(12), 163. https://doi.org/10.3390/resources13120163