Saltwater Intrusion and Agricultural Land Use Change in Nga Nam, Soc Trang, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use Change Analysis
2.3. Determination of Factors Affecting Agricultural Land Use Change
2.4. Analysis of the Influencing Level of Factors on Agricultural Land Use Change
- CI is the consistency index.
- RI is the random index (RI).
- n is the number of criteria;
- λmax is the mean of the consistency vector (4).
2.5. Suggesting Approaches to Limit Agricultural Land Use Change
3. Results and Discussion
3.1. The Change in Agricultural Land Use during 2010–2021 in Nga Nam District, Soc Trang Province
- (a)
- The status of saltwater intrusion during 2010–2022 in Nga Nam district
- (b)
- Changes in agricultural land during 2010–2021 in Nga Nam district
3.2. Factors Influencing Agricultural Land Use Change in Nga Nam District
- (a)
- Determination of factors influencing changes of agricultural land use in Nga Nam district
- (b)
- Level of influence of factors on changes in agricultural land use in Nga Nam district
3.3. Solutions for Limiting Changes in Agricultural Land Use in Nga Nam District
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice; CIPEC Collaborative Report Series No. 1, Center for the Study of Institutions Population, and Environmental Change Indiana University; Chetan Agarwal; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Washington, DC, USA, 2002. [CrossRef]
- Krawchenko, T.; Schumann, A. The Governance of Land Use in OECD Countries: Key Lessons from a Comparative Policy Review. Real Estate Rev. 2017, 46, 5–18. [Google Scholar]
- Vescovi, F.; Park, S.; Vlek, P. Detection of Human-Induced Land Cover Changes in a Savannah Landscape in Ghana: I. Change Detection and Quantification. In Proceedings of the 2nd Workshop of the EARSeL Special Interest Group on Remote Sensing for Developing Countries, Bonn, Germany, 18–20 September 2002; pp. 1–8. [Google Scholar]
- Ty, T.V.; Lavane, K.; Nguyen, P.C.; Downes, N.K.; Nam, N.D.G.; Minh, H.V.T.; Kumar, P. Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land 2022, 11, 2175. [Google Scholar] [CrossRef]
- Aspinall, R. Modelling Land Use Change with Generalized Linear Models—A Multi-Model Analysis of Change between 1860 and 2000 in Gallatin Valley, Montana. J. Environ. Manag. 2004, 72, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Yeng, Y.N.; Wu, G.P.; Zhan, F.B.; Zhang, H.H. Modeling Spatial Land Use Pattern Using Autologistic Regression. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 115–118. Available online: https://www.isprs.org/proceedings/XXXVII/congress/2_pdf/1_WG-II-1/19.pdf (accessed on 16 January 2024).
- Iqbal, M.F.; Khan, I.A. Spatiotemporal Land Use Land Cover Change Analysis and Erosion Risk Mapping of Azad Jammu and Kashmir, Pakistan. Egypt. J. Remote Sens. Space Sci. 2014, 17, 209–229. [Google Scholar] [CrossRef]
- Kantakumar, L.N.; Neelamsetti, P. Multi-Temporal Land Use Classification Using Hybrid Approach. Egypt. J. Remote Sens. Space Sci. 2015, 18, 289–295. [Google Scholar] [CrossRef]
- Lin, C.; Wu, C.-C.; Tsogt, K.; Ouyang, Y.-C.; Chang, C.-I. Effects of Atmospheric Correction and Pansharpening on LULC Classification Accuracy Using WorldView-2 Imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The Causes of Land-Use and Land-Cover Change: Moving beyond the Myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Veldkamp, A.; Lambin, E.F. Predicting Land-Use Change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Lewandowski, C.M. A Brief Mindfulness Intervention on Acute Pain Experience: An Examination of Individual Difference; Southern Illinois University at Carbondale: Carbondale, IL, USA, 2015; ISBN 1-339-21382-6. [Google Scholar]
- Nakalembe, C.; Dempewolf, J.; Justice, C. Agricultural Land Use Change in Karamoja Region, Uganda. Land Use Policy 2017, 62, 2–12. [Google Scholar] [CrossRef]
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the Urbanization Strategy in China: Achievements, Challenges and Reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- GIZ. Final Report of the Final Survey of Indicators of “Management of Natural Resources and Community Forestry Project (MNRCF-Chunati)”; Chunati Wildlife Sanctuary (CWS): Chittagong, Bangladesh, 2015. [Google Scholar]
- Sinha, S.; Sharma, L.K.; Nathawat, M.S. Improved Land-Use/Land-Cover Classification of Semi-Arid Deciduous Forest Landscape Using Thermal Remote Sensing. Egypt. J. Remote Sens. Space Sci. 2015, 18, 217–233. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, X.; Zheng, X.; Hou, X.; Zhang, Z.; Zhou, X.; Qiu, R.; Lin, J. Spatial Variations in the Relationships between Road Network and Landscape Ecological Risks in the Highest Forest Coverage Region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Bastakoti, R.C.; Bharati, L.; Bhattarai, U.; Wahid, S.M. Agriculture under Changing Climate Conditions and Adaptation Options in the Koshi Basin. Clim. Dev. 2017, 9, 634–648. [Google Scholar] [CrossRef]
- Sobhani, P.; Esmaeilzadeh, H.; Mostafavi, H. Simulation and Impact Assessment of Future Land Use and Land Cover Changes in Two Protected Areas in Tehran, Iran. Sustain. Cities Soc. 2021, 75, 103296. [Google Scholar] [CrossRef]
- Wolf, I.D.; Sobhani, P.; Esmaeilzadeh, H. Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected Areas in Urban–Rural Contexts. Land 2023, 12, 231. [Google Scholar] [CrossRef]
- Islam, K.; Jasimuddin, M.; Nath, B.; Nath, T.K. Quantitative Assessment of Land Cover Change Using Landsat Time Series Data: Case of Chunati Wildlife Sanctuary (CWS), Bangladesh. Int. J. Environ. Geoinform. 2016, 3, 45–55. [Google Scholar] [CrossRef]
- Banko, G.; Zethner, G.; Wrbka, T.; Schmitzberger, I. Landscape Types as the Optimal Spatial Domain for Developing Landscape Indicators. Agric. Impacts Landsc. 2002. [Google Scholar]
- Chen, M.; Tang, Z.; Bai, Y.; Zhang, X. Relational Pattern of Urbanization and Economic Development: Parameter Re-Evaluation of the Chenery Model. J. Geogr. Sci. 2015, 25, 991–1002. [Google Scholar] [CrossRef]
- Tuholske, C.; Tane, Z.; López-Carr, D.; Roberts, D.; Cassels, S. Thirty Years of Land Use/Cover Change in the Caribbean: Assessing the Relationship between Urbanization and Mangrove Loss in Roatán, Honduras. Appl. Geogr. 2017, 88, 84–93. [Google Scholar] [CrossRef]
- Disperati, L.; Virdis, S.G.P. Assessment of Land-Use and Land-Cover Changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, Central Vietnam. Appl. Geogr. 2015, 58, 48–64. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land Use/Land Cover Change Detection and Prediction in the North-Western Coastal Desert of Egypt Using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Ghadami, M.; Dittmann, A.; Pazhuhan, M.; Aligholizadeh Firouzjaie, N. Factors Affecting the Change of Agricultural Land Use to Tourism: A Case Study on the Southern Coasts of the Caspian Sea, Iran. Agriculture 2022, 12, 90. [Google Scholar] [CrossRef]
- Cawley, M.; Marsat, J.-B.; Gillmor, D.A. Promoting Integrated Rural Tourism: Comparative Perspectives on Institutional Networking in France and Ireland. Tour. Geogr. 2007, 9, 405–420. [Google Scholar] [CrossRef]
- Ilbery, B.; Bowler, I.; Clark, G.; Crockett, A. Farm-Based Tourism as an Alternative Farm Enterprise: A Case Study from the Northern Pennines, England. Reg. Stud. 1998, 32, 355–364. [Google Scholar]
- Saxena, G.; Clark, G.; Oliver, T.; Ilbery, B. Conceptualizing Integrated Rural Tourism. Tour. Geogr. 2007, 9, 347–370. [Google Scholar] [CrossRef]
- Di Domenico, M.; Miller, G. Farming and Tourism Enterprise: Experiential Authenticity in the Diversification of Independent Small-Scale Family Farming. Tour. Manag. 2012, 33, 285–294. [Google Scholar] [CrossRef]
- Busby, G.; Rendle, S. The Transition from Tourism on Farms to Farm Tourism. Tour. Manag. 2000, 21, 635–642. [Google Scholar] [CrossRef]
- Sun, Y.; Jansen-Verbeke, M.; Min, Q.; Cheng, S. Tourism Potential of Agricultural Heritage Systems. Tour. Geogr. 2011, 13, 112–128. [Google Scholar] [CrossRef]
- Hoang-Phi, P.; Lam-Dao, N.; Pham-Van, C.; Chau-Nguyen-Xuan, Q.; Nguyen-Van-Anh, V.; Gummadi, S.; Le-Van, T. Sentinel-1 SAR Time Series-Based Assessment of the Impact of Severe Salinity Intrusion Events on Spatiotemporal Changes in Distribution of Rice Planting Areas in Coastal Provinces of the Mekong Delta, Vietnam. Remote Sens. 2020, 12, 3196. [Google Scholar] [CrossRef]
- Wassmann, R.; Hien, N.X.; Hoanh, C.T.; Tuong, T.P. Sea Level Rise Affecting the Vietnamese Mekong Delta: Water Elevation in the Flood Season and Implications for Rice Production. Clim. Chang. 2004, 66, 89–107. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Nicholls, R.J.; Saito, Y.; Chen, Z.; Goodbred, S.L. Landscape Variability and the Response of Asian Megadeltas to Environmental Change. In Global Change and Integrated Coastal Management: The Asia-Pacific Region; Springer: Dordrecht, The Netherlands, 2006; pp. 277–314. [Google Scholar]
- Carew-Reid, J. Rapid Assessment of the Extent and Impact of Sea Level Rise in Viet Nam; International Centre for Environment Management (ICEM): Brisbane, Australia, 2008. [Google Scholar]
- Smajgl, A.; Toan, T.Q.; Nhan, D.K.; Ward, J.; Trung, N.H.; Tri, L.; Tri, V.; Vu, P. Responding to Rising Sea Levels in the Mekong Delta. Nat. Clim. Chang. 2015, 5, 167–174. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Woodroffe, C.D. Assessing Relative Vulnerability to Sea-Level Rise in the Western Part of the Mekong River Delta in Vietnam. Sustain. Sci. 2016, 11, 645–659. [Google Scholar] [CrossRef]
- Truong, Q.C.; Nguyen, T.H.; Pham, V.T.; Nguyen, T.H. Land-Use Optimization and Allocation for Saltwater Intrusion Regions: A Case Study in Soc Trang Province, Vietnam. Preprints 2023, 2023111914. [Google Scholar] [CrossRef]
- Van Binh, D.; Kantoush, S.A.; Saber, M.; Mai, N.P.; Maskey, S.; Phong, D.T.; Sumi, T. Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta. J. Hydrol. Reg. Stud. 2020, 32, 100742. [Google Scholar] [CrossRef]
- Tuan, L.A. Sustainable Water Resource Management and Climate Change Response in the Mekong River Delta. Vietnam J. Sci. Eng. 2015, 7, 13–15. [Google Scholar]
- Le, T.N.; Bregt, A.K.; van Halsema, G.E.; Hellegers, P.J.G.J.; Ngo, T.T.T. Multi-Scale Drivers of Land-Use Changes at Farm Level II: Application of Conceptual Framework in the Salinity Intrusion Zone of the Vietnamese Mekong Delta and Cross-Case Comparison with the Highly Flooded Zone. Land 2023, 12, 1873. [Google Scholar] [CrossRef]
- Vu, D.T.; Yamada, H. Ishidaira; Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol. 2018, 77, 1632–1639. [Google Scholar] [CrossRef]
- Vu, P.T.; Vo, Q.M.; Nguyen, P.C.; Van Dung, T.; Lan, N.T.P. Estimating the Criteria Affected to Agricultural Production: Case of Chau Thanh A District, Vietnam. Asian J. Agric. Rural Dev. 2020, 10, 463. [Google Scholar]
- Duong, T.T.; Vu, P.T.; Binh, N.T.S.; Huy, V.T.; Vu, P.H.; Nguyen, P.C.; Minh, V.Q. Determination of Affecting Factor for Sustainable Agricultural Production: A Case Study in Tan Thanh District, Long an Province, Vietnam. Indian J. Agric. Res. 2023, 57, 403–408. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; Springer: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision making with analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Drobne, S.; Lisec, A. Multi-Attribute Decision Analysis in GIS: Weighted Linear Combination and Ordered Weighted Averaging. Informatica 2009, 33, 459–474. [Google Scholar]
- PCNNDR. People’s Committee of Nga Nam district Report on the Socio-Economic Development of Nga Nam District in 2021 and Future Plan in 2022; PCNNDR: Nga Nam, Soc Trang, Vietnam, 2021.
- Schreinemachers, P.; Berger, T. An Agent-Based Simulation Model of Human–Environment Interactions in Agricultural Systems. Environ. Model. Softw. 2011, 26, 845–859. [Google Scholar] [CrossRef]
- Ada, R.L.; Kamda, Y.; Prasad, V.; Gangwar, K.S.; Dwivedi, B.S. Cropping Systems and Resource-Use Efficiency. Indian J. Agric. Sci. 1998, 68, 548–558. [Google Scholar]
- Sajesh, V.; Padaria, R. Farmers’ Extension Priorities and Service Quality of Extension Agencies: Evidences from Maharashtra State of India. Indian J. Agric. Sci. 2019, 89, 534–539. [Google Scholar]
- Ahmad, N.; Sinha, D.; Singh, K. Changes in Land Use Pattern and Factors Responsible for Variations in Current Fallow Land in Bihar, India. Indian J. Agric. Res. 2018, 52, 236–242. [Google Scholar] [CrossRef]
- Ramasubramanian, V.; Amrender, K.; Prabhu, K.; Bhatia, V.; Ramasundaram, P. Forecasting Technological Needs and Prioritizing Factors in Agriculture from a Plant Breeding and Genetics Domain Perspective: A Review. Indian J. Agric. Sci. 2014, 84, 311–316. [Google Scholar]
- Das, H.P. Agricultural Drought Mitigation and Management of Sustained Agricultural Development in India. In Natural Disasters and Extreme Events in Agriculture: Impacts and Mitigation; Springer: Berlin, Germany, 2005; pp. 277–303. [Google Scholar]
- Nguyen, P.C.; Tri, L.Q.; Vu, P.T.; Minh, V.Q.; Tam, V.T.; Thanh, V.V. Assessment of Criterion of High Technology for Rice and Vegetable Production at Thoai Son and Chau Phu—An Giang Province. Can Tho Univ. J. Sci. Environ. Clim. Chang. 2017, 1, 39–48. [Google Scholar]
- Bowman, M.S.; Zilberman, D. Economic Factors Affecting Diversified Farming Systems. Ecol. Soc. 2013, 18, 33. [Google Scholar] [CrossRef]
- Hegde, R.; Bhaskar, B.; Niranjana, K.; Kumar, S.; Ramamurthy, V.; Srinivas, S.; Singh, S. Land Evaluation for Groundnut (Arachis Hypogaea L.) Production in Pulivendula Tehsil, Kadapa District, Andhra Pradesh, India. Legume Res.-Int. J. 2019, 42, 326–333. [Google Scholar] [CrossRef]
- Viaggi, D.; Raggi, M.; y Paloma, S.G. Modelling and Interpreting the Impact of Policy and Price Scenarios on Farm-Household Sustainability: Farming Systems vs. Result-Driven Clustering. Environ. Model. Softw. 2013, 43, 96–108. [Google Scholar] [CrossRef]
- Le, T.N.; Bregt, A.K.; van Halsema, G.E.; Hellegers, P.J.G.J.; Ngo, T.T.T. Multi-Scale Drivers of Land-Use Changes at Farm Level I: Conceptual Framework and Application in the Highly Flooded Zone of the Vietnamese Mekong Delta. Land 2023, 12, 1273. [Google Scholar] [CrossRef]
- Nhung, T.T.; Le Vo, P.; Van Nghi, V.; Bang, H.Q. Salt intrusion adaptation measures for sustainable agricultural development under climate change effects: A case of Ca Mau Peninsula, Vietnam. Clim. Risk Manag. 2019, 23, 88–100. [Google Scholar] [CrossRef]
- Dung, L.C.; Sanh, N.V.; Tuan, V.V.; Thoa, N.T.K. Economic efficiency of rice production at household level in the Mekong Delta. CTU J. Sci. 2019, 55, 73–81. [Google Scholar] [CrossRef]
Number of Value | Verbal Scale |
---|---|
1 | |
3 | Moderately more important, likely, or preferred |
5 | Strongly more important, likely, or preferred |
7 | Very strongly more important, likely, or preferred |
9 | Extremely more important, likely, or preferred |
2, 4, 6, 8 | Intermediate values to reflect compromise |
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
RI | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.46 |
Factors | Sub-Factors | Sources |
---|---|---|
Physical | Acid sulfate | [45,46,51,52,53,54,55,56,57,58,59,60] |
Salt intrusion | ||
Flooding | ||
Drought | ||
Economic | Costs | |
Profits | ||
Capital efficiency | ||
Consumer market | ||
Social | Investment capital | |
Support policy | ||
Cultivation habits | ||
Cultivation techniques | ||
Labor settlement | ||
Environmental | Reducing biodiversity | |
Increasing disease | ||
Acumination | ||
Salinization | ||
Soil pollution | ||
Water pollution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.C.; Vu, P.T.; Khuong, N.Q.; Minh, H.V.T.; Vo, H.A. Saltwater Intrusion and Agricultural Land Use Change in Nga Nam, Soc Trang, Vietnam. Resources 2024, 13, 18. https://doi.org/10.3390/resources13020018
Nguyen PC, Vu PT, Khuong NQ, Minh HVT, Vo HA. Saltwater Intrusion and Agricultural Land Use Change in Nga Nam, Soc Trang, Vietnam. Resources. 2024; 13(2):18. https://doi.org/10.3390/resources13020018
Chicago/Turabian StyleNguyen, Phan Chi, Pham Thanh Vu, Nguyen Quoc Khuong, Huynh Vuong Thu Minh, and Huynh Anh Vo. 2024. "Saltwater Intrusion and Agricultural Land Use Change in Nga Nam, Soc Trang, Vietnam" Resources 13, no. 2: 18. https://doi.org/10.3390/resources13020018
APA StyleNguyen, P. C., Vu, P. T., Khuong, N. Q., Minh, H. V. T., & Vo, H. A. (2024). Saltwater Intrusion and Agricultural Land Use Change in Nga Nam, Soc Trang, Vietnam. Resources, 13(2), 18. https://doi.org/10.3390/resources13020018