The Bioenergetic Potential from Coffee Processing Residues: Towards an Industrial Symbiosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Residue Characterization
2.2. Biogas Production Calculations
2.3. Energetic Assessment Scenarios
- Scenario (S1): based on the replacement of eucalyptus firewood—which is currently used for the grain drying stage—by the thermal energy (Equation (4)) generated from the biogas burning.where TE is the thermal energy (MJ year−1), Qbiogas is the volumetric flow of biogas (m3 year−1), LHVbiogas is the lower heating value of biogas, and is the conversion efficiency for thermal energy.
- Scenario (S2): considered the electricity generation (Equation (5)) to supply household consumption and the coffee processing process by using an Internal Combustion Engine (ICE).where EE is the electric energy (kWh year−1) and is the conversion efficiency for internal combustion engines.
- Scenario (S3): considered the replacement of LPG and diesel used in the coffee processing process and the agricultural operations in the farm by biomethane (Equation (6)) (purified biogas).where PCH4 is the biomethane production (m3 d−1), BMP is the theoretical biomethane potential (m3 CH4 kg COD−1), CODrem is the removal of COD (kg COD d−1) and is the removal efficiency. Figure 2 shows the coffee farm biogas plant scheme, indicating the substrates fed to the reactor in the coffee season and off-season, respectively, as well as the three scenarios related to the biogas applications. For all scenarios, cleaning the biogas to remove moisture and sulfur should be considered, mainly to prevent damaging the equipment used in energy conversion, whether thermal or electric.
2.4. Economic Assessment Scenarios
3. Results
4. Discussion
4.1. Energy Assessment
4.2. Economic Assessment
4.3. Brazil’s Biogas Potential: Investment Opportunities and Growth Prospects
4.4. Coffee Farms Integration with Agroindustrial Eco-Park
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, R.; Wen, W.; Jiang, H.; Lei, Z.; Li, M.; Li, Y.Y. Energy Recovery Potential of Thermophilic High-Solids Co-Digestion of Coffee Processing Wastewater and Waste Activated Sludge by Anaerobic Membrane Bioreactor. Bioresour. Technol. 2019, 274, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, R.; Carvalho, A.; Duarte, E. Enhancement of Sewage Sludge Bioconversion to Methane by the Addition of Exhausted Coffee Biowaste Liquid Fraction. Waste Biomass Valorization 2020, 11, 1125–1130. [Google Scholar] [CrossRef]
- Lee, M.; Yang, M.; Choi, S.; Shin, J.; Park, C.; Cho, S.-K.; Kim, Y.M. Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process. Energies 2019, 12, 2360. [Google Scholar] [CrossRef]
- Battista, F.; Fino, D.; Mancini, G. Optimization of Biogas Production from Coffee Production Waste. Bioresour. Technol. 2016, 200, 884–890. [Google Scholar] [CrossRef]
- Campos, R.C.; Pinto, V.R.A.; Melo, L.F.; da Rocha, S.J.S.S.; Coimbra, J.S. New Sustainable Perspectives for “Coffee Wastewater” and Other by-Products: A Critical Review. Future Foods 2021, 4, 100058. [Google Scholar] [CrossRef]
- da Rosa Pin, B.V.; Barros, R.M.; Lora, E.E.S.; del Olmo, O.A.; Santos, I.F.S.D.; Ribeiro, E.M.; de Freitas Rocha, J.V. Energetic Use of Biogas from the Anaerobic Digestion of Coffee Wastewater in Southern Minas Gerais, Brazil. Renew. Energy 2020, 146, 2084–2094. [Google Scholar] [CrossRef]
- Rotta, N.M.; Curry, S.; Han, J.; Reconco, R.; Spang, E.; Ristenpart, W.; Donis-González, I.R. A Comprehensive Analysis of Operations and Mass Flows in Postharvest Processing of Washed Coffee. Resour. Conserv. Recycl. 2021, 170, 105554. [Google Scholar] [CrossRef]
- Chala, B.; Oechsner, H.; Müller, J. Introducing Temperature as Variable Parameter into Kinetic Models for Anaerobic Fermentation of Coffee Husk, Pulp and Mucilage. Appl. Sci. 2019, 9, 412. [Google Scholar] [CrossRef]
- Rojas-Sossa, J.P.; Murillo-Roos, M.; Uribe, L.; Uribe-Lorio, L.; Marsh, T.; Larsen, N.; Chen, R.; Miranda, A.; Solís, K.; Rodriguez, W.; et al. Effects of Coffee Processing Residues on Anaerobic Microorganisms and Corresponding Digestion Performance. Bioresour. Technol. 2017, 245, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Hoekstra, A.Y. The Water Footprint of Coffee and Tea Consumption in the Netherlands. Ecol. Econ. 2007, 64, 109–118. [Google Scholar] [CrossRef]
- Hernández-Sarabia, M.; Sierra-Silva, J.; Delgadillo-Mirquez, L.; Ávila-Navarro, J.; Carranza, L. The Potential of the Biodigester as a Useful Tool in Coffee Farms. Appl. Sci. 2021, 11, 6884. [Google Scholar] [CrossRef]
- Silva, J.F. Monitoramento de Um Sistema Piloto No Tratamento Da Água Residuária Do Café Produzido Por via Úmida. Master’s Thesis, UFLA, Lavras, Brazil, 2007. [Google Scholar]
- Rattan, S.; Parande, A.K.; Nagaraju, V.D.; Ghiwari, G.K. A Comprehensive Review on Utilization of Wastewater from Coffee Processing. Environ. Sci. Pollut. Res. 2015, 22, 6461–6472. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Salcedo, Y.; Baquerizo-Crespo, R.J.; da Silva, A.J.; Oliva-Merencio, D.; Pereda-Reyes, I. Digestión anaerobia de residuales sólidos del beneficio húmedo del café. Rev. Int. Contam. Ambient. 2021, 37, 281–292. [Google Scholar] [CrossRef]
- Gonzalez-Piedra, S.; Hernández-García, H.; Perez-Morales, J.M.; Acosta-Domínguez, L.; Bastidas-Oyanedel, J.-R.; Hernandez-Martinez, E. A Study on the Feasibility of Anaerobic Co-Digestion of Raw Cheese Whey with Coffee Pulp Residues. Energies 2021, 14, 3611. [Google Scholar] [CrossRef]
- Kim, D.; Choi, H.; Lee, C. Pretreatment of Spent Coffee Grounds with Alkaline Soju Bottle-Washing Wastewater for Enhanced Biomethanation. Biomass Convers. Biorefin 2022, 12, 803–808. [Google Scholar] [CrossRef]
- Neves, L.; Ribeiro, R.; Oliveira, R.; Alves, M.M. Enhancement of Methane Production from Barley Waste. Biomass Bioenergy 2006, 30, 599–603. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, L.; Carswell, A.; Misselbrook, T.; Shen, J.; Han, J. Changes in Soil Organic Carbon Status and Microbial Community Structure Following Biogas Slurry Application in a Wheat-Rice Rotation. Sci. Total Environ. 2021, 757, 143786. [Google Scholar] [CrossRef] [PubMed]
- CNA Custos Com Fertilizantes Na Produção de Coffea Arábica Aumentaram Expressivamente Nos Últimos 5 Anos. 2018. Available online: https://www.cnabrasil.org.br/publicacoes/custos-com-fertilizantes-na-producao-de-coffea-arabica-aumentaram-expressivamente-nos-ultimos-5-anos (accessed on 24 June 2023).
- Fonseca, Y.A.; Silva, N.C.; Fernandes, A.R.; Faria, M.V.; Adarme, O.F.; Passos, F.; Baêta, B. EL Steam Explosion Pretreatment of Coffee Husks: A Strategy towards Decarbonization in a Biorefinery Approach. J. Chem. Technol. Biotechnol. 2022, 97, 1567–1574. [Google Scholar] [CrossRef]
- Corro, G.; Pal, U.; Bañuelos, F.; Rosas, M. Generation of Biogas from Coffee-Pulp and Cow-Dung Co-Digestion: Infrared Studies of Postcombustion Emissions. Energy Convers. Manag. 2013, 74, 471–481. [Google Scholar] [CrossRef]
- Espinosa, H. Aprovechamiento de Pulpa de Café Para La Producción de Biogás En Un Reactor Flujo Pistón. Master’s Thesis, Universidad Pontificia Bolivariana, Medellín, Colombia, 2017. [Google Scholar]
- Sossa, J.P.R. Evaluación de La Producción de Biogás Por Medio de La Biodigestión Anaerobia Semicontinua Utilizando Residuos Del Beneficiado Del Café Como Substrato. Ph.D. Thesis, Universidad de Costa Rica, San Pedro, Costa Rica, 2015. [Google Scholar]
- Baêta, B.E.L.; de Cordeiro, P.H.M.; Passos, F.; Gurgel, L.V.A.; de Aquino, S.F.; Fdz-Polanco, F. Steam Explosion Pretreatment Improved the Biomethanization of Coffee Husks. Bioresour. Technol. 2017, 245, 66–72. [Google Scholar] [CrossRef]
- Kivaisi, A.K.; Rubindamayugi, M.S.T. The Potential of Agro-Industrial Residues for Production of Biogas and Electricity in Tanzania. Renew. Energy 1996, 9, 917–921. [Google Scholar] [CrossRef]
- Chala, B.; Oechsner, H.; Latif, S.; Müller, J. Biogas Potential of Coffee Processing Waste in Ethiopia. Sustainability 2018, 10, 2678. [Google Scholar] [CrossRef]
- Sera, G.H.; de Carvalho, C.H.S.; de Abrahão, J.C.R.; Pozza, E.A.; Matiello, J.B.; de Almeida, S.R.; Bartelega, L.; Botelho, D.M.D.S. Coffee Leaf Rust in Brazil: Historical Events, Current Situation, and Control Measures. Agronomy 2022, 12, 496. [Google Scholar] [CrossRef]
- Lobato, A.; Cuetos, M.J.; Gómez, X.; Morán, A. Improvement of Biogas Production by Co-Digestion of Swine Manure and Residual Glycerine. Biofuels 2010, 1, 59–68. [Google Scholar] [CrossRef]
- Zahedi, S.; Rivero, M.; Solera, R.; Perez, M. Mesophilic Anaerobic Co-Digestion of Sewage Sludge with Glycerine: Effect of Solids Retention Time. Fuel 2018, 215, 285–289. [Google Scholar] [CrossRef]
- Aboudi, K.; Álvarez-Gallego, C.J.; Romero-García, L.I. Semi-Continuous Anaerobic Co-Digestion of Sugar Beet Byproduct and Pig Manure: Effect of the Organic Loading Rate (OLR) on Process Performance. Bioresour. Technol. 2015, 194, 283–290. [Google Scholar] [CrossRef]
- APHA. APHA Standard Methods for the Examination of Water and Wastewater 2012, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Dias, D.R.; Valencia, N.R.; Franco, D.A.Z.; López-Núñez, J.C. Management and Utilization of Wastes from Coffee Processing. In Cocoa and Coffee Fermentations; Schwan, R.F., Fleet, G.H., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 545–575. ISBN 9780429062926. [Google Scholar]
- De Sousa e Silva, J.; Moreli, A.P.; Donzeles, S.M.L.; Soares, S.F.; Vitor, D.G. Harvesting, Drying and Storage of Coffee. In Quality Determinants in Coffee Prodctions; Pereira, L.L., Moreira, T.R., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–64. ISBN 978-3-030-54437-9. [Google Scholar]
- Garcia, N.H.; Mattioli, A.; Gil, A.; Frison, N.; Battista, F.; Bolzonella, D. Evaluation of the Methane Potential of Different Agricultural and Food Processing Substrates for Improved Biogas Production in Rural Areas. Renew. Sustain. Energy Rev. 2019, 112, 1–10. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, Y.; Zhou, B.; Wang, Q.; Gu, J.; Liu, G.; Qin, Z.; Li, Z. Changes in Antibiotic Resistance Genes and Mobile Genetic Elements during Cattle Manure Composting after Inoculation with Bacillus Subtilis. Bioresour. Technol. 2019, 292, 122011. [Google Scholar] [CrossRef] [PubMed]
- Fuess, L.T.; Zaiat, M.; Nascimento, C.A.O.D. Thermophilic Biodigestion of Fermented Sugarcane Molasses in High-Rate Structured-Bed Reactors: Alkalinization Strategies Define the Operating Limits. Energy Convers. Manag. 2021, 239, 114203. [Google Scholar] [CrossRef]
- de Oliveira, J.F.; Fia, R.; de Melo, A.F.S.R.; Fia, F.R.L.; Rodrigues, F.N.; Siniscalchi, L.A.B.; de Matos, M.P. Organic Stabilization and Methane Production under Different Organic Loading Rates in UASB Treating Swine Wastewater. Biodegradation 2023, 35, 1–17. [Google Scholar] [CrossRef]
- de Lemos Chernicharo, C.A. Anaerobic Reactors; IWA Publishing: London, UK, 2007; Volume 4, ISBN 1-84339-164-3. [Google Scholar]
- Henríquez, A.I.M. Análise de Ciclo de Vida (ACV) de Sistemas Integrados de Tratamento e Disposição Final de Resíduos Sólidos Urbanos Para Cidades de Médio Porte. Master’s Thesis, Universidade Federal de Itajubá, Itajubá, Brazil, 2016. [Google Scholar]
- Al Seadi, T.; Rutz, D.; Prassl, H.; Köttner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook, University of Southern Denmark, Esbjerg. 2008. Available online: https://www.lemvigbiogas.com/BiogasHandbook.pdf (accessed on 24 June 2023).
- IEA Outlook for Biogas and Biomethane: Prospects for Organic Growth World Energy Outlook Special Report Biomethane. 2020. Available online: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth (accessed on 24 June 2023).
- Cardoso, S.J.; da Nogueira, S.J.; de Flauzino, L.A.; de Sousa, E.S.J. Custos Comparativos de Secagem de Café Usando-Se Lenha de Eucalipto e Gás Liquefeito de Petróleo. In Proceedings of the Simpósio de Pesquisa dos Cafés do Brasil, Poços de Caldas, MG, Brazil, 26–29 September 2000; pp. 1132–1137. [Google Scholar]
- Hakawati, R.; Smyth, B.M.; McCullough, G.; de Rosa, F.; Rooney, D. What Is the Most Energy Efficient Route for Biogas Utilization: Heat, Electricity or Transport? Appl. Energy 2017, 206, 1076–1087. [Google Scholar] [CrossRef]
- Ying, W.; Longbao, Z.; Hewu, W. Diesel Emission Improvements by the Use of Oxygenated DME/Diesel Blend Fuels. Atmos. Environ. 2006, 40, 2313–2320. [Google Scholar] [CrossRef]
- ANP Fatores de Conversão, Densidade e Poderes Caloríficos Inferiores; Brasil. 2020. Available online: https://www.pbeedifica.com.br/sites/default/files/Relatorio-atualizado-fatores_energia-primaria_CO2_28_11_2020.pdf (accessed on 24 June 2023).
- Daniel, S.H. Potencial de Aproveitamento Energético Dos Resíduos Alimentares Gerados No Restaurante Universitário Da UNICAMP. Master’s Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2021. [Google Scholar]
- Fuess, L.T.; de Araújo Júnior, M.M.; Garcia, M.L.; Zaiat, M. Designing Full-Scale Biodigestion Plants for the Treatment of Vinasse in Sugarcane Biorefineries: How Phase Separation and Alkalinization Impact Biogas and Electricity Production Costs? Chem. Eng. Res. Des. 2017, 119, 209–220. [Google Scholar] [CrossRef]
- Souza, L.M.G. Aproveitamento Energético de Subprodutos Das Indústrias de Etanol e Biodiesel Para a Produção de Metano e Hidrogênio Em Sistema de Duas Etapas. Master’s Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2020. [Google Scholar]
- Saur, G.; Jalalzadeh-Azar, A. H2A Biomethane Model Documentation and a Case Study for Biogas from Dairy Farms; National Renewable Energy Lab.: Golden, CO, USA, 2010.
- Dias, M.O.S.; Junqueira, T.L.; Cavalett, O.; Cunha, M.P.; Jesus, C.D.F.; Rossell, C.E.V.; Maciel Filho, R.; Bonomi, A. Integrated versus Stand-Alone Second Generation Ethanol Production from Sugarcane Bagasse and Trash. Bioresour. Technol. 2012, 103, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Simioni, F.J.; de Almeida Buschinelli, C.C.; Deboni, T.L.; Passos, B.M. dos Cadeia Produtiva de Energia de Biomassa Florestal: O Caso Da Lenha de Eucalipto No Polo Produtivo de Itapeva—SP. Cienc. Florest. 2018, 28, 310–323. [Google Scholar] [CrossRef]
- MME. Portaria N° 65; Ministério de Minas e Energia: Brasilia, Brazil, 2018. Available online: https://www.gov.br/mme/pt-br/acesso-a-informacao/legislacao/portarias/2023/portaria-normativa-n-65-gm-mme-2023.pdf/view (accessed on 19 November 2023).
- MME. Boletim Mensal de Energia; MME: Brasilia, Brazil, 2021. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/sntep/publicacoes/boletins-mensais-de-energia/2021/portugues/12-boletim-mensal-de-energia-dezembro-2021 (accessed on 24 June 2023).
- ANP Sistema de Levantamento de Preços. Available online: https://csa.anp.gov.br/ (accessed on 8 November 2021).
- ANP Painel Dinâmico Do RenovaBio: Comercialização de Cbios. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/paineis-dinamicos-da-anp/paineis-dinamicos-do-renovabio (accessed on 23 November 2021).
- CONAB Custos de Produção. Available online: https://www.conab.gov.br/info-agro/custos-de-producao (accessed on 26 October 2021).
- MME RenovaBio. Available online: https://www.gov.br/mme/pt-br/assuntos/secretarias/petroleo-gas-natural-e-biocombustiveis/renovabio-1 (accessed on 21 January 2023).
- Selvamurugan, M.; Doraisamy, P.; Maheswari, M. An Integrated Treatment System for Coffee Processing Wastewater Using Anaerobic and Aerobic Process. Ecol. Eng. 2010, 36, 1686–1690. [Google Scholar] [CrossRef]
- Puebla, Y.G.; Pérez, S.R.; Hernández, J.J.; Girón, V.S. Performance of a UASB Reactor Treating Coffee Wet Wastewater. Rev. Cienc. Técnicas Agropecu. 2014, 23, 50–56. [Google Scholar]
- Yang, Y.; Tsukahara, K.; Sawayama, S. Biodegradation and Methane Production from Glycerol-Containing Synthetic Wastes with Fixed-Bed Bioreactor under Mesophilic and Thermophilic Anaerobic Conditions. Process Biochem. 2008, 43, 362–367. [Google Scholar] [CrossRef]
- Silva, J.N.; Cardoso Sobrinho, J. Análise Energética Da Secagem de Café Em Secadores Horizontal e Vertical de Fluxos Cruzados. In Proceedings of the II Simpósio de Pesquisa dos Cafés do Brasil, Vitória, Spain, 24–27 September 2001; pp. 717–723. [Google Scholar]
- Beyene, A.; Yemane, D.; Addis, T.; Assayie, A.A.; Triest, L. Experimental Evaluation of Anaerobic Digestion for Coffee Wastewater Treatment and Its Biomethane Recovery Potential. Int. J. Environ. Sci. Technol. 2014, 11, 1881–1886. [Google Scholar] [CrossRef]
- EPE Anuário Estatístico de Energia Elétrica. 2021. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-160/topico-168/Anu%C3%A1rio_2021.pdf (accessed on 24 June 2023).
- Ferraz Júnior, A.D.N.; Machado, P.G.; Jalil-Vega, F.; Coelho, S.T.; Woods, J. Liquefied Biomethane from Sugarcane Vinasse and Municipal Solid Waste: Sustainable Fuel for a Green-Gas Heavy Duty Road Freight Transport Corridor in Sao Paulo State. J. Clean. Prod. 2022, 335, 130281. [Google Scholar] [CrossRef]
- De Oliveira Júnior, G.G.; Da Silva, A.B.; Mantovani, J.R.; Miranda, J.M.; Florentino, L.A. Levantamento de Emissão de Gases de Efeito Estufa Pela Metodologia Do Carbono Equivalente Na Cultura Do Cafeeiro. Coffee Sci. 2015, 10, 412–419. [Google Scholar]
- Coltro, L.; Mourad, A.L.; Oliveira, P.A.P.L.V.; Baddini, J.P.O.A.; Kletecke, R.M. Environmental Profile of Brazilian Green Coffee. Int. J. Life Cycle Assess. 2006, 11, 16–21. [Google Scholar] [CrossRef]
- Moraes, B.S.; Junqueira, T.L.; Pavanello, L.G.; Cavalett, O.; Mantelatto, P.E.; Bonomi, A.; Zaiat, M. Anaerobic Digestion of Vinasse from Sugarcane Biorefineries in Brazil from Energy, Environmental, and Economic Perspectives: Profit or Expense? Appl. Energy 2014, 113, 825–835. [Google Scholar] [CrossRef]
- Mesquita, C.M.d.; Rezende, J.E.d.; Carvalho, J.S.; Fabri Júnior, M.A.; Moraes, N.C.; Dias, P.T.; Carvalho, R.M.d.; Araújo, W.G.d. Manual Do Café: Manejo de Cafezais Em Produção; EMATER-MG: Belo Horizonte, Brazil, 2016; pp. 1–52.
- ABIOGAS Oitava Edição Do Fórum Do Biogás Destaca as Razoes Para Investir No Energético e Apresenta Soluções Para Destravar o Desenvolvimento Do Projeto. Available online: https://abiogas.org.br/abiogasnews-dezembro-2021/ (accessed on 7 December 2021).
- MME. Programa Metano Zero; Ministério do Meio Ambiente: Brasília, Brazil, 2022.
- RAÍZEN Raízen Inaugura Planta de Biogás e Consolida Portfólio de Energias Renováveis. Available online: https://api.mziq.com/mzfilemanager/v2/d/6aa68515-2422-4cc4-bafa-8870ccdfedb0/3282cb62-6937-9b79-ac34-aa85af290d5e?origin=1 (accessed on 7 December 2021).
- EPE Impactos Da Participação Do Biogás e Do Biometano Na Matriz Brasileira: IV Fórum de Biogás. Available online: https://www.epe.gov.br/ (accessed on 10 December 2021).
- EPE. EPE Investimentos e Custos Operacionais e de Manutenção No Setor de Biocombustíveis: 2020–2030; EPE: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- Dias, M.E.; Oliveira, G.H.D.; Couto, P.T.; Dussán, K.J.; Zaiat, M.; Ribeiro, R.; Stablein, M.J.; Watson, J.T.; Zhang, Y.; Tommaso, G. Anaerobic Digestion of Hydrothermal Liquefaction Wastewater from Spent Coffee Grounds. Biomass Bioenergy 2021, 148, 106030. [Google Scholar] [CrossRef]
- Santos, G.S.; Melo, S.W.C. A Ecologia Industrial e a Sua Aplicação Na Agroenergia; Embrapa Agroenergia: Brasilia, Brazil, 2014. [Google Scholar]
- Frosch, R.A. Industrial Ecology: Adapting Technology for a Sustainable World. Environ. Sci. Policy Sustain. Dev. 1995, 37, 17–37. [Google Scholar] [CrossRef]
- Behera, S.K.; Kim, J.H.; Lee, S.Y.; Suh, S.; Park, H.S. Evolution of “designed” Industrial Symbiosis Networks in the Ulsan Eco-Industrial Park: “Research and Development into Business” as the Enabling Framework. J. Clean. Prod. 2012, 29–30, 103–112. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- Chertow, M.R.; Ashton, W.S.; Espinosa, J.C. Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies. Reg. Stud. 2008, 42, 1299–1312. [Google Scholar] [CrossRef]
- Baas, L.; Boons, F. Industrial Symbiosis in a Social Science Perspective; Yale School of the Environment Publications Series: Birmingham, UK, 2007. [Google Scholar]
- Mirata, M. Experiences from Early Stages of a National Industrial Symbiosis Programme in the UK: Determinants and Coordination Challenges. J. Clean. Prod. 2004, 12, 967–983. [Google Scholar] [CrossRef]
- Beers, D.; Bossilkov, A.; Corder, G.; Berkel, R. Industrial Symbiosis in the Australian Minerals Industry: The Cases of Kwinana and Gladstone. J. Ind. Ecol. 2008, 11, 55–72. [Google Scholar] [CrossRef]
- Zhu, Q.; Lowe, E.A.; Wei, Y.; Barnes, D. Industrial Symbiosis in China: A Case Study of the Guitang Group. J. Ind. Ecol. 2008, 11, 31–42. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, Y.; Ulgiati, S.; Park, H.-S.; Tsuyoshi, F.; Wang, H. Uncovering Key Factors Influencing One Industrial Park’s Sustainability: A Combined Evaluation Method of Emergy Analysis and Index Decomposition Analysis. J. Clean. Prod. 2016, 114, 141–149. [Google Scholar] [CrossRef]
- CEPEA Boletim PIB Do Agronegócio Brasileiro. 2018. Available online: https://www.cepea.esalq.usp.br/br/releases/pib-agro-cepea-pib-do-agronegocio-fecha-2018-com-estabilidade.aspx (accessed on 24 June 2023).
- CNA; CEPEA. PIB DO AGRONEGÓCIO. 2021. Available online: https://www.cepea.esalq.usp.br/br/releases/pib-agro-cepea-apos-recordes-em-2020-e-2021-pib-do-agro-cai-4-22-em-2022.aspx (accessed on 24 June 2023).
- Barros, G.S.C. PERSPECTIVAS PARA O AGRONEGÓCIO EM 2022. 2022. Available online: https://www.cepea.esalq.usp.br/br/opiniao-cepea/perspectivas-para-o-agronegocio-em-2022.aspx (accessed on 24 June 2023).
- IBGE Censo Agropecuário 2017; Rio de Janeiro. 2019. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=73096 (accessed on 24 June 2023).
- SEAPA Projeções Do Agronegócio 2017–2027; Belo Horizonte. 2017. Available online: https://www.mg.gov.br/system/files/media/agricultura/documento_detalhado/2023/publicacoes/projecoes-do-agronegocio/projecoes_2017_a_2027.pdf (accessed on 24 June 2023).
- IBGE Pesquisa Trimestral de Abate de Animais. 2021. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9203-pesquisas-trimestrais-do-abate-de-animais.html (accessed on 24 June 2023).
- Pithan e Silva, R.O.; Bueno, C.R.F.; Sá, P.B.Z.R. Aspectos Relativos à Produção de Soro de Leite No Brasil, 2007–2016. 2017. Available online: http://www.iea.sp.gov.br/ftpiea/ie/2017/tec1-0417.pdf (accessed on 24 June 2023).
- CONAB Analise Mensal Cana-de-Açúcar. 2021. Available online: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-cana-de-acucar (accessed on 24 June 2023).
- Instituto 17 BIOGÁS NO BRASIL Potencial Oferta a Curto Prazo. 2021. Available online: https://i17.eco.br/wp-content/uploads/2022/11/RT02-2021.pdf (accessed on 24 June 2023).
Parameter | Value | Unit | Reference |
---|---|---|---|
Farm | |||
Farm Area | 257 | ha | Santa Alina Farm |
Productivity | 19.45 | Bags ha−1 | Santa Alina Farm |
Harvest residue | |||
Mucilage/kg green coffee | 540 | mL | Dias et al. [32] |
Wash water/kg green coffee | 40 | L | Sousa e Silva et al. [33] |
Off-season residue | |||
COD glycerin | 1.22 | g COD g−1 | Theoretical value |
COD cattle manure | 0.135 | g COD g−1 | Garcia et al. [34] |
N cattle manure | 0.017 | g N g−1 | Duan et al. [35] |
Parameter | Value | Unit | Reference |
---|---|---|---|
Methane LHV | 35.9 | MJ m−3 | Henríquez [39] |
Methane density | 1.2 | kg m−3 | Al Seadi et al. [40] |
Biogas LHV (75% CH4) | 28 | MJ m−3 | IEA [41] |
Firewood LHV | 13.0 | MJ kg−1 | Cardoso Sobrinho et al. [42] |
TE conversion efficiency | 82.5 | % | Hakawati et al. [43] |
ICE Efficiency | 35 | % | Hakawati et al. [43] |
Diesel LHV | 42.5 | MJ kg−1 | Ying et al. [44] |
LPG LHV | 46.44 | MJ kg−1 | ANP [45] |
Phase | Equipment | Detail | Units | Value (USD) * | Reference |
---|---|---|---|---|---|
Biogas Generation (S1, S2, S3) | Feed tank | HDPE material (435 m3) | 1 | 12,525 | Daniel [46] |
Structured fixed-bed reactor | Reinforced concrete material (579 m3) | 1 | 339,291 | Fuess et al. [47] | |
Support material | Polyurethane | 23.1 m3 | 5388 | Fuess et al. [47] | |
Digestate tank | HDPE material (1 m3) | 1 | 280 | Daniel [46] | |
Pump | Centrifugal | 2 | 3884 | Souza [48] | |
Pump | Dosing | 1 | 1509 | Fuess et al. [47] | |
Valves | Guillotine | 7 | 663 | Daniel [46] | |
Gasometer (biogas tank) | PVC material (2800 m3) | 1 | 37,246 | Daniel [46] | |
Water seal | Stainless steel material | 1 | 2415 | Fuess et al. [47] | |
Gas meter | - | 1 | 137 | Daniel [46] | |
Biogas cleaning (S1, S2, S3) | Dehumidifier + Desulfurizer | Molecular sieve | 1 | 580 | Daniel [46] |
EE Generation (S2) | Compressor | 10 bar | 1 | 405 | Daniel [46] |
Internal Combustion Engine—ICE | Efficiency between 25 and 35% | 1 | 4801 | Daniel [46] | |
Biogas purification (S3) | PSA purification | Compression, PSA purification, and supply | 1 | 76,330 | Daniel [46] |
Parameter | Value | Unit | Reference |
---|---|---|---|
Plant lifespan | 25 | year | Fuess et al. [47] |
Investment in civil works and equipment | 20 a | % | Assumed value |
Working capital | 10 b | % | Fuess et al. [47] |
Minimum acceptable rate of return (MARR) | 14 | % | Souza [48] |
Operation and maintenance | 3 c | % | Fuess et al. [47] |
sales tax | 18 | % | Assumed value |
IRPJ + CSLL | 34 d | % | Dias et al. [50] |
Depreciation rate (linear, 10 years) | 10 | % | Fuess et al. [47] |
Scenario | Item | Value | Unit | Reference |
---|---|---|---|---|
S1—Thermal energy generation | Firewood to be replaced | 11.20 | USD/m3 | Simioni et al. [51] |
EE for sale (surplus) | 0.08 | USD/kWh | MME [52] | |
S2—Electricity generation | Network EE (household economy) | 0.16 | USD/kWh | MME [53] |
Network EE (process economy) | 0.14 | USD/kWh | MME [53] | |
EE for sale (surplus) | 0.08 | USD/kWh | MME [52] | |
S3—Biomethane | LPG to be replaced | 1.20 | USD/kg | MME [53] |
Diesel to be replaced | 0.75 | USD/L | MME [53] | |
CNG for sale (surplus) | 0.67 | USD/m3 | ANP [54] | |
CBio * | 6.47 | USD/CBio | ANP [55] | |
All scenarios | Synthetic fertilizer to be replaced | 20,64 | USD/bag | CONAB [56] |
Parameter | Value | Unit |
---|---|---|
Reactor | ||
Total volume | 579 | m3 |
Operating time | 360 | day |
Methane production | 2080 | m3 d−1 |
Season flows | ||
Mucilage | 1.8 | m3 d−1 |
Washing water | 133 | m3 d−1 |
Off-season flows | ||
Cattle manure | 1950 | kg d−1 |
Glycerin | 5123 | kg d−1 |
Economic Indicator | S1 | S2 | S3 |
---|---|---|---|
Initial investment | USD 525,093 | USD 531,861 | USD 624,322 |
NPV | USD 395,014 | USD 626,577 | USD 1,950,517 |
IRR | 25% | 32% | 60% |
Discounted payback | 6 years and 2 months | 4 years and 6 months | 2 years and 1 month |
Agroindustrial Sector | Biogas Production Factor * | Unit | Estimated Biogas [m3] |
---|---|---|---|
Poultry | 0.00194 | m3 animal−1 | 202 |
Swine | 1.52 | m3 animal−1 | 2584 |
Cattle | 8.73 | m3 animal−1 | 5,962,590 |
Whey | 0.8 | m3 m−3-processed milk | 76,000 |
Sugarcane—vinasse | 17.68 | m3 m−3-processed sugarcane | 1,013,861,947 |
Sugarcane—filter cake | 84.41 | m3 ton−1-crushed sugarcane | 4,840,502,655 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarracin, L.T.; Mas, I.R.; Fuess, L.T.; Rodriguez, R.P.; Volpi, M.P.C.; de Souza Moraes, B. The Bioenergetic Potential from Coffee Processing Residues: Towards an Industrial Symbiosis. Resources 2024, 13, 21. https://doi.org/10.3390/resources13020021
Albarracin LT, Mas IR, Fuess LT, Rodriguez RP, Volpi MPC, de Souza Moraes B. The Bioenergetic Potential from Coffee Processing Residues: Towards an Industrial Symbiosis. Resources. 2024; 13(2):21. https://doi.org/10.3390/resources13020021
Chicago/Turabian StyleAlbarracin, Lorena Torres, Irina Ramirez Mas, Lucas Tadeu Fuess, Renata Piacentini Rodriguez, Maria Paula Cardeal Volpi, and Bruna de Souza Moraes. 2024. "The Bioenergetic Potential from Coffee Processing Residues: Towards an Industrial Symbiosis" Resources 13, no. 2: 21. https://doi.org/10.3390/resources13020021
APA StyleAlbarracin, L. T., Mas, I. R., Fuess, L. T., Rodriguez, R. P., Volpi, M. P. C., & de Souza Moraes, B. (2024). The Bioenergetic Potential from Coffee Processing Residues: Towards an Industrial Symbiosis. Resources, 13(2), 21. https://doi.org/10.3390/resources13020021