Modelling Possible Household Uses of Grey Water in Poland using Property Fitting Analysis
Abstract
:1. Introduction
2. Theoretical Background
- reducing the abstraction of drinking water from its intakes;
- reduced environmental impact due to the lack of need for sewage networks and treatment plants;
- soil fertilisation;
- lower energy and chemical consumption compared to traditional water treatment;
- improving environmental conditions for vegetation, contributing to better growth;
- recovery of groundwater levels;
- recovery of fertilising components that would be diverted to the treatment plant in a traditional system [46].
3. Materials and Methods
3.1. Research Tool
3.2. Subject Matter and Methodology of Statistical Analysis
- Women up to 34 years of age (K/34);
- Women aged 35–44 years (K/35–44 years);
- Women aged 45–54 years (K/45–54 years);
- Women aged 55 and over (K/55);
- Men up to 34 years of age (M/34);
- Men aged 35–44 years (M/35–44 years);
- Men aged 45–54 years (M/45–54 years);
- Men aged 55 and over (M/55).
- Reduced abstraction of drinking water from rivers and other water bodies (C1);
- Lower environmental impact due to the lack of a sewage network and treatment plant (C2);
- Reduction in pressure on water and sewerage networks due to lower water abstraction and less wastewater (C3);
- Soil fertilisation (C4);
- Lower energy and chemical consumption compared to traditional water treatment (C5);
- Recovery of groundwater levels (C6);
- Increased vegetation growth (C7);
- Recovery of fertilising nutrients that would have been diverted to the treatment plant in the traditional system (C8).
- Persons up to 34 years of age who possess an irretrievable water meter (34/L);
- Persons up to 34 years of age who do not possess an irretrievable water meter (34/B);
- Persons aged 35–44 years who possess an irretrievable water meter (35–44/L);
- Persons aged 35–44 years who do not possess an irretrievable water meter (35–44/B);
- Persons aged 45–54 years who possess an irretrievable water meter (45–54/L);
- Persons aged 45–54 years who do not possess an irretrievable water meter (45–54/B);
- Persons 55 and over who possess an irretrievable water meter (55/L);
- Persons 55 and over who do not possess an irretrievable water meter (55/B).
- Women who live in a house (K/D);
- Women who live in a flat (K/M);
- Men who live in a house (M/D);
- Men who live in a flat (M/M);
- People who live in a house and possess an irretrievable water meter (D/L);
- People who live in a house and do not possess an irretrievable water meter (D/B);
- People who live in a flat and possess an irretrievable water meter (M/L);
- People who live in a flat and do not possess an irretrievable water meter (M/B).
3.3. Characteristics of the Research Sample
4. Results and Discussion
4.1. Analysis of Overall Performance
4.2. Modelling Grey Water Benefits for Different Groups
4.2.1. Benefits of Grey Water Use in Groups Distinguished by Gender and Age
4.2.2. Benefits of Grey Water Use among Groups Differentiated by Age and Ownership of an Irretrievable Water Meter
4.2.3. Benefits of Grey Water Use in Groups Distinguished by Gender and Place of Residence
4.2.4. Benefits of Grey Water Use among Groups Distinguished by Residence and Possession of an Irretrievable Water Meter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Łubkowska, B. Rola wody w życiu człowieka i środowisku. In Żywienie a środowisko; Podgórska, M., Ed.; Wydawnictwo Wyższej Szkoły Zarządzania: Gdańsk, Poland, 2017; pp. 20–37. [Google Scholar]
- Charting Our Water Future—Report of the Group on the State of Water Resources Up to 2030. Available online: https://www.mckinsey.com/featured-insights/themes/how-to-protect-our-water-now-and-for-generations (accessed on 5 December 2023).
- Alsaeed, B.S.; Hunt, D.V.L.; Sharifi, S. Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review. Sustainability 2022, 14, 15293. [Google Scholar] [CrossRef]
- Ochrona Środowiska 2020, GUS. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2020,1,21.html (accessed on 10 November 2023).
- Poradnik Wykorzystania Wody Deszczowej. Pompy i Systemy Pompowe do Wód Deszczowych; Wilo: Warsaw, Poland, 2021. Available online: https://cms.media.wilo.com/cdndoc/wilo418778/4542410/wilo418778.pdf (accessed on 8 November 2023).
- Strategia Gospodarki Wodnej w Obiegu Zamkniętym Dla Obszaru BTOF i Bydgoszczy: Woda Opadowa, Szara Woda i Ścieki Oczyszczone. Interreg Central Europe: Poland, 2022. Available online: https://typo3.um.bydgoszcz.pl/fileadmin/multimedia/rozwoj/Projekty_miedzynarodowe/cwc/07.09.2022_STRATEGIA_GOSPODARKI_WODA_W_OBIEGU_ZAMKNIETYM_DLA_OBSZARU_BTOF_I_BYDGOSZCZY/STRATEGIA_GOSPODARKI_WODA_W_OBIEGU_ZAMKNIETYM_DLA_OBSZARU_BTOF_I_BYDGOSZCZY.pdf (accessed on 5 November 2023).
- Wojciechowska, E. Zastosowanie Zielonej Infrastruktury do Ograniczania Zanieczyszczenia Wód Powierzchniowych w Zlewni Miejskiej; Polska Akademia Nauk: Gdańska, Poland, 2018. [Google Scholar]
- Wen, J.; Li, H.; Meseretchanie, A. Assessment and Prediction of the Collaborative Governance of the Water Resources, Water Conservancy Facilities, and Socio-Economic System in the Xiangjiang River Basin, China. Water 2023, 15, 3630. [Google Scholar] [CrossRef]
- Mulik, B. Quality of drinking water—Its analysis and interpretation. Laboratorium 2017, 11–12, 7–11. [Google Scholar]
- Waltner, I.; Ribács, A.; Gémes, B.; Székács, A. Influence of Climatic Factors on the Water Footprint of Dairy Cattle Production in Hungary—A Case Study. Water 2023, 15, 4181. [Google Scholar] [CrossRef]
- Kuzior, A.; Krawczyk, D.; Onopriienko, K.; Petrushenko, Y.; Onopriienko, I.; Onopriienko, V. Lifelong Learning as a Factor in the Country’s Competitiveness and Innovative Potential within the Framework of Sustainable Development. Sustainability 2023, 15, 9968. [Google Scholar] [CrossRef]
- Zdanowski, J. Niedobór wody i żywności na Bliskim Wschodzie i w Afryce Północnej a perspektywy współpracy regionalnej. Krak. Stud. Międzynarodowe 2018, 4, 139–155. [Google Scholar]
- Zhang, M.; Liu, R.; Li, Y. Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience. Sustainability 2022, 14, 7783. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Akrimi, R.; Guesmi, A.; Hachicha, M. Assessing the Reliability of Treated Grey Water Irrigation on Soil and Tomatoes (Solanum lycopersicum L.). Horticulturae 2022, 8, 981. [Google Scholar] [CrossRef]
- Cvelihárová, D.; Pauliková, A.; Kopilčáková, L.; Eštoková, A.; Stefanova, M.G.; Dománková, M.; Šutiaková, I.; Kusý, M.; Moravčíková, J.; Hazlinger, M. Optimization of the Interaction Transport System—Transported Medium to Ensure the Required Water Quality. Water 2023, 15, 2573. [Google Scholar] [CrossRef]
- Abdelkarim, S.B.; Ahmad, A.M.; Ferwati, S.; Naji, K. Urban Facility Management Improving Livability through Smart Public Spaces in Smart Sustainable Cities. Sustainability 2023, 15, 16257. [Google Scholar] [CrossRef]
- Berkowska, E.; Gwiazdowicz, M. Deficyty wody w Polsce. Biuro Anal. Sejm. 2020, 1, 1–6. [Google Scholar]
- Nie Ma Wody w Skierniewicach. “To Początek Kryzysu, Który Dotknie Całą Polskę”. Available online: https://lodz.wyborcza.pl/lodz/7,44788,24892986,nie-ma-wody-w-skierniewicach-to-poczatek-kryzysu-ktory-dotknie.html (accessed on 2 December 2023).
- Gruss, Ł.; Wiatkowski, M.; Połomski, M.; Szewczyk, Ł.; Tomczyk, P. Analysis of Changes in Water Flow after Passing through the Planned Dam Reservoir Using a Mixture Distribution in the Face of Climate Change: A Case Study of the Nysa Kłodzka River, Poland. Hydrology 2023, 10, 226. [Google Scholar] [CrossRef]
- Badora, D.; Wawer, R.; Król-Badziak, A.; Nieróbca, A.; Kozyra, J.; Jurga, B. Hydrological Balance in the Vistula Catchment under Future Climates. Water 2023, 15, 4168. [Google Scholar] [CrossRef]
- Urban Insight. Miasta Zdrowej Wody. Available online: https://www.sweco.pl/wp-content/uploads/sites/17/2021/09/UrbanInsight_Raport_03_2021_PL.pdf (accessed on 9 December 2023).
- Wdowikowska, A.; Reda, M.; Kabała, K.; Chohura, P.; Jurga, A.; Janiak, K.; Janicka, M. Water and Nutrient Recovery for Cucumber Hydroponic Cultivation in Simultaneous Biological Treatment of Urine and Grey Water. Plants 2023, 12, 1286. [Google Scholar] [CrossRef] [PubMed]
- Elhegazy, H.; Mohamed, M.M. A state-of-the-art-review on grey water management: A survey from 2000 to 2020s. Water Sci. Technol. 2020, 82, 2786–2797. [Google Scholar] [CrossRef]
- Meng, X.; Lu, J.; Wu, J.; Zhang, Z.; Chen, L. Quantification and Evaluation of Grey Water Footprint in Yantai. Water 2022, 14, 1893. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Merayo, N.; Prinsen, P.; Luque, R.; Blanco, A.; Zhao, M. A review on greywater reuse: Quality, risks, barriers and global scenarios. Rev. Environ. Sci. Biotechnol. 2019, 18, 77–99. [Google Scholar] [CrossRef]
- Van de Walle, A.; Kim, M.; Alam, M.K.; Wang, X.; Wu, D.; Dash, S.R.; Rabaey, K.; Kim, J. Greywater reuse as a key enabler for improving urban wastewater management. Environ. Sci. Ecotechnol. 2023, 16, 100277. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Yao, L. Exploring the Regional Coordination Relationship between Water Utilization and Urbanization Based on Decoupling Analysis: A Case Study of the Beijing–Tianjin–Hebei Region. Int. J. Environ. Res. Public Health 2022, 19, 6793. [Google Scholar] [CrossRef]
- Matusevych, T.; Shevchuk, D. Developing Responsible Citizens in New Realities: The Case of Science Education. Youth Voice J. 2022, 3, 45–53. [Google Scholar]
- Brodny, J.; Tutak, I. Assessing the energy security of European Union countries from two perspectives—A new integrated approach based on MCDM methods. Appl. Energy 2023, 1, 121443. [Google Scholar] [CrossRef]
- Schmidt, I.; Rickert, B.; Schmoll, O.; Rapp, T. Implementation and evaluation of the water safety plan approach for buildings. Water Health 2019, 17, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Vilčeková, S.; Burdová, E.K.; Selecká, I. Sustainable Water Management in Buildings. Water Resour. Slovak. Part II 2018, 70, 307–321. [Google Scholar] [CrossRef]
- Yoonus, H.; Al-Ghamdi, S.G. Environmental performance of building integrated grey water reuse systems based on Life-Cycle Assessment: A systematic and bibliographic analysis. Sci. Total Environ. 2020, 712, 136535. [Google Scholar] [CrossRef]
- Yusof, M.F.; Zainol, M.R.R.M.A.; Riahi, A.; Zakaria, N.A.; Shaharuddin, S.; Juiani, S.F.; Noor, N.M.; Zawawi, M.H.; Ikhsan, J. Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still. Sustainability 2022, 14, 9452. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I. Assessing the Effectiveness of Air Quality Improvements in Polish Cities Aspiring to Be Sustainably Smart. Smart Cities 2023, 6, 510–530. [Google Scholar] [CrossRef]
- Błaszczyński, T.Z.; Gwozdowski, B. Ekologiczne budownictwo wysokie na przykładzie Shanghai Tower. Przegląd Bud. 2017, 10, 87–90. [Google Scholar]
- Błaszczyński, T.Z. Ekologiczne wieżowce. Builder 2019, 262, 86–89. [Google Scholar] [CrossRef]
- Abdalla, H.; Rahmat-Ullah, Z.; Abdallah, M.; Alsmadi, S.; Elashwah, N. Eco-efficiency analysis of integrated grey and black water management systems. Resour. Conserv. Recycl. 2021, 172, 105681. [Google Scholar] [CrossRef]
- PN-EN 12056-1:2002. Available online: https://9lib.org/document/yevwvvm1-normy-pn-grudzie%C5%84-systemy-kanalizacji-grawitacyjnej-wewn%C4%85trz-budynk%C3%B3w.html (accessed on 10 December 2023).
- Suchorab, P.; Iwanek, M.; Żelazna, A. Profitability analysis of dual installations in selected European countries. Appl. Water Sci. 2021, 11, 34. [Google Scholar] [CrossRef]
- Hadad, E.; Fershtman, E.; Gal, Z.; Silberman, I.; Oron, G. Simulation of dual systems of greywater reuse in high-rise buildings for energy recovery and potential use in irrigation. Resour. Conserv. Recycl. 2022, 180, 106134. [Google Scholar] [CrossRef]
- Ansorge, L.; Stejskalová, L. Citation Accuracy: A Case Study on Definition of the Grey Water Footprint. Publications 2023, 11, 8. [Google Scholar] [CrossRef]
- Grzelak, A.; Fiałkiewicz-Kozieł, B. Perspektywy i potencjalne zagrożenia ponownego wykorzystania szarej wody. Eng. Prot. Environ. 2017, 20, 27–41. [Google Scholar] [CrossRef]
- Khajvand, M.; Mostafazadeh, A.K.; Drogui, P.; Tyagi, R.D.; Brien, E. Greywater characteristics, impacts, treatment, and reclamation using adsorption processes towards the circular economy. Environ. Sci. Pollut. Res. 2022, 29, 10966–11003. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, J.; Liu, M.; Zafar, S.U.; Liu, Q.; Mian, I.A.; Khan, B.; Khan, S.; Zhuang, Y.; Dong, W.; et al. Spatial Characteristics and Driving Forces of the Water Footprint of Spring Maize Production in Northern China. Agriculture 2023, 13, 1808. [Google Scholar] [CrossRef]
- Piotrowska, B.; Słyś, D. Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water. Energies 2023, 16, 137. [Google Scholar] [CrossRef]
- Witek, W. Wykorzystanie wody szarej. Wieś Maz. 2018, 9, 28–29. [Google Scholar]
- Al-Jayyousi, O.R. Greywater reuse: Towards sustainable water management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Filali, H.; Barsan, N.; Souguir, D.; Nedeff, V.; Tomozei, C.; Hachicha, M. Greywater as an Alternative Solution for a Sustainable Management of Water Resources—A Review. Sustainability 2022, 14, 665. [Google Scholar] [CrossRef]
- Dobrzański, M.; Galoch, E. Economic analysis of water recovery from greywater and rainwater in households in Poland. BoZPE 2019, 8, 85–94. [Google Scholar] [CrossRef]
- Maimon, A.; Gross, A. Greywater: Limitations and perspective. Curr. Opin. Environ. Sci. Health 2018, 2, 1–6. [Google Scholar] [CrossRef]
- Dyrektywa 2000/60/WE. Available online: https://eur-lex.europa.eu/legal-content/PL/LSU/?uri=celex:32000L0060#:~:text=Dyrektywa%202000%2F60%2FWE%20%E2%80%93%20ramy%20wsp%C3%B3lnotowego%20dzia%C5%82ania%20w%20dziedzinie,podziemnych%20do%202015%20r.%20W%20szczeg%C3%B3lno%C5%9Bci%20obejmuje%20to%3A (accessed on 10 December 2023).
- Morseletto, P.; Mooren, C.E.; Munaretto, S. Circular Economy of Water: Definition, Strategies and Challenges. Circ. Econ. Sust. 2022, 2, 1463–1477. [Google Scholar] [CrossRef]
- Weryński, P. Resentment Barriers to Innovation Development of Small and Medium Enterprises in Upper Silesia. Sustainability 2022, 14, 15687. [Google Scholar] [CrossRef]
- Mynarski, S. Praktyczne Metody Analizy Danych Rynkowych i Marketingowych; Kantor Wydawniczy Zakamycze: Cracow, Poland, 2000. [Google Scholar]
- Bank Danych Lokalnych Głównego Urzędu Statystycznego. Available online: https://bdl.stat.gov.pl/bdl/metadane/podgrupy/7 (accessed on 15 May 2023).
- Taher, M.N.; Awayes, J.; Cavkas, S.; Beler-Baykal, B. Public attitude for acceptance of grey water reuse in Istanbul and the impact of informing potential consumers. Desalination Water Treat. 2019, 172, 316–322. [Google Scholar] [CrossRef]
- Shafiquzzaman, M.; Haider, H.; AlSaleem, S.S.; Ghumman, A.R.; Sadiq, R. Development of Consumer Perception Index for assessing greywater reuse potential in arid environments. Water SA 2018, 44, 771–781. [Google Scholar] [CrossRef]
- Stec, A. Rainwater and Greywater as Alternative Water Resources: Public Perception and Acceptability. Case Study in Twelve Countries in the World. Water Resour. Manag. 2023, 37, 5037–5059. [Google Scholar] [CrossRef]
- Madzaramba, T.H.; Zanamwe, P. User perceptions and acceptance of treated greywater reuse in low-income communities: A narrative review. J. Water Clim. Change 2023, 14, 4236–4244. [Google Scholar] [CrossRef]
n | % | ||
---|---|---|---|
Gender | Women | 350 | 43.37% |
Men | 448 | 55.51% | |
Other | 9 | 1.12% | |
Age | Up to 24 years | 28 | 3.47% |
25–34 years | 88 | 10.90% | |
35–44 years | 200 | 24.78% | |
45–54 years | 224 | 27.76% | |
55 and over | 267 | 33.09% | |
Education | Basic | 5 | 0.62% |
Basic vocational | 64 | 7.93% | |
Secondary | 251 | 31.10% | |
Higher | 487 | 60.35% | |
Owning an irretrievable water meter | Yes | 350 | 43.37% |
No | 457 | 56.63% | |
Place of residence | House | 683 | 84.63% |
Flat | 124 | 15.37% |
Descriptive Statistics | ||||||
---|---|---|---|---|---|---|
Mean ± Standard Deviation | Median (Q25–Q75) | Min.–Max. | Confidence Interval | Stand Error. | ||
−95.00% | +95.00% | |||||
Evaluation of the extent to which drought periods are increasing and water sources are disappearing in Poland | 3.28 ± 1.02 | 3 (3–4) | 1–5 | 3.21 | 3.35 | 0.04 |
Assessment of the extent to which water demand is increasing in Poland | 3.62 ± 0.98 | 4 (3–4) | 1–5 | 3.56 | 3.69 | 0.03 |
Assessment of the degree of importance of exploring new technologies for obtaining drinking water from non-traditional sources | 4.31 ± 1.07 | 5 (4–5) | 1–5 | 4.23 | 4.38 | 0.04 |
Descriptive Statistics | ||||||
---|---|---|---|---|---|---|
Mean ± Standard Deviation | Median (Q25–Q75) | Min.–Max. | Confidence Interval | Stand Error. | ||
−95.00% | +95.00% | |||||
Reduced abstraction of drinking water from rivers and other water bodies | 3.53 ± 1.23 | 4 (3–5) | 1–5 | 3.45 | 3.62 | 0.04 |
Reduced environmental impact | 3.17 ± 1.3 | 3 (2–4) | 1–5 | 3.08 | 3.26 | 0.05 |
Reducing pressure on the water supply and sewerage network | 2.99 ± 1.27 | 3 (2–4) | 1–5 | 2.91 | 3.08 | 0.04 |
Soil fertilisation | 3.26 ± 1.32 | 3 (2–4) | 1–5 | 3.17 | 3.35 | 0.05 |
Reduced energy and chemical consumption | 3.32 ± 1.27 | 3 (3–4) | 1–5 | 3.24 | 3.41 | 0.04 |
Groundwater level recovery | 3.57 ± 1.24 | 4 (3–5) | 1–5 | 3.48 | 3.65 | 0.04 |
Increased vegetation growth | 3.47 ± 1.26 | 4 (3–5) | 1–5 | 3.38 | 3.56 | 0.04 |
Recovery of fertiliser components | 3.33 ± 1.25 | 3 (3–4) | 1–5 | 3.24 | 3.42 | 0.04 |
Descriptive Statistics | ||||||
---|---|---|---|---|---|---|
Mean ± Standard Deviation | Median (Q25–Q75) | Min.–Max. | Confidence Interval | Stand Error. | ||
−95.00% | +95.00% | |||||
I am concerned about any form of grey water use | 2.56 ± 1.33 | 2 (1–4) | 1–5 | 2.47 | 2.65 | 0.05 |
Concerns about the quality of technology to produce drinking water from grey water | 3.1 ± 1.33 | 3 (2–4) | 1–5 | 3.01 | 3.19 | 0.05 |
Concerns about the parameter stability of drinking water produced from grey water | 3.24 ± 1.32 | 3 (2–4) | 1–5 | 3.15 | 3.33 | 0.05 |
Concerned about the high cost of drinking water produced from grey water | 3.29 ± 1.29 | 3 (2–4) | 1–5 | 3.20 | 3.38 | 0.05 |
Concerns about the need to convert the existing water and sewer systems to produce potable water from grey water | 3.39 ± 1.32 | 4 (2–5) | 1–5 | 3.30 | 3.48 | 0.05 |
I have absolutely no concerns about the use of the grey water | 2.26 ± 1.22 | 2 (1–3) | 1–5 | 2.18 | 2.34 | 0.04 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
Women/≤34 (K/34) | 3.89 | 3.50 | 3.46 | 3.59 | 3.83 | 3.96 | 3.80 | 3.48 |
Women/35–44 (K/35–44) | 3.67 | 3.48 | 3.20 | 3.47 | 3.57 | 3.69 | 3.62 | 3.50 |
Women/45–54 (K/45–54) | 3.63 | 3.36 | 3.29 | 3.47 | 3.47 | 3.78 | 3.69 | 3.61 |
Women/≥55 (K/55) | 3.45 | 3.13 | 2.97 | 3.22 | 3.31 | 3.50 | 3.55 | 3.35 |
Men/≤34 (M/34) | 3.42 | 3.12 | 2.96 | 3.22 | 3.35 | 3.75 | 3.49 | 3.25 |
Men/35–44 (M/35–44) | 3.47 | 3.13 | 2.94 | 3.11 | 3.17 | 3.43 | 3.25 | 3.22 |
Men/45–54 (M/45–54) | 3.76 | 3.14 | 2.91 | 3.34 | 3.39 | 3.66 | 3.59 | 3.40 |
Men/≥55 (M/55) | 3.24 | 2.90 | 2.70 | 3.02 | 2.99 | 3.26 | 3.15 | 3.07 |
Free Expression | DIM.1 | DIM.2 | R2 | ||||
---|---|---|---|---|---|---|---|
b0 | p | b | p | b | p | ||
Reduced abstraction of drinking water from rivers and other water bodies (C1) | 3.566 | p < 0.001 | 0.194 | p < 0.01 | −0.029 | p = 0.772 | 0.81 |
Reduced environmental impact (C2) | 3.217 | p < 0.001 | 0.204 | p < 0.001 | 0.027 | p = 0.685 | 0.92 |
Reducing pressure on the water supply and sewerage network (C3) | 3.053 | p < 0.001 | 0.235 | p < 0.001 | 0.090 | p = 0.267 | 0.92 |
Soil fertilisation (C4) | 3.304 | p < 0.001 | 0.200 | p < 0.001 | −0.001 | p = 0.917 | 1.00 |
Reduced energy and chemical consumption (C5) | 3.385 | p < 0.001 | 0.248 | p < 0.001 | 0.016 | p = 0.832 | 0.93 |
Groundwater level recovery (C6) | 3.631 | p < 0.001 | 0.201 | p < 0.01 | −0.060 | p = 0.568 | 0.82 |
Increased vegetation growth (C7) | 3.517 | p < 0.001 | 0.210 | p < 0.001 | −0.099 | p = 0.187 | 0.92 |
Recovery of fertilising components (C8) | 3.359 | p < 0.001 | 0.165 | p < 0.01 | −0.100 | p = 0.132 | 0.91 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
≤34/owns an irretrievable water meter (≤34/L) | 3.64 | 3.34 | 3.23 | 3.48 | 3.57 | 3.82 | 3.50 | 3.32 |
≤34/does not own an irretrievable water meter (≤34/B) | 3.61 | 3.24 | 3.13 | 3.32 | 3.53 | 3.85 | 3.71 | 3.38 |
35–44/owns an irretrievable water meter (35–44/L) | 3.66 | 3.34 | 3.22 | 3.40 | 3.41 | 3.72 | 3.52 | 3.48 |
35–44/does not own an irretrievable water meter (35–44/B) | 3.50 | 3.27 | 2.96 | 3.20 | 3.33 | 3.44 | 3.36 | 3.26 |
45–54/owns an irretrievable water meter (45–54/L) | 3.65 | 3.03 | 2.95 | 3.19 | 3.25 | 3.63 | 3.55 | 3.39 |
45–54/does not own an irretrievable water meter (45–54/B) | 3.76 | 3.39 | 3.15 | 3.55 | 3.56 | 3.75 | 3.67 | 3.55 |
≥55/owns an irretrievable water meter (≥55/L) | 3.31 | 2.82 | 2.82 | 3.00 | 3.07 | 3.28 | 3.31 | 3.13 |
≥55/does not own an irretrievable water meter (≥55/B) | 3.33 | 3.12 | 2.80 | 3.16 | 3.16 | 3.40 | 3.31 | 3.21 |
Free Expression | DIM.1 | DIM.2 | R2 | ||||
---|---|---|---|---|---|---|---|
b0 | p | b | p | b | p | ||
Reduced abstraction of drinking water from rivers and other water bodies (C1) | 3.557 | p < 0.001 | −0.148 | p < 0.001 | 0.122 | p = 0.122 | 0.93 |
Reduced environmental impact (C2) | 3.192 | p < 0.001 | −0.161 | p < 0.01 | −0.228 | p = 0.104 | 0.85 |
Reducing the pressure on the water supply and sewerage network (C3) | 3.030 | p < 0.001 | −0.157 | p < 0.01 | −0.102 | p = 0.293 | 0.90 |
Soil fertilisation (C4) | 3.287 | p < 0.001 | −0.167 | p < 0.001 | −0.156 | p < 0.05 | 0.96 |
Reduced energy and chemical consumption (C5) | 3.359 | p < 0.001 | −0.176 | p < 0.001 | −0.067 | p = 0.473 | 0.91 |
Groundwater level recovery (C6) | 3.611 | p < 0.001 | −0.194 | p < 0.001 | 0.108 | p = 0.303 | 0.92 |
Increased vegetation growth (C7) | 3.491 | p < 0.001 | −0.129 | p < 0.01 | 0.207 | p < 0.05 | 0.90 |
Recovery of fertilising components (C8) | 3.339 | p < 0.001 | −0.119 | p < 0.01 | 0.065 | p = 0.499 | 0.82 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
Women/House (K/D) | 3.60 | 3.31 | 3.12 | 3.38 | 3.45 | 3.68 | 3.61 | 3.47 |
Women/Flat (K/M) | 3.70 | 3.46 | 3.50 | 3.54 | 3.74 | 3.72 | 3.82 | 3.50 |
Men/House (M/D) | 3.48 | 3.04 | 2.83 | 3.11 | 3.17 | 3.47 | 3.33 | 3.21 |
Men/Flat (M/M) | 3.42 | 3.14 | 3.00 | 3.46 | 3.38 | 3.64 | 3.51 | 3.33 |
Free Expression | DIM.1 | DIM.2 | R2 | ||||
---|---|---|---|---|---|---|---|
b0 | p | b | p | b | p | ||
Reduced abstraction of drinking water from rivers and other water bodies (C1) | 3.551 | p < 0.01 | 0.123 | p = 0.307 | −0.026 | p = 0.796 | 0.79 |
Reduced environmental impact (C2) | 3.238 | p < 0.01 | 0.203 | p = 0.115 | 0.045 | p = 0.499 | 0.97 |
Reducing the pressure on the water supply and sewerage network (C3) | 3.114 | p < 0.001 | 0.320 | p < 0.01 | 0.010 | p < 0.084 | 1.00 |
Soil fertilisation (C4) | 3.373 | p < 0.05 | 0.167 | p = 0.288 | 0.120 | p = 0.434 | 0.85 |
Reduced energy and chemical consumption (C5) | 3.435 | p < 0.01 | 0.261 | p < 0.05 | 0.040 | p = 0.29 | 1.00 |
Groundwater level recovery (C6) | 3.627 | p < 0.001 | 0.104 | p < 0.05 | 0.081 | p < 0.052 | 1.00 |
Increased vegetation growth (C7) | 3.565 | p < 0.001 | 0.227 | p < 0.01 | 0.053 | p < 0.05 | 1.00 |
Recovery of fertilising components (C8) | 3.378 | p < 0.01 | 0.132 | p = 0.16 | 0.079 | p = 0.302 | 0.95 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
---|---|---|---|---|---|---|---|---|
House/owns an irretrievable water meter (D/L) | 3.53 | 3.07 | 2.99 | 3.21 | 3.25 | 3.55 | 3.46 | 3.30 |
House/does not own an irretrievable water meter (D/B) | 3.55 | 3.24 | 2.93 | 3.25 | 3.34 | 3.57 | 3.44 | 3.34 |
Flat/owns an irretrievable water meter (M/L) | 3.61 | 3.06 | 3.13 | 3.23 | 3.45 | 3.61 | 3.39 | 3.42 |
Flat/does not own an irretrievable water meter (M/B) | 3.48 | 3.29 | 3.17 | 3.52 | 3.48 | 3.60 | 3.65 | 3.33 |
Free Expression | DIM.1 | DIM.2 | R2 | ||||
---|---|---|---|---|---|---|---|
b0 | p | b | p | b | p | ||
Reduced abstraction of drinking water from rivers and other water bodies (C1) | 3.543 | p < 0.01 | −0.038 | p = 0.296 | 0.052 | p = 0.276 | 0.90 |
Reduced environmental impact (C2) | 3.166 | p < 0.01 | 0.098 | p = 0.322 | −0.075 | p = 0.472 | 0.82 |
Reducing the pressure on the water supply and sewerage network (C3) | 3.057 | p < 0.01 | 0.086 | p = 0.23 | 0.105 | p = 0.238 | 0.93 |
Soil fertilisation (C4) | 3.300 | p < 0.01 | 0.159 | p < 0.05 | −0.017 | p = 0.375 | 1.00 |
Reduced energy and chemical consumption (C5) | 3.381 | p < 0.01 | 0.087 | p = 0.251 | 0.092 | p = 0.295 | 0.91 |
Groundwater level recovery (C6) | 3.584 | p < 0.01 | 0.016 | p = 0.279 | 0.033 | p = 0.187 | 0.94 |
Increased vegetation growth (C7) | 3.484 | p < 0.01 | 0.113 | p = 0.164 | −0.051 | p = 0.408 | 0.94 |
Recovery of fertilising components (C8) | 3.350 | p < 0.01 | −0.006 | p = 0.852 | 0.062 | p = 0.289 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ober, J.; Karwot, J.; Sitinjak, C. Modelling Possible Household Uses of Grey Water in Poland using Property Fitting Analysis. Resources 2024, 13, 25. https://doi.org/10.3390/resources13020025
Ober J, Karwot J, Sitinjak C. Modelling Possible Household Uses of Grey Water in Poland using Property Fitting Analysis. Resources. 2024; 13(2):25. https://doi.org/10.3390/resources13020025
Chicago/Turabian StyleOber, Józef, Janusz Karwot, and Charli Sitinjak. 2024. "Modelling Possible Household Uses of Grey Water in Poland using Property Fitting Analysis" Resources 13, no. 2: 25. https://doi.org/10.3390/resources13020025
APA StyleOber, J., Karwot, J., & Sitinjak, C. (2024). Modelling Possible Household Uses of Grey Water in Poland using Property Fitting Analysis. Resources, 13(2), 25. https://doi.org/10.3390/resources13020025