Edaphic Drivers Influencing Forage Grasslands in Bujagh National Park, Iran
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design and Data Collection
2.2. Statistical Processing
3. Results
3.1. Floristic Description and Classification
3.2. Landcover Change Detection
3.3. Ordination Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribic, C.A.; Koford, R.R.; Herkert, J.R.; Johnson, D.H.; Niemuth, N.D.; Naugle, D.E.; Renfrew, R.B. Area sensitivity in North American grassland birds: Patterns and processes. Auk 2009, 126, 233–244. [Google Scholar] [CrossRef]
- Fletcher, J.R. Multiple edge effects and their implications in fragmented landscapes. Anim. Ecol. 2005, 74, 342–352. [Google Scholar] [CrossRef]
- Rich, T.D.; Beardmore, C.J.; Berlanga, H.P.; Blancher, J.M.S.W.; Bradstreet, G.S.; Butcher, D.W.; Demarest, E.H.; Dunn, W.C.; Hunter, E.E.; Iñigo-Elias, J.A.; et al. North American Land Bird Conservation Plan; Cornell Lab of Ornithology: Ithaca, NY, USA, 2004. [Google Scholar]
- Winter, M.; Faaborg, J. Patterns of area sensitivity in grassland-nesting birds. Conserv. Biol. 1999, 13, 1424–1436. [Google Scholar] [CrossRef]
- Churchwell, R.T.; Davis, C.A.; Fuhlendorf, S.D.; Engle, D.M. Effects of patch-burn management on dickcissel nest success in a tallgrass prairie. Wildl. Manag. 2008, 72, 1596–1604. [Google Scholar] [CrossRef]
- Bollinger, E.K.; Bollinger, P.B.; Gavin, T.A. Effects of hay-cropping on eastern population of Bobolink. Wildl. Soc. Bull. 1990, 18, 142–150. [Google Scholar]
- Blank, P.J.; Parks, J.R.; Dively, G.P. Wintering bird response to fall mowing of herbaceous buffers. Ornithology 2011, 123, 59–64. [Google Scholar] [CrossRef]
- Plantureux, S.; Peeters, A.; McCracken, D. Biodiversity in intensive grasslands: Effect of management, improvement, and challenges. Agron. Res. 2005, 3, 153–164. [Google Scholar]
- Maron, J.L.; Jefferies, R.L. Restoring enriched grasslands: Effects of mowing on species richness, productivity, and nitrogen retention. Ecol. Appl. 2001, 11, 1088–1100. [Google Scholar] [CrossRef]
- Poore, M.H.; Benson, G.A.; Scott, M.E.; Green, J.T. Production and use of stockpiled fescue to reduce beef cattle production costs. J. Anim. Sci. 2000, 79, 1–11. [Google Scholar] [CrossRef]
- Martin, P.A.; Johnson, D.L.; Forsyth, D.J.; Hill, B.D. Effects of two grasshopper control insecticides on food resources and reproductive success of two species of grassland songbirds. Environ. Toxicol. Chem. 2000, 19, 2987–2996. [Google Scholar] [CrossRef]
- Bartuszevige, A.M.; Capparella, A.P.; Harper, R.G.; Frick, J.A.; Criley, B.; Doty, K.; Erhart, E. Organochlorine pesticide contamination in grassland-nesting passerines that breed in North America. Environ. Pollut. 2002, 117, 225–232. [Google Scholar] [CrossRef]
- Newton, I. The recent declines of farmland bird populations in Britain: An appraisal of causal factors and conservation actions. Ibis 2004, 46, 579–600. [Google Scholar] [CrossRef]
- Mineau, P.; Downes, C.M.; Kirk, D.A.; Bayne, E.; Csizy, M. Patterns of bird species abundance in relation to granular insecticide use in the Canadian prairies. Ecoscience 2005, 12, 267–278. [Google Scholar] [CrossRef]
- Johnson, H.M.; Limb, R.F.; Bauer, M.L.; Sedivec, K. Influence of land management strategies on browsing and nutritional quality of grassland shrubs. Rangel. Ecol. Manag. 2019, 72, 654–660. [Google Scholar] [CrossRef]
- Hostetler, J.A.; Sillett, T.S.; Marra, P. Full-annual-cycle population models for migratory birds. Auk Ornithol. Adv. 2015, 132, 433–449. [Google Scholar] [CrossRef]
- Marra, P.P.; Cohen, E.B.; Loss, S.R.; Rutter, J.E.; Tonra, C.M. A call for full annual cycle research in animal ecology. Biol. Lett. 2015, 11, 20150552. [Google Scholar] [CrossRef]
- Studds, C.E.; Kyser, T.K.; Marra, P.P. Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc. Natl. Acad. Sci. USA 2008, 105, 2929–2933. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D.; Carello, L.; Dell’Omo, G. Patterns of covariation among weather conditions, winter North Atlantic Oscillation index and reproductive traits in Mediterranean kestrels. Zoology 2010, 280, 177–184. [Google Scholar] [CrossRef]
- Harrison, X.A.; Blount, J.D.; Inger, R.; Norris, D.R.; Bearhop, S. Carry-over effects as drivers of fitness differences in animals. Anim. Ecol. 2011, 80, 4–18. [Google Scholar] [CrossRef]
- Marra, P.P.; Studds, C.E.; Wilson, S.; Sillett, T.S.; Sherry, T.W.; Holmes, R.T. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. 2015, 282, 20150624. [Google Scholar] [CrossRef]
- Jansson, C.; Ekman, J.; von Brömssen, A. Winter mortality and food supply in tits Parus spp. Oikos 1981, 37, 313–322. [Google Scholar] [CrossRef]
- Salton, M.; Saraux, C.; Dann, P.; Chiaradia, A. Chiaradia. Carry-over body mass effect from winter to breeding in a resident seabird, the little penguin. R. Soc. Open Sci. 2015, 2, 140390. [Google Scholar] [CrossRef] [PubMed]
- Robb, G.N.; McDonald, R.A.; Chamberlain, D.E.; Reynolds, S.J.; Harrison, T.J.; Bearhop, S. Winter-feeding of birds increases productivity in the subsequent breeding season. Biol. Lett. 2008, 4, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Ginter, D.L.; Desmond, M.J. Influence of foraging and roosting behavior on home-range size and movement patterns of Savannah sparrows wintering in south Texas. Wilson Bull. 2005, 117, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bechtoldt, C.L.; Stouffer, P.C. Home-range size, response to fire, and habitat preferences of wintering Henslow’s Sparrows. Wilson Bull. 2005, 117, 211–225. [Google Scholar] [CrossRef]
- Watts, B.D. Social strategy and cover in Savanah sparrows. The Auk 1996, 113, 960–963. [Google Scholar] [CrossRef]
- Ramsar. Bujagh Wetland Information Sheets 2009–2012. Information Sheet on Ramsar Wetlands (RIS). 2022. Available online: http://www.ramsar.org/ris/key_ris_index.htm (accessed on 25 July 2022).
- Kaboli, M.; Shokri, S.; Danekar, A.; Soofi, M. Surveying food preference of the graylag goose (Anser anser) in forage grasslands in Bujagh national park. Anim. Environ. 2016, 8, 39–44. [Google Scholar]
- Scott, D.A. A Directory of Wetlands in the MIDDLE East; IUCN, Gland, Switzerland and IWRB: Slimbridge, UK, 1996. [Google Scholar]
- Sarvar, J. Surveying route changes of Sefidrud delta between 1981–2007. J. Terrain Geogr. 2008, 5, 83–106. [Google Scholar]
- Pourasadollah, S.; Zarbakhsh, M.; Shoaii, Z.; Shariat Jafari, M.; Sorbi, A. Surveying on Sefidrud River Route Changes and Coastal Line Alterations in Deltaic Zone between 1973–2015. In Proceedings of the International Conference on Research in Science and Engineering, Istanbul University, Istanbul, Turkey, 1–3 June 2016. [Google Scholar]
- Eivazi, J.; Yamani, M.; Khoshraftar, R. Geomorphologic revolution of Sefirud delta in Quaternary Era. Geogr. Res. 2007, 38, 99–120. [Google Scholar]
- Fathi, M.H.; Nazmfar, H.; Sarmasti, N.; Khaliji, M.A. Monitoring of Sefirud delta changes with satellite multispectral data and times series. In Proceedings of the Second International Conference on Sensors and Models in Mapping and Remote Sensing, Tehran, Iran, 2013; Available online: https://www.researchgate.net/publication/261150138 (accessed on 20 July 2022).
- IR-DOE. Report of Annual Bird Census; Wildlife Management Bureau: Tehran, Iran, 2022.
- Awasthi, G.; Nagar, V.; Mandzhieva, S.; Minkina, T.; Sankhla, M.S.; Pandit, P.P.; Aseri, V.; Awasthi, K.K.; Rajput, V.D.; Bauer, T. Sustainable Amelioration of Heavy Metals in Soil Ecosystem: Existing Developments to Emerging Trends. Minerals 2022, 12, 85. [Google Scholar] [CrossRef]
- Sarkar, D.; Dubey, P.K.; Chaurasiya, R.; Sankar, A.; Shikha; Chatterjee, N.; Rakshit, A. Organic interventions conferring stress tolerance and crop quality in agroecosystems during the United Nations Decade on Ecosystem Restoration. Land Degrad. Dev. 2021, 32, 4797–4816. [Google Scholar] [CrossRef]
- Ruokolainen, L.; Salo, K. The Succession of Boreal Forest Vegetation during Ten Years after Slash- Burning in Koli National Park, Eastern Finland. Ann. Bot. Fenn. 2006, 43, 363–378. Available online: https://www.researchgate.net/publication/228617071 (accessed on 25 August 2022).
- IRIMO. Annual Report of Guilan Climatology. Tehran, Iran. 2022. Available online: https://www.irimo.ir (accessed on 20 July 2022).
- Birdlife International. Important Bird Areas factsheet: Bandar Kiashar lagoon and mouth of SefidRud. 2022. Available online: http://www.birdlife.org (accessed on 10 December 2022).
- Tirgan, S.; Naqinezhad, A.; Moradi, H.; Kazemi, Z.; Vasefi, N.; Fenu, G. Caspian remnant coastal dunes: How do natural and anthropogenic factors impact plant diversity and vegetation. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2022, 156, 1456–1469. [Google Scholar]
- Naqinezhad, A. A physiognomic-ecological vegetation mapping of Bujagh National Park, the first marine-land National Park in Iran. Adv. Bio Res. 2012, 3, 37–42. [Google Scholar]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO 5, 2nd ed.; Cambridge University press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Cox, G. Laboratory Manual of General Ecology, 6th ed.; William C. Brown: Dubuque, IA, USA, 1990. [Google Scholar]
- Barbour, M.G.; Burk, J.H.; Pitts, W.D. Methods of Sampling the Plant Community. Terrestrial Plant Ecology, 2nd ed.; Benjamin/Cummings Pub. Co.: Menlo Park, CA, USA, 1987; pp. 182–207. [Google Scholar]
- Grieg-Smith, P. Quantitative Plant Ecology; University of California Press: Oakland, CA, USA, 1983; p. 359. [Google Scholar]
- Thioulouse, J.; Dray, S.; Dufour, A.B.; Siberchicot, A.; Jombart, T.; Pavoine, S. Multivariate Analysis of Ecological Data with ade4; Springer: New York, NY, USA, 2018. [Google Scholar]
- Greenacre, M.; Primicerio, R. Multivariate Analysis of Ecological Data; Fund. BBVA: Bilbao, Spain, 2014. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Tichý, L.; Roloček, D.; Zelený, C.; Chytrý, M. New Stopping Rules for TWINSPAN. European Vegetation Survey. In Proceedings of the 16th Workshop, Rome, Italy, 22–26 March 2007; Available online: http://www.sci.muni.cz/botany/juice/twin07.pdf (accessed on 25 August 2021).
- Roleček, J.; Tichý, L.; Zelený, D.; Chytrý, M. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Veg. Sci. 2009, 20, 596–602. [Google Scholar] [CrossRef]
- Hill, M.O.; Šmilauer, P. WinTWINS. TWINSPAN for Windows Version; 2005; p. 2. [Google Scholar]
- Oksanen, J. Multivariate Analyses of Ecological Communities in R. Vegan Package Tutorial. 2005, 43p. Available online: https://www.researchgate.net/publication/2755241 (accessed on 30 June 2022).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R.B.; Simpson, G.; Solymos, P.; et al. Community Ecology Package. Vegan R Package Version 2.5-7. 2020. Available online: https://www.researchgate.net/publication/346579465 (accessed on 10 July 2022).
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R, 2nd ed.; Springer: New York, NY, USA, 2018; 440p. [Google Scholar] [CrossRef]
- Dray, S.; Chessel, D.; Thioulouse, J. Co-inertia analysis and the linking of ecological data tables. Ecology 2003, 84, 3078–3089. [Google Scholar] [CrossRef]
- CABI Compendium. 2023. Available online: http://www.cabidigitallibrary.org/journal/cabicompendium (accessed on 22 June 2022).
- Zhang, P.; Zou, Y.A.; Xie, Y.; Zhang, S.; Chen, X.; Li, F.; Tu, W. Hydrology-driven responses of herbivorous geese in relation to changes in food quantity and quality. Ecol. Evol. 2020, 10, 5281–5292. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.J.; Cong, P.H.; Barter, M.; Fox, A.D.; Cao, L. The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain: Impacts of recent hydrological changes. Bird Conserv. Int. 2012, 22, 135–143. [Google Scholar] [CrossRef]
- Guan, L.; Lei, J.; Zuo, A.; Zhang, H.; Lei, G.; Wen, L. Optimizing the timing of water level recession for conservation of wintering geese in Dongting Lake, China. Ecol. Eng. 2016, 88, 90–98. [Google Scholar] [CrossRef]
- Lei, J.; Jia, Y.; Wang, Y.; Lei, G.; Lu, C.; Saintilan, N.; Wen, L.I. Behavioral plasticity and trophic niche shift: How wintering geese respond to habitat alteration. Freshw. Biol. 2019, 64, 1183–1195. [Google Scholar] [CrossRef]
- Manton, M.; Angelstam, P. Macroecology of North European Wet Grassland Landscapes: Habitat quality, waders, avian predators, and nest predation. Sustainability 2021, 13, 8138. [Google Scholar] [CrossRef]
- Neagu, M.T.; Amat, B.G.; Olivero, N.M.A.; Meana, V.O.; Tortajada, B.H. Responses to salt stress in Juncus acutus and J. maritimus during seed germination and vegetative plant growth. Plant Biosyst. 2011, 145, 770–777. [Google Scholar]
- Brown, K.; Bettink, K. Biology of sharp rush, Juncus acutus, managing sharp rush, Department of environment and conservation. In Proceedings of the Western Australia Government Workshop on Juncus Acutus Managing, Wollaston College Conference Centre; Mt Claremont Perth, Western Australia, 2006, No. 38. Available online: https://library.dbca.wa.gov.au/static/FullTextFiles/024137.pdf (accessed on 10 July 2022).
- Peinada, M.; Alcaraz, F.; Delgadillo, J.; De La Cruz, M.; Alvarez, J.L. Aguirre. The coastal salt marshes of California and Baja California. Vegetatio 1994, 110, 55–66. [Google Scholar] [CrossRef]
- Parsons, W.; Cuthbertson, E. Noxious Weeds of Australia; Inkata Press: Melbourne, Australia, 2001. Available online: https://catalogue.nla.gov.au/catalog/2521594 (accessed on 25 June 2022).
- Zedler, J.; Kitchens, W.M. The Ecology of Southern California Coastal Salt Marshes: A Community Profile; U.S. Fish and Wildlife Service; Biological Services Program: Washington, DC, USA, 1982; FWS/OBS-81/54; 110p.
- Aharon-Rotman, Y.; McEvoy, J.; Zhaoju, Z.; Yu, H.; Wang, X.; Si, Y.; Fox, A.D. Water level affects availability of optimal feeding habitats for threatened migratory waterbirds. Ecol. Evol. 2017, 7, 10440–10450. [Google Scholar] [CrossRef]
- Faaborg, J.; Holmes, R.T.; Anders, A.D.; Bildstein, K.L.; Dugger, K.M.; Gauthreaux, S.A., Jr.; Warnock, N. Recent advances in understanding migration systems of world land birds. Ecol. Monogr. 2010, 80, 3–48. [Google Scholar] [CrossRef]
- Zou, Y.A.; Tang, Y.; Xie, Y.H.; Zhao, Q.H.; Zhang, H. Response of herbivorous geese to wintering habitat changes: Conservation insights from long-term population monitoring in the East Dongting Lake, China. Reg. Environ. Chang. 2017, 17, 879–888. [Google Scholar] [CrossRef]
Data Group | Abbr. | Variables | Units |
---|---|---|---|
Group1: Soil chemicals and moisture | EC | Electrical Conductivity | µmhos/cm |
pH | Pressure of Hydrogen | - | |
Sand | Sandy texture | % | |
Silt | Silty texture | % | |
Clay | Clay texture | % | |
CO₃ | Carbonate | meq/li | |
HCO₃ | Bicarbonate | meq/li | |
Ca | Calcium | µg/g | |
Mg | Magnesium | µg/g | |
K | Potassium | µg/g | |
Na | Sodium | µg/g | |
SOM | Solid Organic Matter | % | |
N | Total Nitrogen | % | |
Moist | Distance to ponds | meter | |
Group2: Soil heavy metals | Fe | Iron | µg/g |
Al | Alumina | µg/g | |
As | Arsenic | µg/g | |
Cd | Cadmium | µg/g | |
Co | Cobalt | µg/g | |
Cr | Chromium | µg/g | |
Cu | Copper | µg/g | |
Mn | Manganese | µg/g | |
Ni | Nickel | µg/g | |
Pb | Lead | µg/g | |
Si | Silica | µg/g | |
Zn | Zinc | µg/g |
Indices | Min | Mean | Max | SD | CV |
---|---|---|---|---|---|
Diversity index (Shannon–Wiener) | 0 | 1.70 | 2.86 | 0.84 | 49.4 |
Diversity index (Simpson index) | 0 | 0.71 | 0.94 | 0.29 | 40.8 |
Species richness (number of species) | 1 | 7.69 | 18 | 4.52 | 58.8 |
Species evenness (relative abundance index) | 0.54 | 0.94 | 0.99 | - | - |
Group | Scientific Name | Abbr. | Family | Habitat | Life Form | Distribution |
---|---|---|---|---|---|---|
one | Juncus acutus L. | Ju.ac | Juncaceae | WP (Hyg), WSD, Pl | Geo | SCOS |
Juncus maritimus Lam. | Ju.ma | Juncaceae | WSD, WP, Pl | Geo | ES, M | |
Rubus sanctus Schreb. | Ru.sa | Rosaceae | Ru, Aq | Pha | Pl | |
two | Cynodon dactylon (L.) Pers. | Cy. da | Poaceae | Pl | Hem | Pl |
Plantago lanceolata L. | Pl.la | Plantaginaceae | WSD, SD | Hem | ES, IT, M | |
Eryngium caeruleum M. Bieb. | Ery.ca | Apiaceae | Pl, WSD | Hem | ES, IT, M | |
Euphorbia granulata Forssk. | Eu.gr | Euphorbiaceae | WSD, Ru, Pl | Thr | IT | |
Euphorbia helioscopi L. | Eu. he | Euphorbiaceae | Pl, Ru | Thr | ES, IT, M | |
Pennisetum glaucum (L. R.Br.) | Pe.gl | Poaceae | WSD, Ru | Thr | Pl | |
three | Trifolium fragiferum L. | Tr.fr | Fabaceae | WSD, Ru | Geo | Pl |
Trifolium repens L. | Tr.re | Fabaceae | WSD, Ru | Geo | ES, IT, M | |
Paspalum distichum L. | Pa.ds | Poaceae | WSD, WP, (Hyg) | Geo | Pl | |
Paspalum dilatatum Poir. | Pa. dl | Poaceae | Pl, WSD | Geo | Pl |
Ordinations | Sum of Residual Squares (SS) | Correlation Coefficient (r) | p-Value | Permutation Test |
---|---|---|---|---|
NMDS versus PCA-G1 | 0.634 | 0.605 | 0.001 | 999 |
NMDS versus PCA-G2 | 0.840 | 0.406 | 0.009 | 999 |
DCA versus PCA-G1 | 0.665 | 0.578 | 0.001 | 999 |
DCA versus PCA-G2 | 0.846 | 0.392 | 0.010 | 999 |
PCA-Sp versus PCA-G1 | 0.706 | 0.543 | 0.001 | 999 |
PCA-Sp versus PCA-G2 | 0.919 | 0.284 | 0.143 | 999 |
Plant Group | Species | NMDS 1 | NMDS 2 | Correlation Coefficient (R2) | Confidence Level (Pr > r) |
---|---|---|---|---|---|
diagnostic, dominant species in plant groups | C. dactylon | −0.85 | 0.53 | 0.03 | 0.61 |
E. caeruleum | 0.96 | −0.28 | 0 | 0.93 | |
E. granulata | 0.28 | 0.96 | 0.04 | 0.54 | |
E. helioscopi | 0.12 | 0.99 | 0.08 | 0.28 | |
J. acutus | 0.96 | 0.27 | 0.75 | *** 0.001 | |
J. maritimus | 0.3 | 0.95 | 0.2 | * 0.017 | |
P. dilatatum | −0.15 | −0.99 | 0.73 | *** 0.001 | |
P. distichum | −0.088 | 0.47 | 0.75 | *** 0.001 | |
P. glaucum | 0.68 | 0.73 | 0.06 | 0.44 | |
P. lanceolata | 0.02 | 0.99 | 0.01 | 0.89 | |
R. sanctus | 0.99 | 0.14 | 0.78 | *** 0.001 | |
T. fragiferum | −0.21 | −0.98 | 0.63 | *** 0.001 | |
T. repens | −0.21 | −0.98 | 0.73 | *** 0.001 | |
Soil chemicals and moisture | Electrical Conductivity (EC) | −0.51 | 0.86 | 0.36 | ** 0.002 |
Bicarbonate | −0.38 | −0.93 | 0.36 | ||
(HCO₃) | |||||
Clay texture (Clay) | −0.75 | 0.67 | 0.35 | ** 0.002 | |
Sandy texture (Sand) | 0.84 | −0.54 | 0.06 | 0.39 | |
Silty texture (Silt) | 0.63 | −0.78 | 0.08 | 0.31 | |
Potassium (K) | −0.98 | 0.21 | 0.45 | *** 0.001 | |
Sodium (Na) | −0.3 | 0.95 | 0.5 | *** 0.001 | |
Solid Organic Matter (SOM) | −0.7 | −0.72 | 0.42 | ** 0.002 | |
Total Nitrogen (N) | −0.56 | −0.83 | 0.48 | ** 0.003 | |
Distance to ponds (Moist) | 0.56 | −0.83 | 0.17 | . 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahfouzi, M.; Hamidian, A.H.; Kaboli, M. Edaphic Drivers Influencing Forage Grasslands in Bujagh National Park, Iran. Resources 2024, 13, 29. https://doi.org/10.3390/resources13020029
Mahfouzi M, Hamidian AH, Kaboli M. Edaphic Drivers Influencing Forage Grasslands in Bujagh National Park, Iran. Resources. 2024; 13(2):29. https://doi.org/10.3390/resources13020029
Chicago/Turabian StyleMahfouzi, Mohsen, Amir Hossein Hamidian, and Mohammad Kaboli. 2024. "Edaphic Drivers Influencing Forage Grasslands in Bujagh National Park, Iran" Resources 13, no. 2: 29. https://doi.org/10.3390/resources13020029
APA StyleMahfouzi, M., Hamidian, A. H., & Kaboli, M. (2024). Edaphic Drivers Influencing Forage Grasslands in Bujagh National Park, Iran. Resources, 13(2), 29. https://doi.org/10.3390/resources13020029