Circular Economy in Guaiamum and Uçá Crab Waste in Brazil: Potential By-Products—A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to the Study Context
2.2. Circular Economy and Solid Waste Management
2.3. Governance of the Sustainable Solid Waste Supply Chain
2.4. Systematic Literature Review Approach
2.4.1. Systematic Literature Review Approach
2.4.2. Research Questions and Hypotheses
2.4.3. Eligibility Criteria and Search Strategy
2.4.4. Screening and Selection of Studies
3. Analysis and Discussion of Results
3.1. Use of By-Products from Solid Waste of Guaiamum and Uçá
3.2. The Situation of Crab Pickers
3.3. Results of Systematic Review
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Sustainability in action. In The State of World Fisheries and Aquaculture 2020; Food and Agriculture Organization (FAO) of the United Nations (UN): Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Silva, M.A.; Souza, M.F.; Souza, A.M. Utilização da avaliação do ciclo de vida no contexto da economia circular. Sist. Gestão 2018, 13, 307–320. [Google Scholar]
- Viera, T. Economia Ambiental; Editora e Distribuidora Educacional S.A.: Londrina, Brazil, 2016; 256p. [Google Scholar]
- Ellen Macarthur Foundation. Towards the Circular Economy 1: Economic and Business Rationale for an Accelerated Transition; Ellen MacArthur Foundation: Cowes, UK, 2012. [Google Scholar]
- Vikou, S.; Paz, O.; Pilatti, D.M.; Paula, E.V. Análise da pressão antrópica sobre manguezais urbanos: Subsídios à proteção ambiental e ao ordenamento territorial. Soc. Nat. 2023, 35, 67515. [Google Scholar] [CrossRef]
- Rosa, M.F.M.; Mattos, U.A.O. A saúde e os riscos dos pescadores e catadores de caranguejo da Baía de Guanabara. Ciência Saúde Coletiva 2010, 15, 1543–1552. [Google Scholar] [CrossRef]
- Nordhaus, I.; Diele, K.; Wolff, M. Activity patterns, feeding and burrowing of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. J. Exp. Mar. Biol. Ecol. 2009, 379, 104–112. [Google Scholar] [CrossRef]
- Assad, L.T.; Trombeta, T.D.; Depassier, J.; Sousa Rosa, A.B.; Gotfrit, C.W. Industrialização do Caranguejo-Uçá do Delta do Parnaíba; Codevasf; IABS: Brasília, Brazil, 2012; 172p, ISBN 978-85-89503-12-9. [Google Scholar]
- Ogawa, M.; Alves, T.T.; Noronha, M.C.C.; Araripe, C.A.E.; Maia, E.L. Industrialização do caranguejo uçá, Ucides cordatus (Linnaeus): I—Técnicas para o processamento da carne. Arq. Ciências Mar 1973, 13, 31–37. [Google Scholar]
- Willianson, O. The Mechanisms of Governance; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Besanko, D.; Dranove, D.; Shanley, M.; Schaefer, S. Economics of Strategy, 7th ed.; Wiley: Hoboken, NJ, USA, 2017; ISBN 9781119378761. [Google Scholar]
- Barquete, D.M.; Fernandes, I.P.; Carvalho, P.P.S.; Melo, T.; Santos, T.M.R. Modelagem da atividade Artesanal de pesca e Beneficiamento de crustáceos sob a óptica da gestão da Produção. In Proceedings of the XXVIII Encontro Nacional De Engenharia De Produção, Rio de Janeiro, Brazil, 17–20 October 2008. [Google Scholar]
- Godoy, M.D.; Lacerda, L.D.D. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution. An. Acad. Bras. Ciências 2015, 87, 651–667. [Google Scholar] [CrossRef]
- Kato, H.D.A.; de Sousa, D.N.; Pereira, A.M.L.; Fogaca, F.D.S.; Legat, A.; Legat, J.F.A.; Castro, I.M.; Freitas, S.C. Desenvolvimento Sustentável da Pesca; Embrapa Pesca e Aquicultura (CNPASA): Palmas, Brazil, 2018. [Google Scholar]
- Rocha, M.S.P.; Mourão, J.S.; Souto, W.M.S.; Barbosa, R.R.D.; Alves, R.R.N. O uso dos recursos pesqueiros no estuário do rio Mamanguape, estado da Paraíba, Brasil. Interciencia 2008, 33, 903–910. [Google Scholar]
- Barbieri, E.; Mendonça, J.T. Na Lama, a Dura Batalha Dos Catadores de Caranguejos. 2007. Artigo em Hypertexto. Available online: http://www.infobibos.com/Artigos/2007_3/caranguejos/index.htm (accessed on 5 November 2023).
- Wackernagel, M.; Rees, W. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1996. [Google Scholar]
- Leitão, A. Economia circular: Uma nova filosofia de gestão para o séc. XXI. Port. J. Financ. Manag. Account. 2015, 1, 149–171. [Google Scholar]
- Conselho Nacional do Meio Ambiente (CONAMA). Resolução CONAMA nº 406, de 23 de Dezembro de 2010; Conselho Nacional do Meio Ambiente: Brasília, Brazil, 2010. [Google Scholar]
- Diário Oficial da União. Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos, Altera a Lei nº 9.605, de 12 de Fevereiro de 1998, e dá Outras Providências; Diário Oficial da União: Brasília, Brasil, 2010. [Google Scholar]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations (UN). 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 20 June 2023).
- CEF. Circularity Gap Report. Circle Economy, The Platform for Accelerating the Circular Economy (PACE), Circle Economy Foundation (CEF). 2019. Available online: https://circulareconomy.europa.eu/platform/sites/default/files/circularity_gap_report_2019.pdf (accessed on 5 November 2023).
- Correia, F.C.; Santos, E.; Almeida, L.S. Avaliação do sistema de produção e comercialização de caranguejo-uçá (Ucides cordatus) no Delta do Parnaíba, Maranhão, Brasil. Rev. Bras. Eng. Pesca 2008, 3, 156–170. [Google Scholar]
- Mota, M.J. Aspectos socioeconômicos da pesca artesanal no Delta do Parnaíba, Estado do Maranhão. Rev. Bras. Eng. Pesca 2007, 2, 133–147. [Google Scholar]
- MMA. Portaria nº 455 de 17 de Dezembro de 2014; Ministério do Meio Ambiente (MMA): Brasília, Brazil, 2014; Available online: www.mma.gov.br/ (accessed on 5 November 2023).
- MMA. Portaria 161, de 20 de Abril de 2017; Ministério do Meio Ambiente (MMA): Brasília, Brazil, 2017; Available online: www.mma.gov.br/ (accessed on 5 November 2023).
- Sahoo, S.; Kumar, S.; Sivarajah, U.; Lim, W.M.; Westland, J.C.; Kumar, A. Blockchain for sustainable supply chain management: Trends and ways forward. Electron. Commer. Res. 2022. [Google Scholar] [CrossRef]
- Covidence Systematic Review Software. Veritas Health Innovation, Melbourne, Australia. 2023. Available online: www.covidence.org (accessed on 5 November 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- European Commission. Blue Economy Report 2021. Available online: https://s3platform.jrc.ec.europa.eu/w/the-eu-blue-economy-report-2021 (accessed on 5 November 2023).
- Legat, J.F.A.; Legat, A.P.; Castro, P.F. Situação da Pesca e Comercialização do Caranguejo-Ucá (Ucides Cordatus) do Delta do Rio Parnaíba; Empresa Brasileira De Pesquisa Agropecuária–Embrapa Meio-Norte: Teresina, Brazil, 2003; 32p. [Google Scholar]
- Rangel, I.M.L.; Souza, V.S.; Rangel, R.P. Uso da farinha de caranguejo-uçá no cultivo agroecológico de alface americana: Uma experiência conjunta de uma Reserva Extrativista (Resex) com uma Escola Popular de Agroecologia. Sapiens 2022, 4, 108–126. [Google Scholar] [CrossRef]
- Ramos, M.O.; Ribeiro, S.C.A. Compostagem orgânica do resíduo de caranguejo-uçá no cultivo de coentro. Rev. Verde Agroecol. Desenvolv. Sustentável 2019, 14, 184–192. [Google Scholar] [CrossRef]
- Ribeiro, M.S.G.; Fernandes, M.E.B. Aproveitamento de resíduos sólidos do caranguejo-uçá: Alternativa de renda e uso sustentável. Inc. Soc. 2018, 12, 134–140. [Google Scholar]
- Ge, Y.M.; Zhang, L.; Zhang, Y.; Yang, J.S.; Gao, H.M.; Li, S.J.; Liu, J.Z. Effective removal of aqueous Cu(II) pollution by a novel readily prepared porous biomaterial using crab shell wastes. Water Air Soil Pollut. 2023, 234, 254. [Google Scholar] [CrossRef]
- Yang, F.; Ye, X.; Zhong, J.; Lin, Z.; Wu, Y.; Hu, Y.; Zheng, W.; Zhou, W.; Wei, Y.; Dong, X. Recycling of waste crab shells into reinforced poly (lactic acid) biocomposites for 3D printing. Int. J. Biol. Macromol. 2022, 234, 122974. [Google Scholar] [CrossRef] [PubMed]
- Gîjiu, C.L.; Isopescu, R.; Dinculescu, D.; Memecică, M. Crabs marine waste—A valuable source of chitosan: Tuning chitosan properties by chitin extraction optimization. Polymers 2022, 14, 494. [Google Scholar] [CrossRef] [PubMed]
- Shankar, V.L.; Jambulingam, R. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel. Sustain. Environ. Res. 2017, 27, 571–576. [Google Scholar] [CrossRef]
- Sebestyén, Z.; Jakab, E.; Domán, A.; Bokrossy, P.; Bertóti, I.; Madarász, J.; László, K. Thermal degradation of crab shell biomass, a nitrogen-containing carbon precursor. J. Therm. Anal. Calorim. 2020, 143, 10973. [Google Scholar] [CrossRef]
- Dewantoro, A.A.; Pratama, B.A.; Kurniasih, R.A. Biogas production from crab picking (Portunus pelagius) wastes. IOP Conf. Ser. Earth Environ. Sci. 2019, 246, 012085. [Google Scholar] [CrossRef]
- Singaravelu, D.L.; Ragh, M.; Vijay, R.; Manoharan, S.; Kchaou, M. Development and performance evaluation of eco-friendly crab shell powder based brake pads for automotive applications. Int. J. Automot. Mech. Eng. 2019, 16, 4. [Google Scholar] [CrossRef]
- Fu, M.; Chen, W.; Zhu, X.; Yang, B.; Liu, Q. Crab shell derived multi-hierarchical carbon materials as a typical recycling of waste for high performance supercapacitors. Carbon 2019, 141, 10034. [Google Scholar] [CrossRef]
- Metin, C.; Alparslan, Y.; Baygar, T.; Baygar, T. Physicochemical, microstructural and thermal characterization of chitosan from blue crab shell waste and its bioactivity characteristics. J. Polym. Environ. 2019, 27, 2552–2561. [Google Scholar] [CrossRef]
- Abdelgalil, S.A.; Abo-Zaid, G.A. Bioprocess development as a sustainable platform for eco-friendly alkaline phosphatase production: An approach towards crab shells waste management. Microb. Cell Factories 2022, 21, 118. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Goh, K.L.; Verma, C.; Ghosh, B.D.; Sharma, K.; Maji, P.K. A facile method for processing durable and sustainable superhydrophobic chitosan-based coatings derived from waste crab shell. ACS Sustain. Chem. Eng. 2022, 10, 1378–1386. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, M.; Wu, J.S.; Zhang, L.B. Battery made with crab shells offers high performance and sustainability. Matter 2022, 5, 1–8. [Google Scholar]
- Nekvapil, F.; Aluas, M.; Barbu-Tudoran, L.; Suciu, M.; Bortnic, R.-A.; Glamuzina, B.; Pinzaru, S.C. From blue bioeconomy toward circular economy through high-sensitivity analytical research on waste blue crab shells. ACS Sustain. Chem. Eng. 2019, 7, 16820–16827. [Google Scholar] [CrossRef]
- Santos, A.L.S.S.; Alves, M.M.; Pimentel, Z.M.N. Adição de resíduos de caranguejo-uçá, Ucides cordatus (Linnaeus, 1763), em concreto para pré-moldados: Sustentabilidade para os atores da cadeia produtiva na costa norte da Amazônia brasileira. Res. Soc. Dev. 2020, 9, e927998259. [Google Scholar] [CrossRef]
- Jabeen, F.; Younis, T.; Sidra, S.; Muneer, B.; Nasreen, Z.; Saleh, F.; Mumtaz, S.; Saeed, R.F.; Abbas, A.S. Extraction of chitin from edible crab shells of Callinectes sapidus and comparison with market purchased chitin. Braz. J. Biol. 2023, 83, e246520. [Google Scholar] [CrossRef]
- Zapantioti, A.; Fotodimas, I.; Gkaliouri, C.; Ioannou, Z. Valorization of blue crab (Callinectes sapidus) by-products as adsorbents. In Proceedings of the 9th International Conference on Sustainable Solid Waste Management, Corfu, Greece, 13–14 June 2022. [Google Scholar]
- Hassoun, A.; Cropotova, J.; Trollman, H.; Jagtap, S.; Garcia-Garcia, G.; Parra-López, C.; Nirmal, N.; Özogul, F.; Bhat, Z.; Aït-Kaddour, A.-K.; et al. Use of industry 4.0 technologies to reduce and valorize seafood waste and by-products: A narrative review on current knowledge. Curr. Res. Food Sci. 2023, 6, 100505. [Google Scholar] [CrossRef] [PubMed]
Country | Current Practices | Circular Economy Practices | Differences/ Challenges | Trends/Progress |
---|---|---|---|---|
Brazil | Disposal of unused waste | Reuse of by-products for animal production | Lack of awareness of the potential of the circular economy | Encouraging research and development of innovative solutions |
India | Energy recovery | Recycling and biofuel production | Limited infrastructure for recycling | Investments in recycling and energy production infrastructure |
USA | Utilization | Using waste to produce bioplastics | Economic incentives for the circular economy | Implementation of policies and financial incentives |
China | Using waste efficiently | Chitin and fertilizer production from waste | Raising awareness of the benefits of the circular economy | Awareness-raising and education campaigns |
Activities | Brazil | Abroad |
---|---|---|
Flour | 2 | 0 |
Composting | 1 | 0 |
Extraction of Biocomposites | 1 | 12 |
Other uses | 0 | 10 |
Refs. | Key Results |
---|---|
[32] | The use of mangrove crab flour in the agroecological cultivation of iceberg lettuce proved to be viable and promoted collaboration between an Extractive Reserve and a Popular School of Agroecology |
[33] | The application of organic compost containing mangrove crab waste (5%) plus dried leaf cuttings with gliricidia in the cultivation of coriander at a dosage of 60 t ha−1 provides better agronomic characteristics. This alternative organic compost is an excellent source of calcium, helping to improve and correct more acidic soils. |
[34] | The use of solid waste from the mangrove crab has proved to be an alternative source of income and sustainable use, contributing to the valorization of this waste. |
[35] | The porous biomaterial prepared from crab shell waste showed efficiency in removing aqueous Cu(II) pollution, presenting the potential for environmental remediation applications. |
[36] | Recycling crab shell waste into reinforced poly(lactic acid) biocomposites has proved to be a promising approach to producing sustainable materials for 3D printing. |
[37] | The study highlighted that marine crab waste is a valuable source of chitosan and explored the optimization of chitin extraction to adjust the properties of chitosan. |
[38] | Crab shells converted into calcium oxide (CaO) impregnated with zeolite type ZSM-5 (Na-ZSM-5) were used as a solid catalyst for the transesterification of neem oil (Melia azadirachta) into biodiesel. It is a cleaner fuel than gasoline and can help reduce greenhouse gas emissions. The production of biodiesel from crab shell waste is a way of promoting the circular economy. |
[39] | The study investigated the thermal degradation of crab shell biomass as a nitrogen-containing carbon precursor, providing relevant information for its application in pyrolysis processes. |
[40] | The study looked at the production of biogas from crab harvesting waste, highlighting its potential as a renewable energy source. |
[41] | Although this article focuses on brake pads, it explores the use of crab shell waste in automotive products. This highlights the possibility of valorizing crab waste for industrial applications. Analysis of circular economy practices in automotive products can provide insights into the adoption of these approaches in other sectors. |
[42] | Carbon materials derived from crab shells have shown promise for applications in high-performance supercapacitors, contributing to the recycling of waste. |
[43] | Chitosan derived from blue crab waste showed suitable physicochemical, microstructural, and thermal characteristics, as well as bioactivity, indicating its potential use in various applications. |
[44] | The development of bioprocesses has proved to be a sustainable platform for the production of alkaline phosphatase from crab shell waste, contributing to the environmentally friendly management of this waste. |
[45] | The proposed processing method enabled the creation of durable and sustainable superhydrophobic coatings based on chitosan derived from crab shell waste, showing potential for various applications. |
[46] | The use of a biodegradable electrolyte derived from crab shells has proved to be a sustainable approach to the development of high-performance and sustainable zinc batteries, a new type of battery made from crab shells. The battery is made with a new form of electrode made from a material called chitin, which is a natural polymer found in crab shells. |
[47] | This article is about the blue bioeconomy in the circular economy through sensitive analytical research on crab waste. It highlights the relevance of preserving ultrastructure and nano-morphology in crab waste for the production of value-added by-products. This may be relevant to understanding how the transformation of crab waste into higher-value products aligns with the circular economy. |
[48] | This study explores the addition of mangrove crab waste to precast concrete. There is a wide variety of precast artifacts that do not require high strength, such as tree guards, railings, and garden decoration (paths), among others, which can probably be produced with these levels of inclusion, in line with the circular economy. |
[49] | It highlights the possibility of extracting chitin from crab waste. This could be relevant to understanding how crab by-products can be converted into valuable compounds, in line with the circular economy. |
[50] | Blue crab waste can be converted into carbonaceous materials through pyrolysis. Carbonaceous materials can be used to create new products with industrial applications, such as water filters and purifiers, wear-resistant coatings, aircraft and vehicle components, medical devices, and even batteries and capacitors. |
[51] | By-products from seafood processing can be used to produce functional compounds, biomaterials, biogas, and compost. Industry 4.0 can be applied to reduce and valorize marine waste, in line with the circular economy and the UN SDGs. |
Thematic Axis | Descriptors |
---|---|
Sustainability and Waste Management | Sustainability (SDG 12), Reuse and Recycling (SDG 12), Circular Supply Chain (SDG 12), Life Cycle Analysis (SDG 12), Volume of Solid Crab Waste Collected and Circularity of Waste (both SDG 12) |
Efficiency and Innovation | Efficiency (SDG 9), Innovation (SDG 9) |
Valorization and Income Generation | Valorization (SDG 8), Income Generation for the Community (SDG 1, SDG 8, SDG 12) |
Collaboration and Compliance | Collaboration (SDG 17), Compliance (SDG 16) |
Education and Impact Measurement | Education and Awareness (SDG 4, SDG 12), Impact Measurement (SDG 12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filho, J.J.d.S.; Gaspar, P.D.; Souza, A.C.d.; Paço, A.d. Circular Economy in Guaiamum and Uçá Crab Waste in Brazil: Potential By-Products—A Systematic Literature Review. Resources 2024, 13, 46. https://doi.org/10.3390/resources13030046
Filho JJdS, Gaspar PD, Souza ACd, Paço Ad. Circular Economy in Guaiamum and Uçá Crab Waste in Brazil: Potential By-Products—A Systematic Literature Review. Resources. 2024; 13(3):46. https://doi.org/10.3390/resources13030046
Chicago/Turabian StyleFilho, Joel Joaquim de Santana, Pedro Dinis Gaspar, Ana Costa de Souza, and Arminda do Paço. 2024. "Circular Economy in Guaiamum and Uçá Crab Waste in Brazil: Potential By-Products—A Systematic Literature Review" Resources 13, no. 3: 46. https://doi.org/10.3390/resources13030046
APA StyleFilho, J. J. d. S., Gaspar, P. D., Souza, A. C. d., & Paço, A. d. (2024). Circular Economy in Guaiamum and Uçá Crab Waste in Brazil: Potential By-Products—A Systematic Literature Review. Resources, 13(3), 46. https://doi.org/10.3390/resources13030046