Assessing the Impact of Climate Change on Snowfall Conditions in Poland Based on the Snow Fraction Sensitivity Index
Abstract
:1. Introduction
- (1)
- Over the last four decades, has Poland undergone widespread changes in the contribution of snow to overall precipitation due to our warming climate?
- (2)
- How might we describe the spatial differentiation of the snow fraction sensitivity index across the country?
- (3)
- If warming trends continue at their current pace, what degree of change in the snow fraction during the cold season will we witness by the middle of the twenty-first century?
2. Materials and Methods
2.1. Study Area
2.2. Air Temperature and Precipitation Datasets
2.3. Detecting Cold-Season Trends in Air Temperature and Snow Fraction
2.4. Identifying Snow Fraction–Temperature Correlation
2.5. Defining the Snow Fraction Sensitivity Index
2.6. Predicting Patterns in the Snow Fraction in the Middle of the Twenty-First Century
3. Results
3.1. Validation of Gridded Snow Fraction Data
3.2. The Snow Fraction within the Multi-Year Period from 1981 to 2020
3.3. Air Temperature in the Multi-Year Period of 1981–2020
3.4. Diminishing Snow as Marked by the Snow Fraction Sensitivity Index
3.5. Predicted Changes in Snow Fraction
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sturm, M.; Goldstein, M.A.; Parr, C. Water and Life from Snow: A Trillion Dollar Science Question. Water Resour. Res. 2017, 53, 3534–3544. [Google Scholar] [CrossRef]
- Peters-Lidard, C.D.; Rose, K.C.; Kiang, J.E.; Strobel, M.L.; Anderson, M.L.; Byrd, A.R.; Kolian, M.J.; Brekke, L.D.; Arndt, D.S. Indicators of Climate Change Impacts on the Water Cycle and Water Management. Clim. Change 2021, 165, 36. [Google Scholar] [CrossRef]
- Wieder, W.R.; Kennedy, D.; Lehner, F.; Musselman, K.N.; Rodgers, K.B.; Rosenbloom, N.; Simpson, I.R.; Yamaguchi, R. Pervasive Alterations to Snow-Dominated Ecosystem Functions under Climate Change. Proc. Natl. Acad. Sci. USA 2022, 119, e2202393119. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in Precipitation with Climate Change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Harpold, A.A.; Molotch, N.P. Sensitivity of Soil Water Availability to Changing Snowmelt Timing in the Western U.S. Geophys. Res. Lett. 2015, 42, 8011–8020. [Google Scholar] [CrossRef]
- Kang, D.H.; Gao, H.; Shi, X.; Islam, S.U.; Déry, S.J. Impacts of a Rapidly Declining Mountain Snowpack on Streamflow Timing in Canada’s Fraser River Basin. Sci. Rep. 2016, 6, 19299. [Google Scholar] [CrossRef]
- Dierauer, J.R.; Allen, D.M.; Whitfield, P.H. Climate Change Impacts on Snow and Streamflow Drought Regimes in Four Ecoregions of British Columbia. Can. Water Resour. J. Rev. Can. Ressour. Hydr. 2021, 46, 168–193. [Google Scholar] [CrossRef]
- Crausbay, S.D.; Ramirez, A.R.; Carter, S.L.; Cross, M.S.; Hall, K.R.; Bathke, D.J.; Betancourt, J.L.; Colt, S.; Cravens, A.E.; Dalton, M.S.; et al. Defining Ecological Drought for the Twenty-First Century. Bull. Am. Meteorol. Soc. 2017, 98, 2543–2550. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Ma, X.; Zhang, J.; Yang, R. Relationship between Vegetation Phenology and Snow Cover Changes during 2001–2018 in the Qilian Mountains. Ecol. Indic. 2021, 133, 108351. [Google Scholar] [CrossRef]
- Jenicek, M.; Ledvinka, O. Importance of Snowmelt Contribution to Seasonal Runoff and Summer Low Flows in Czechia. Hydrol. Earth Syst. Sci. 2020, 24, 3475–3491. [Google Scholar] [CrossRef]
- Vlach, V.; Ledvinka, O.; Matouskova, M. Changing Low Flow and Streamflow Drought Seasonality in Central European Headwaters. Water 2020, 12, 3575. [Google Scholar] [CrossRef]
- Hotovy, O.; Nedelcev, O.; Jenicek, M. Changes in Rain-on-Snow Events in Mountain Catchments in the Rain–Snow Transition Zone. Hydrol. Sci. J. 2023, 68, 572–584. [Google Scholar] [CrossRef]
- Quante, L.; Willner, S.N.; Middelanis, R.; Levermann, A. Regions of Intensification of Extreme Snowfall under Future Warming. Sci. Rep. 2021, 11, 16621. [Google Scholar] [CrossRef]
- Moraga, J.S.; Peleg, N.; Fatichi, S.; Molnar, P.; Burlando, P. Revealing the Impacts of Climate Change on Mountainous Catchments through High-Resolution Modelling. J. Hydrol. 2021, 603, 126806. [Google Scholar] [CrossRef]
- Dong, W.; Ming, Y. Seasonality and Variability of Snowfall to Total Precipitation Ratio over High Mountain Asia Simulated by the GFDL High-Resolution AM4. J. Clim. 2022, 35, 5573–5589. [Google Scholar] [CrossRef]
- Ford, C.M.; Kendall, A.D.; Hyndman, D.W. Snowpacks Decrease and Streamflows Shift across the Eastern US as Winters Warm. Sci. Total Environ. 2021, 793, 148483. [Google Scholar] [CrossRef] [PubMed]
- Aygün, O.; Kinnard, C.; Campeau, S. Impacts of Climate Change on the Hydrology of Northern Midlatitude Cold Regions. Prog. Phys. Geogr. 2020, 44, 338–375. [Google Scholar] [CrossRef]
- Fontrodona Bach, A.; van der Schrier, G.; Melsen, L.A.; Klein Tank, A.M.G.; Teuling, A.J. Widespread and Accelerated Decrease of Observed Mean and Extreme Snow Depth Over Europe. Geophys. Res. Lett. 2018, 45, 12312–12319. [Google Scholar] [CrossRef]
- Clark, M.P.; Serreze, M.C.; Robinson, D.A. Atmospheric Controls on Eurasian Snow Extent. Int. J. Climatol. 1999, 19, 27–40. [Google Scholar] [CrossRef]
- Räisänen, J. Warmer Climate: Less or More Snow? Clim. Dyn. 2008, 30, 307–319. [Google Scholar] [CrossRef]
- Lin, W.; Chen, H. Changes in the Spatial–Temporal Characteristics of Daily Snowfall Events over the Eurasian Continent from 1980 to 2019. Int. J. Climatol. 2022, 42, 1841–1853. [Google Scholar] [CrossRef]
- Krasting, J.P.; Broccoli, A.J.; Dixon, K.W.; Lanzante, J.R. Future Changes in Northern Hemisphere Snowfall. J. Clim. 2013, 26, 7813–7828. [Google Scholar] [CrossRef]
- Ombadi, M.; Risser, M.D.; Rhoades, A.M.; Varadharajan, C. A Warming-Induced Reduction in Snow Fraction Amplifies Rainfall Extremes. Nature 2023, 619, 305–310. [Google Scholar] [CrossRef]
- Graczyk, D.; Pińskwar, I.; Kundzewicz, Z.W.; Hov, Ø.; Førland, E.J.; Szwed, M.; Choryński, A. The Heat Goes on—Changes in Indices of Hot Extremes in Poland. Theor. Appl. Climatol. 2017, 129, 459–471. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Piniewski, M.; Mezghani, A.; Okruszko, T.; Pińskwar, I.; Kardel, I.; Hov, Ø.; Szcześniak, M.; Szwed, M.; Benestad, R.E.; et al. Assessment of Climate Change and Associated Impact on Selected Sectors in Poland. Acta Geophys. 2018, 66, 1509–1523. [Google Scholar] [CrossRef]
- Ghazi, B.; Przybylak, R.; Pospieszyńska, A. Projection of Climate Change Impacts on Extreme Temperature and Precipitation in Central Poland. Sci. Rep. 2023, 13, 18772. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Wypych, A.; Czekierda, D. Air Temperature Change. In Climate Change in Poland. Springer Climate; Springer: Cham, Switzerland, 2021; pp. 275–330. [Google Scholar] [CrossRef]
- Szwed, M. Projections of Temperature Changes in Poland. In Climate Change in Poland. Springer Climate; Springer: Cham, Switzerland, 2021; pp. 513–528. [Google Scholar] [CrossRef]
- Łupikasza, E.; Małarzewski, Ł. Precipitation Change. In Climate Change in Poland. Springer Climate; Springer: Cham, Switzerland, 2021; pp. 349–373. [Google Scholar] [CrossRef]
- Falarz, M.; Nowosad, M.; Bednorz, E.; Rasmus, S. Review of Polish Contribution to Snow Cover Research (1880–2017). Quaest. Geogr. 2018, 37, 7–22. [Google Scholar] [CrossRef]
- Falarz, M.; Bednorz, E. Snow Cover Change. In Climate Change in Poland. Springer Climate; Springer: Cham, Switzerland, 2021; pp. 375–390. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E.; Szyga-Pluta, K. Changes in Air Temperature and Snow Cover in Winter in Poland. Atmosphere 2021, 12, 68. [Google Scholar] [CrossRef]
- Łupikasza, E.B.; Małarzewski, Ł. Trends in the Indices of Precipitation Phases under Current Warming in Poland, 1966–2020. Adv. Clim. Chang. Res. 2023, 14, 97–115. [Google Scholar] [CrossRef]
- Wibig, J.; Jędruszkiewicz, J. Recent Changes in the Snow Cover Characteristics in Poland. Int. J. Climatol. 2023, 43, 6925–6938. [Google Scholar] [CrossRef]
- Luce, C.H.; Lopez-Burgos, V.; Holden, Z. Sensitivity of Snowpack Storage to Precipitation and Temperature Using Spatial and Temporal Analog Models. Water Resour. Res. 2014, 50, 9447–9462. [Google Scholar] [CrossRef]
- Howat, I.M.; Tulaczyk, S. Climate Sensitivity of Spring Snowpack in the Sierra Nevada. J. Geophys. Res. Earth Surf. 2005, 110, F04021. [Google Scholar] [CrossRef]
- Ye, H.; Cohen, J. A Shorter Snowfall Season Associated with Higher Air Temperatures over Northern Eurasia. Environ. Res. Lett. 2013, 8, 014052. [Google Scholar] [CrossRef]
- Safeeq, M.; Shukla, S.; Arismendi, I.; Grant, G.E.; Lewis, S.L.; Nolin, A. Influence of Winter Season Climate Variability on Snow–Precipitation Ratio in the Western United States. Int. J. Climatol. 2016, 36, 3175–3190. [Google Scholar] [CrossRef]
- Bonsoms, J.; López-Moreno, J.I.; Alonso-González, E. Snow Sensitivity to Temperature and Precipitation Change during Compound Cold-Hot and Wet-Dry Seasons in the Pyrenees. Cryosphere 2023, 17, 1307–1326. [Google Scholar] [CrossRef]
- Mudryk, L.R.; Kushner, P.J.; Derksen, C.; Thackeray, C. Snow Cover Response to Temperature in Observational and Climate Model Ensembles. Geophys. Res. Lett. 2017, 44, 919–926. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate Elasticity of Streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-Geographical Mesoregions of Poland: Verification and Adjustment of Boundaries on the Basis of Contemporary Spatial Data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Czernecki, B.; Miętus, M. The Thermal Seasons Variability in Poland, 1951–2010. Theor. Appl. Climatol. 2017, 127, 481–493. [Google Scholar] [CrossRef]
- Choi, G.; Robinson, D.A.; Kang, S. Changing Northern Hemisphere Snow Seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWep v2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Molotch, N.P. Spatial Variation of the Rain-Snow Temperature Threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- Pearson’s Correlation. Available online: https://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf (accessed on 2 April 2024).
- Danielescu, S. Snowfall and Rainfall Estimation Tool (SNOWFALL BUDDY)—A Web-Based Tool. Reference Manual. 2022. Available online: https://sbuddy.hydrotools.tech (accessed on 25 March 2024).
- Nouri, M.; Homaee, M. Spatiotemporal Changes of Snow Metrics in Mountainous Data-Scarce Areas Using Reanalyses. J. Hydrol. 2021, 603, 126858. [Google Scholar] [CrossRef]
- Radziejewski, M.; Kundzewicz, Z.W. Detectability of Changes in Hydrological Records. Hydrol. Sci. J. 2004, 49, 39–51. [Google Scholar] [CrossRef]
- Greene, C.A.; Thirumalai, K.; Kearney, K.A.; Delgado, J.M.; Schwanghart, W.; Wolfenbarger, N.S.; Thyng, K.M.; Gwyther, D.E.; Gardner, A.S.; Blankenship, D.D. The Climate Data Toolbox for MATLAB. Geochem. Geophys. Geosystems 2019, 20, 3774–3781. [Google Scholar] [CrossRef]
- Spearman’s Correlation. Available online: http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf (accessed on 2 April 2024).
- Domínguez-Tuda, M.; Gutiérrez-Jurado, H.A. Global Analysis of the Hydrologic Sensitivity to Climate Variability. J. Hydrol. 2021, 603, 126720. [Google Scholar] [CrossRef]
- Andréassian, V.; Coron, L.; Lerat, J.; Le Moine, N. Climate Elasticity of Streamflow Revisited—An Elasticity Index Based on Long-Term Hydrometeorological Records. Hydrol. Earth Syst. Sci. 2016, 20, 4503–4524. [Google Scholar] [CrossRef]
- Elsner, M.M.; Cuo, L.; Voisin, N.; Deems, J.S.; Hamlet, A.F.; Vano, J.A.; Mickelson, K.E.B.; Lee, S.Y.; Lettenmaier, D.P. Implications of 21st Century Climate Change for the Hydrology of Washington State. Clim. Change 2010, 102, 225–260. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Gascoin, S.; Herrero, J.; Sproles, E.A.; Pons, M.; Alonso-González, E.; Hanich, L.; Boudhar, A.; Musselman, K.N.; Molotch, N.P.; et al. Different Sensitivities of Snowpacks to Warming in Mediterranean Climate Mountain Areas. Environ. Res. Lett. 2017, 12, 074006. [Google Scholar] [CrossRef]
- Eythorsson, D.; Gardarsson, S.M.; Nijssen, B. Projected Changes to Northern Hemisphere Snow Conditions over the Period 1950–2100, given Two Emission Scenarios. Remote Sens. Appl. Soc. Environ. 2023, 30, 100954. [Google Scholar] [CrossRef]
- Harpold, A.A.; Kaplan, M.L.; Zion Klos, P.; Link, T.; McNamara, J.P.; Rajagopal, S.; Schumer, R.; Steele, C.M. Rain or Snow: Hydrologic Processes, Observations, Prediction, and Research Needs. Hydrol. Earth Syst. Sci. 2017, 21, 1–22. [Google Scholar] [CrossRef]
- Newton, B.W.; Farjad, B.; Orwin, J.F. Spatial and Temporal Shifts in Historic and Future Temperature and Precipitation Patterns Related to Snow Accumulation and Melt Regimes in Alberta, Canada. Water 2021, 13, 1013. [Google Scholar] [CrossRef]
- Ford, C.M.; Kendall, A.D.; Hyndman, D.W. Effects of shifting snowmelt regimes on the hydrology of non-alpine temperate landscapes. J. Hydrol. 2020, 590, 125517. [Google Scholar] [CrossRef]
- Liu, G. Deriving Snow Cloud Characteristics from CloudSat Observations. J. Geophys. Res. Atmos. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Pons, F.M.E.; Faranda, D. Statistical Reconstruction of European Winter Snowfall in Reanalysis and Climate Models Based on Air Temperature and Total Precipitation. Adv. Stat. Climatol. Meteorol. Oceanogr. 2022, 8, 155–186. [Google Scholar] [CrossRef]
No | Station | Longitude (°E) | Latitude (°N) | Elevation m a.s.l. | No | Station | Longitude (°E) | Latitude (°N) | Elevation m a.s.l. |
---|---|---|---|---|---|---|---|---|---|
1 | Białystok | 23°10′ | 53°06′ | 148 | 22 | Łódź | 19°23′ | 51°43′ | 174 |
2 | Bielsko-Biała | 19°00′ | 49°48 | 396 | 23 | Mława | 20°22′ | 53°06′ | 147 |
3 | Chojnice | 17°32′ | 53°43′ | 164 | 24 | Nowy Sącz | 20°41′ | 49°38′ | 292 |
4 | Częstochowa | 19°05′ | 50°49′ | 293 | 25 | Opole | 17°58′ | 50°38′ | 163 |
5 | Elbląg | 19°33′ | 54°13′ | 189 | 26 | Piła | 16°45′ | 53°08′ | 72 |
6 | Gorzów Wlk. | 15°17′ | 52°44′ | 71 | 27 | Poznań | 16°50′ | 52°25′ | 88 |
7 | Hel | 18°49′ | 54°36′ | 1 | 28 | Rzeszów | 22°03′ | 50°07′ | 206 |
8 | Jelenia Góra | 15°47′ | 50°54′ | 342 | 29 | Sandomierz | 21°42′ | 50°41′ | 217 |
9 | Kalisz | 18°05′ | 51°47′ | 137 | 30 | Siedlce | 22°15′ | 52°11′ | 152 |
10 | Kasprowy W. | 19°59′ | 49°14′ | 1990 | 31 | Słubice | 14°37′ | 52°21′ | 53 |
11 | Katowice | 19°02′ | 50°14′ | 278 | 32 | Suwałki | 22°57′ | 54°08′ | 184 |
12 | Kętrzyn | 21°22’ | 54°04′ | 107 | 33 | Szczecin | 14°37′ | 53°24′ | 1 |
13 | Kielce | 20°42′ | 50°49′ | 260 | 34 | Śnieżka | 15°44′ | 50°44′ | 1603 |
14 | Kłodzko | 16°37′ | 50°26′ | 356 | 35 | Świnoujście | 14°15′ | 53°55′ | 4 |
15 | Kołobrzeg | 15°23′ | 54°10′ | 4 | 36 | Terespol | 23°37′ | 52°05′ | 133 |
16 | Koszalin | 16°09′ | 54°12′ | 33 | 37 | Toruń | 18°36′ | 53°03′ | 69 |
17 | Kozienice | 21°33′ | 51°34′ | 123 | 38 | Ustka | 16°51′ | 54°35′ | 3 |
18 | Kraków | 19°48′ | 50°05′ | 236 | 39 | Warszawa | 20°58′ | 52°10′ | 106 |
19 | Lesko | 22°21′ | 49°28′ | 420 | 40 | Wrocław | 16°54′ | 51°06′ | 120 |
20 | Lublin | 22°24′ | 51°13′ | 238 | 41 | Zakopane | 19°58′ | 49°18′ | 852 |
21 | Łeba | 17°32′ | 54°45′ | 1 | 42 | Zielona G. | 15°31′ | 51°56′ | 192 |
Snow Fraction, Sf (%) | 1981–2020 Area (%) | Scenario 1 2050 Area (%) | 2011–2020 Area (%) | Scenario 2 2050 Area (%) |
---|---|---|---|---|
0–10 (rain-dominated) | 0 | 0 | 0 | 0 |
11–40 (transient) | 14 | 70 | 52 | 94 |
41–100 (snow-dominated) | 86 | 30 | 48 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somorowska, U. Assessing the Impact of Climate Change on Snowfall Conditions in Poland Based on the Snow Fraction Sensitivity Index. Resources 2024, 13, 60. https://doi.org/10.3390/resources13050060
Somorowska U. Assessing the Impact of Climate Change on Snowfall Conditions in Poland Based on the Snow Fraction Sensitivity Index. Resources. 2024; 13(5):60. https://doi.org/10.3390/resources13050060
Chicago/Turabian StyleSomorowska, Urszula. 2024. "Assessing the Impact of Climate Change on Snowfall Conditions in Poland Based on the Snow Fraction Sensitivity Index" Resources 13, no. 5: 60. https://doi.org/10.3390/resources13050060
APA StyleSomorowska, U. (2024). Assessing the Impact of Climate Change on Snowfall Conditions in Poland Based on the Snow Fraction Sensitivity Index. Resources, 13(5), 60. https://doi.org/10.3390/resources13050060