Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles
Abstract
:1. Introduction
2. Synthesis of Inorganic Nanoparticles
3. Green Synthesis of Inorganic Nanoparticles
4. Inorganic Nanoparticles Synthesized Using Plant-Based Extracts
4.1. Gold Nanoparticles
4.2. Silver Nanoparticles
4.3. Titanium Dioxide Nanoparticles
4.4. Zinc Nanoparticles
4.5. Copper Nanoparticles
4.6. Platinum Nanoparticles
4.7. Zirconium Nanoparticles
4.8. Iron Nanoparticles
4.9. Selenium Nanoparticles
4.10. Magnesium Nanoparticles
4.11. Nickel Nanoparticles
4.12. Sulfur Nanoparticles
4.13. Other Nanoparticles Synthesized by Green Methods
5. Advantages of and Challenges in the Green Synthesis of Nanoparticles
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Ullah Khan, A. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2021, 123, 108369. [Google Scholar] [CrossRef]
- Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. 2020, 25, e00427. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.C.; Dhaka, A.; Githala, C.K.; Trivedi, R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol. Rep. 2020, 27, e00518. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 2019, 109, 2561–2572. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Atarod, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 28, ISBN 9780128135860. [Google Scholar]
- United Nations. Global Sustainable Development Report 2023. Department of Economic and Social Affairs. Sustainable Development. 2023. Available online: https://sdgs.un.org/gsdr/gsdr2023 (accessed on 1 April 2024).
- Anaya-Esparza, L.M.; de la Mora, Z.V.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell peppers (Capsicum annum L.) losses and wastes: Source for food and pharmaceutical applications. Molecules 2021, 26, 5431. [Google Scholar] [CrossRef] [PubMed]
- Hamdallah, S.I.; Zoqlam, R.; Erfle, P.; Blyth, M.; Alkilany, A.M.; Dietzel, A.; Qi, S. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int. J. Pharm. 2020, 584, 119408. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, G.A.; Lodeiro, C.; Capelo, J.L.; Lorenzo, J.; Oliveira, E. Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems. Mater. Sci. Eng. C 2020, 106, 110104. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.G.; Chircov, C.; Grumezescu, A.M. Magnetite nanoparticles: Synthesis methods—A comparative review. Methods 2022, 199, 16–27. [Google Scholar] [CrossRef]
- Uribe-López, M.C.; Hidalgo-López, M.C.; López-González, R.; Frías-Márquez, D.M.; Núñez-Nogueira, G.; Hernández-Castillo, D.; Alvarez-Lemus, M.A. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J. Photochem. Photobiol. A Chem. 2021, 404, 112866. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchem. J. 2020, 154, 104623. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.H. Multimetallic nanoparticles as alternative antimicrobial agents: Challenges and perspectives. Molecules 2021, 26, 912. [Google Scholar] [CrossRef]
- Rahman, T.U.; Khan, H.; Liaqat, W.; Zeb, M.A. Phytochemical screening, green synthesis of gold nanoparticles, and antibacterial activity using seeds extract of Ricinus communis L. Microsc. Res. Tech. 2022, 85, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Borthakur, B.B.; Bora, U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater. Lett. 2010, 64, 1445–1447. [Google Scholar] [CrossRef]
- Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z.; Zeiri, Y. Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed. 2014, 9, 4007–4021. [Google Scholar]
- Patil, N.A.; Udgire, S.; Shinde, D.R.; Patil, P.D. Green synthesis of gold nanoparticles using extract of Vitis vinifera, Buchananialanzan, Juglandaceae, Phoenix dactylifera plants, and evaluation of antimicrobial activity. Chem. Methodol. 2023, 7, 15–27. [Google Scholar]
- Boruah, J.S.; Devi, C.; Hazarika, U.; Bhaskar Reddy, P.V.; Chowdhury, D.; Barthakur, M.; Kalita, P. Green synthesis of gold nanoparticles using an antiepileptic plant extract: In vitro biological and photo-catalytic activities. RSC Adv. 2021, 11, 28029–28041. [Google Scholar] [CrossRef] [PubMed]
- Suriyakala, G.; Sathiyaraj, S.; Babujanarthanam, R.; Alarjani, K.M.; Hussein, D.S.; Rasheed, R.A.; Kanimozhi, K. Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity. J. King Saud Univ. Sci. 2022, 34, 101830. [Google Scholar] [CrossRef]
- Al-Radadi, N.S. Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arab. J. Chem. 2021, 14, 102956. [Google Scholar] [CrossRef]
- Thangamani, N.; Bhuvaneshwari, N. Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of microorganism. Chem. Phys. Lett. 2019, 732, 136587. [Google Scholar] [CrossRef]
- Alhumaydhi, F.A. Green synthesis of gold nanoparticles using extract of Pistacia chinensis and their in vitro and in vivo biological activities. J. Nanomater. 2022, 2022, 23–27. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Guibal, E.; Hamza, M.F.; Hassan, S.E.D.; Alkhalifah, D.H.M.; El-Hossary, D. Green synthesis of gold nanoparticles by aqueous extract of Zingiber officinale: Characterization and insight into antimicrobial, antioxidant, and in vitro cytotoxic activities. Appl. Sci. 2022, 12, 1287. [Google Scholar] [CrossRef]
- Khan, S.A.; Shahid, S.; Lee, C.S. Green synthesis of gold and silver nanoparticles using leaf extract of Clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules 2020, 10, 835. [Google Scholar] [CrossRef] [PubMed]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, B.N.; Harlapur, S.F.; Avinash, B.; Ravikumar, C.R.; Nagaswarupa, H.P.; Anil Kumar, M.R.; Gurushantha, K.; Santosh, M.S. Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. Inorg. Chem. Commun. 2020, 111, 107580. [Google Scholar] [CrossRef]
- Yousaf, H.; Mehmood, A.; Ahmad, K.S.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C 2020, 112, 110901. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Tripathy, M.; Paliwal, N. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys. 2019, 15, 102565. [Google Scholar] [CrossRef]
- Jabir, M.S.; Saleh, Y.M.; Sulaiman, G.M.; Yaseen, N.Y.; Sahib, U.I.; Dewir, Y.H.; Alwahibi, M.S.; Soliman, D.A. Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials 2021, 11, 384. [Google Scholar] [CrossRef]
- Barabadi, H.; Mojab, F.; Vahidi, H.; Marashi, B.; Talank, N.; Hosseini, O.; Saravanan, M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorg. Chem. Commun. 2021, 129, 108647. [Google Scholar] [CrossRef]
- Salayová, A.; Bedlovičová, Z.; Daneu, N.; Baláž, M.; Lukáčová Bujňáková, Z.; Balážová, L.; Tkáčiková, L. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials 2021, 11, 1005. [Google Scholar] [CrossRef]
- Manosalva, N.; Tortella, G.; Cristina Diez, M.; Schalchli, H.; Seabra, A.B.; Durán, N.; Rubilar, O. Green synthesis of silver nanoparticles: Effect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol. 2019, 35, 88. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.F.; Tasharrofi, N.; Saber, M.M. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J. Mol. Struct. 2020, 1208, 127889. [Google Scholar] [CrossRef]
- Kambale, E.K.; Nkanga, C.I.; Mutonkole, B.P.I.; Bapolisi, A.M.; Tassa, D.O.; Liesse, J.M.I.; Krause, R.W.M.; Memvanga, P.B. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga, and Senna siamea). Heliyon 2020, 6, e04493. [Google Scholar] [CrossRef] [PubMed]
- Gomathi, M.; Prakasam, A.; Rajkumar, P.V.; Rajeshkumar, S.; Chandrasekaran, R.; Anbarasan, P.M. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. S. Afr. J. Chem. Eng. 2020, 32, 1–4. [Google Scholar]
- Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020, 10, 12805. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Cao, D.; Eldin Fouad, D.; Hussain Shah, A.; Qadeer Dayo, A.; Zhu, K.; Nazim Lakhan, M.; Mehdi, G.; Dong, S. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem. 2020, 13, 8248–8261. [Google Scholar] [CrossRef]
- Ahmed, R.H.; Mustafa, D.E. Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. Int. Nano Lett. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Erdogan, O.; Abbak, M.; Demirbolat, G.M.; Birtekocak, F.; Aksel, M.; Pasa, S.; Cevik, O. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE 2019, 14, e0216496. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.K.; Kumar, A.; Kumar, D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S. Afr. J. Bot. 2019, 124, 223–227. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Montalvo-González, E.; González-Silva, N.; Méndez-Robles, M.D.; Romero-Toledo, R.; Yahia, E.M.; Pérez-Larios, A. Synthesis and characterization of TiO2-ZnO-MgO mixed oxide and their antibacterial activity. Materials 2019, 12, 698. [Google Scholar] [CrossRef]
- Srinivasan, M.; Venkatesan, M.; Arumugam, V.; Natesan, G.; Saravanan, N.; Murugesan, S.; Ramachandran, S.; Ayyasamy, R.; Pugazhendhi, A. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem. 2019, 80, 197–202. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Alasiri, A.S.; Ahmad, J.; Alqahtani, A.A.; Abdullah, M.M.; Abdel-Wahab, B.A.; Pathak, K.; Saikia, R.; Das, A.; Sarma, H.; et al. Green synthesis of titanium dioxide nanoparticles using Ocimum sanctum leaf extract: In vitro characterization and its healing efficacy in diabetic wounds. Molecules 2022, 27, 7712. [Google Scholar] [CrossRef]
- Ahmad, W.; Jaiswal, K.K.; Soni, S. Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg. Nano-Metal Chem. 2020, 50, 1032–1038. [Google Scholar] [CrossRef]
- Sethy, N.K.; Arif, Z.; Mishra, P.K.; Kumar, P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process. Synth. 2020, 9, 171–181. [Google Scholar] [CrossRef]
- Sivaranjani, V.; Philominathan, P. Synthesize of titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med. 2016, 12, 1–5. [Google Scholar] [CrossRef]
- Santhoshkumar, T.; Rahuman, A.A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A.V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S.K. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med. 2014, 7, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Sundrarajan, M.; Gowri, S. Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract. Chalcogenide Lett. 2011, 8, 447–451. [Google Scholar]
- Rajakumar, G.; Rahuman, A.A.; Priyamvada, B.; Khanna, V.G.; Kumar, D.K.; Sujin, P.J. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles. Mater. Lett. 2012, 68, 115–117. [Google Scholar] [CrossRef]
- Ganesan, S.; Babu, I.G.; Mahendran, D.; Arulselvi, P.I.; Elangovan, N.; Geetha, N.; Venkatachalam, P. Green engineering of titanium dioxide nanoparticles using Ageratina altissima (L.) King & H.E. Robines. medicinal plant aqueous leaf extracts for enhanced photocatalytic activity. Ann. Phytomed. Int. J. 2016, 5, 69–75. [Google Scholar]
- Chatterjee, A.; Ajantha, M.; Talekar, A.; Revathyr, N.; Abraham, J. Biosynthesis, antimicrobial and cytotoxic effects of titanium dioxide nanoparticles using Vigna unguiculata seeds. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 95–99. [Google Scholar] [CrossRef]
- Marimuthu, S.; Rahuman, A.A.; Jayaseelan, C.; Kirthi, A.V.; Santhoshkumar, T.; Velayutham, K.; Bagavan, A.; Kamaraj, C.; Elango, G.; Iyappan, M.; et al. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac. J. Trop. Med. 2013, 6, 682–688. [Google Scholar] [CrossRef]
- Rao, K.G.; Ashok, C.; Rao, K.V.; Chakra, C.S.; Tambur, P. Green synthesis of TiO2 nanoparticles using Aloe vera extract. Int. J. Adv. Res. Phys. Sci. 2016, 2, 28–34. [Google Scholar]
- Chatterjee, A.; Nishanthini, D.; Sandhiya, N.; Abraham, J. Biosynthesis of titanium dioxide nanoparticles using Vigna radiata seeds. Asian J. Pharm. Clin. Res. 2016, 9, 85–88. [Google Scholar]
- Abdul Jalill, R.D.; Nuaman, R.S.; Abd, A.N. Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. World Sci. News 2016, 49, 204–222. [Google Scholar]
- Shabaani, M.; Rahaiee, S.; Zare, M.; Jafari, S.M. Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. LWT-Food Sci. Technol. 2020, 134, 110133. [Google Scholar] [CrossRef]
- Soto-Robles, C.A.; Luque, P.A.; Gómez-Gutiérrez, C.M.; Nava, O.; Vilchis-Nestor, A.R.; Lugo-Medina, E.; Ranjithkumar, R.; Castro-Beltrán, A. Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results Phys. 2019, 15, 102807. [Google Scholar] [CrossRef]
- Ahmad, W.; Kalra, D. Green synthesis, characterization and anti-microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J. King Saud Univ. Sci. 2020, 32, 2358–2364. [Google Scholar] [CrossRef]
- Madhukara Naik, M.; Bhojya Naik, H.S.; Nagaraju, G.; Vinuth, M.; Raja Naika, H.; Vinu, K. Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: Characterization and their application as photocatalytic and antibacterial activities. Microchem. J. 2019, 146, 1227–1235. [Google Scholar] [CrossRef]
- Demissie, M.G.; Sabir, F.K.; Edossa, G.D.; Gonfa, B.A. Synthesis of zinc oxide nanoparticles using leaf extract of Lippia adoensis (Koseret) and evaluation of its antibacterial activity. J. Chem. 2020, 7459042. [Google Scholar] [CrossRef]
- Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.; Anuf, A.R.; Rajesh, K.; Kyzas, G.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 2020, 1211, 128107. [Google Scholar] [CrossRef]
- Barzinjy, A.A.; Azeez, H.H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. Appl. Sci. 2020, 2, 991. [Google Scholar] [CrossRef]
- Mirza, S.; Hussaini, A.A.; Öztürk, G.; Turgut, M.; Öztürk, T.; Tugay, O.; Ulukuş, D.; Yıldırım, M. Photocatalytic and antibacterial activities of ZnO nanoparticles synthesized from Lupinus albus and Lupinus pilosus plant extracts via green synthesis approach. Inorg. Chem. Commun. 2023, 155, 111124. [Google Scholar] [CrossRef]
- Jayappa, M.D.; Ramaiah, C.K.; Kumar, M.A.P.; Suresh, D.; Prabhu, A.; Devasya, R.P.; Sheikh, S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl. Nanosci. 2020, 10, 3057–3074. [Google Scholar] [CrossRef] [PubMed]
- Boro, B.; Boruah, J.S.; Devi, C.; Alemtoshi; Gogoi, B.; Bharali, P.; Reddy, P.V.B.; Chowdhury, D.; Kalita, P. A novel route to fabricate ZnO nanoparticles using Xanthium indicum ethanolic leaf extract: Green nanosynthesis perspective towards photocatalytic and biological applications. J. Mol. Struct. 2024, 1300, 137227. [Google Scholar] [CrossRef]
- Ganesh, M.; Lee, S.G.; Jayaprakash, J.; Mohankumar, M.; Jang, H.T. Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity. Biocatal. Agric. Biotechnol. 2019, 19, 101129. [Google Scholar] [CrossRef]
- Jayachandran, A.; Aswathy, T.R.; Nair, A.S. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem. Biophys. Rep. 2021, 26, 100995. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Gul, S.; Khan, M.I.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process. Synth. 2019, 8, 135–143. [Google Scholar] [CrossRef]
- kumar, E.V.; Niveditha, B.S.; Sushmitha, L.; Usha, B.K.; swamy, B.E.K.; Anitha; Nagaraju, G. Facile green synthesis of Cu-doped MoO3 nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Nano-Struct. Nano-Objects 2023, 36, 101066. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Sahu, S.; Gupta, I.; Ghorai, T.K. Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves: Characterization, optical properties, CT-DNA binding and photocatalytic activity. RSC Adv. 2020, 10, 22027–22035. [Google Scholar] [CrossRef]
- Wu, S.; Rajeshkumar, S.; Madasamy, M.; Mahendran, V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1153–1158. [Google Scholar] [CrossRef]
- Shah, I.H.; Ashraf, M.; Sabir, I.A.; Manzoor, M.A.; Malik, M.S.; Gulzar, S.; Ashraf, F.; Iqbal, J.; Niu, Q.; Zhang, Y. Green synthesis and characterization of copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J. Mol. Struct. 2022, 1259, 132696. [Google Scholar] [CrossRef]
- Sharma, P.; Pant, S.; Dave, V.; Tak, K.; Sadhu, V.; Reddy, K.R. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Methods 2019, 160, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Khan, A.; Rashid, M.H. Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Adv. 2020, 10, 14374–14385. [Google Scholar] [CrossRef] [PubMed]
- Bouzekri, O.; El Gamouz, S.; Ed-Dra, A.; Moussout, H.; Dehmani, Y.; Ziyat, H.; El Idrissi, M.; Choukrad, M.; Abouarnadasse, S. Green Synthesis of nickel and copper nanoparticles doped with silver from Hammada scoparia leaf extract and evaluation of their potential to inhibit microorganisms and to remove dyes from aqueous solutions. Sustainability 2023, 15, 1541. [Google Scholar] [CrossRef]
- Abdullah; Hussain, T.; Faisal, S.; Rizwan, M.; Saira; Zaman, N.; Iqbal, M.; Iqbal, A.; Ali, Z. Green synthesis and characterization of copper and nickel hybrid nanomaterials: Investigation of their biological and photocatalytic potential for the removal of organic crystal violet dye. J. Saudi Chem. Soc. 2022, 26, 101486. [Google Scholar] [CrossRef]
- Hu, H.; Wang, F.; Ding, X.; Imhanria, S.; Wang, W.; Zhang, J. Green fabrication of Pt nanoparticles via tea-polyphenols for hydrogen peroxide detection. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128201. [Google Scholar] [CrossRef]
- Al-Radadi, N.S. Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment. Arab. J. Chem. 2019, 12, 330–349. [Google Scholar] [CrossRef]
- Liu, L.; Jing, Y.; Guo, A.; Li, X.; Li, Q.; Liu, W.; Zhang, X. Biosynthesis of platinum nanoparticles with cordyceps flower extract: Characterization, antioxidant activity and antibacterial activity. Nanomaterials 2022, 12, 1904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, S.; Jia, H.; Zhou, J.; Xi, J.; Wang, J.; Chen, X.; Wu, L. Green synthesis of platinum nanoparticles by Nymphaea tetragona flower extract and their skin lightening, antiaging effects. Arab. J. Chem. 2023, 16, 104391. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Fawzy, M.; Hosny, M.; Abd El-Monaem, E.M.; Tamer, T.M.; Omer, A.M. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab. J. Chem. 2022, 15, 103517. [Google Scholar] [CrossRef]
- Mohammed, S.H.; Rheima, A.M.; Aljaafari, F.M.D.; Al Marjani, M.F.; Abbas, Z.S. Green-synthesis of Platinum nanoparticles using olive leaves extracts and its effect on aspartate aminotransferase activity. Egypt. J. Chem. 2022, 65, 377–382. [Google Scholar] [CrossRef]
- Ramkumar, V.S.; Pugazhendhi, A.; Prakash, S.; Ahila, N.K.; Vinoj, G.; Selvam, S.; Kumar, G.; Kannapiran, E.; Rajendran, R.B. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother. 2017, 92, 479–490. [Google Scholar] [CrossRef] [PubMed]
- John Leo, A.; Oluwafemi, O.S. Plant-mediated synthesis of platinum nanoparticles using water hyacinth as an efficient biomatrix source—An eco-friendly development. Mater. Lett. 2017, 196, 141–144. [Google Scholar] [CrossRef]
- Kazi, S.; Nirwan, S.; Kunde, S.; Jadhav, S.; Rai, M.; Kamble, D.; Sayyed, S.; Chavan, P. Green synthesis, characterization and bio-evaluation of zirconium nanoparticles using the dried biomass of Sphagneticola trilobata plant leaf. Bionanoscience 2022, 12, 731–740. [Google Scholar] [CrossRef]
- Korde, S.A.; Thombre, P.B.; Dipake, S.S.; Sangshetti, J.N.; Rajbhoj, A.S.; Gaikwad, S.T. Neem gum (Azadirachta indicia) facilitated green synthesis of TiO2 and ZrO2 nanoparticles as antimicrobial agents. Inorg. Chem. Commun. 2023, 153, 110777. [Google Scholar] [CrossRef]
- Chau, T.P.; Kandasamy, S.; Chinnathambi, A.; Alahmadi, T.A.; Brindhadevi, K. Synthesis of zirconia nanoparticles using Laurus nobilis for use as an antimicrobial agent. Appl. Nanosci. 2021, 13, 1337–1344. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Suganthy, N.; Shanmugam, S.; Brindhadevi, K.; Sabour, A.; Alshiekheid, M.; Lan Chi, N.T.; Pugazhendhi, A.; Shanmuganathan, R. Biosynthesis of zirconium nanoparticles (ZrO2 NPs) by Phyllanthus niruri extract: Characterization and its photocatalytic dye degradation activity. Food Chem. Toxicol. 2022, 168, 113340. [Google Scholar] [CrossRef] [PubMed]
- Isacfranklin, M.; Dawoud, T.; Ameen, F.; Ravi, G.; Yuvakkumar, R.; Kumar, P.; Hong, S.I.; Velauthapillai, D.; Saravanakumar, B. Synthesis of highly active biocompatible ZrO2 nanorods using a bioextract. Ceram. Int. 2020, 46, 25915–25920. [Google Scholar] [CrossRef]
- Goyal, P.; Bhardwaj, A.; Mehta, B.K.; Mehta, D. Research article green synthesis of zirconium oxide nanoparticles (ZrO2NPs) using Helianthus annuus seed and their antimicrobial effects. J. Indian Chem. Soc. 2021, 98, 100089. [Google Scholar] [CrossRef]
- Gowri, S.; Rajiv Gandhi, R.; Senthil, S.; Sundrarajan, M. Effect of calcination temperature on nyctanthes plant mediated zirconia nanoparticles; optical and antibacterial activity for optimized zirconia. J. Bionanosci. 2015, 9, 181–189. [Google Scholar] [CrossRef]
- Alagarsamy, A.; Chandrasekaran, S.; Manikandan, A. Green synthesis and characterization studies of biogenic zirconium oxide (ZrO2) nanoparticles for adsorptive removal of methylene blue dye. J. Mol. Struct. 2022, 1247, 131275. [Google Scholar] [CrossRef]
- Tran, T.V.; Nguyen, D.T.C.; Kumar, P.S.; Din, A.T.M.; Jalil, A.A.; Vo, D.V.N. Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: A review. Environ. Chem. Lett. 2022, 20, 1309–1331. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.F.V.; Fagundes, A.P.; Macuvele, D.L.P.; de Carvalho, E.F.U.; Durazzo, M.; Padoin, N.; Soares, C.; Riella, H.G. Green synthesis of zirconia nanoparticles based on Euclea natalensis plant extract: Optimization of reaction conditions and evaluation of adsorptive properties. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123915. [Google Scholar] [CrossRef]
- Davar, F.; Majedi, A.; Mirzaei, A. Polyvinyl alcohol thin film reinforced by green synthesized zirconia nanoparticles. Ceram. Int. 2018, 44, 19377–19382. [Google Scholar] [CrossRef]
- Lohrasbi, S.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Ghasemi, Y.; Amani, A.M.; Taghizadeh, S. Green synthesis of iron nanoparticles using Plantago major leaf extract and their application as a catalyst for the decolorization of azo dye. Bionanoscience 2019, 9, 317–322. [Google Scholar] [CrossRef]
- Naz, S.; Islam, M.; Tabassum, S.; Fernandes, N.F.; Carcache de Blanco, E.J.; Zia, M. Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J. Mol. Struct. 2019, 1185, 1–7. [Google Scholar] [CrossRef]
- Devi, H.S.; Boda, M.A.; Shah, M.A.; Parveen, S.; Wani, A.H. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process. Synth. 2019, 8, 38–45. [Google Scholar] [CrossRef]
- Younas, U.; Hassan, S.T.; Ali, F.; Hassan, F.; Saeed, Z.; Pervaiz, M.; Khan, S.; Jannat, F.T.; Bibi, S.; Sadiqa, A.; et al. Radical scavenging and catalytic activity of Fe-Cu bimetallic nanoparticles synthesized from Ixora finlaysoniana extract. Coatings 2021, 11, 813. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.H.; Miah, M.Y.; Paul, S.C.; Aka, T.D.; Saha, O.; Rahaman, M.M.; Sharif, M.J.I.; Habiba, O.; Ashaduzzaman, M. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020, 6, e04603. [Google Scholar] [CrossRef]
- Abdullah, J.A.A.; Salah Eddine, L.; Abderrhmane, B.; Alonso-González, M.; Guerrero, A.; Romero, A. Green synthesis and characterization of iron oxide nanoparticles by Pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustain. Chem. Pharm. 2020, 17, 100280. [Google Scholar] [CrossRef]
- Bibi, I.; Nazar, N.; Ata, S.; Sultan, M.; Ali, A.; Abbas, A.; Jilani, K.; Kamal, S.; Sarim, F.M.; Khan, M.I.; et al. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J. Mater. Res. Technol. 2019, 8, 6115–6124. [Google Scholar] [CrossRef]
- Aksu Demirezen, D.; Yıldız, Y.Ş.; Yılmaz, Ş.; Demirezen Yılmaz, D. Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. J. Biosci. Bioeng. 2019, 127, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Qasim, S.; Zafar, A.; Saif, M.S.; Ali, Z.; Nazar, M.; Waqas, M.; Haq, A.U.; Tariq, T.; Hassan, S.G.; Iqbal, F.; et al. Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J. Photochem. Photobiol. B Biol. 2020, 204, 111784. [Google Scholar] [CrossRef] [PubMed]
- Barzegarparay, F.; Najafzadehvarzi, H.; Pourbagher, R.; Parsian, H.; Ghoreishi, S.M.; Mortazavi-Derazkola, S. Green synthesis of novel selenium nanoparticles using Crataegus monogyna extract (SeNPs@CM) and investigation of its toxicity, antioxidant capacity, and anticancer activity against MCF-7 as a breast cancer cell line. Biomass Convers. Biorefinery 2023, 1–10. [Google Scholar] [CrossRef]
- Shahbaz, M.; Akram, A.; Raja, N.I.; Mukhtar, T.; Mehak, A.; Fatima, N.; Ajmal, M.; Ali, K.; Mustafa, N.; Abasi, F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS ONE 2023, 18, e0274679. [Google Scholar] [CrossRef] [PubMed]
- Adibian, F.; Ghaderi, R.S.; Sabouri, Z.; Davoodi, J.; Kazemi, M.; Ghazvini, K.; Youssefi, M.; Soleimanpour, S.; Darroudi, M. Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity. BioMetals 2022, 35, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.S.; Badawy, M.S.E.M.; Al-Askar, A.A.; Arishi, A.A.; Elkady, F.M.; Hashem, A.H. Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 2022, 12, 893. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.T.; Nguyen, P.T.M.; Pham, N.H.; Le, T.H.; Nguyen, T.H.; Do, D.T.; La, D.D. Green synthesis of selenium nanoparticles using Cleistocalyx operculatus leaf extract and their acute oral toxicity study. J. Compos. Sci. 2022, 6, 307. [Google Scholar] [CrossRef]
- Fouda, A.; Al-Otaibi, W.A.; Saber, T.; AlMotwaa, S.M.; Alshallash, K.S.; Elhady, M.; Badr, N.F.; Abdel-Rahman, M.A. Antimicrobial, antiviral, and in-vitro cytotoxicity and mosquitocidal activities of Portulaca oleracea-based green synthesis of selenium nanoparticles. J. Funct. Biomater. 2022, 13, 157. [Google Scholar] [CrossRef]
- Hashem, A.H.; Salem, S.S. Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnol. J. 2022, 17, 2100432. [Google Scholar] [CrossRef]
- Ghaderi, R.S.; Adibian, F.; Sabouri, Z.; Davoodi, J.; Kazemi, M.; Amel Jamehdar, S.; Meshkat, Z.; Soleimanpour, S.; Daroudi, M. Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity. Mater. Technol. 2022, 37, 1289–1297. [Google Scholar] [CrossRef]
- Hosseinpour, L.; Baharara, J.; Zaker Bostanabad, S.; Darroudi, M. Plant-based synthesis of selenium nanoparticles using Cordia myxa fruit extract and evaluation of their cytotoxicity effects. Inorg. Chem. Commun. 2022, 145, 110030. [Google Scholar] [CrossRef]
- Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019, 9, 105–116. [Google Scholar] [CrossRef]
- dos Santos Souza, L.M.; Dibo, M.; Sarmiento, J.J.P.; Seabra, A.B.; Medeiros, L.P.; Lourenço, I.M.; Kobayashi, R.K.T.; Nakazato, G. Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity. Curr. Res. Green Sustain. Chem. 2022, 5, 100303. [Google Scholar] [CrossRef]
- Fatiqin, A.; Amrulloh, H.; Simanjuntak, W. Green synthesis of MgO nanoparticles using Moringa oleifera leaf extract for antimicrobial activity. Bull. Chem. Soc. Ethiop. 2021, 35, 161–170. [Google Scholar] [CrossRef]
- Khan, M.I.; Akhtar, M.N.; Ashraf, N.; Najeeb, J.; Munir, H.; Awan, T.I.; Tahir, M.B.; Kabli, M.R. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl. Nanosci. 2020, 10, 2351–2364. [Google Scholar] [CrossRef]
- Ali, S.; Sudha, K.G.; Thirumalaivasan, N.; Ahamed, M.; Pandiaraj, S.; Rajeswari, V.D.; Vinayagam, Y.; Thiruvengadam, M.; Govindasamy, R. Green synthesis of magnesium oxide nanoparticles by using Abrus precatorius bark extract and their photocatalytic, antioxidant, antibacterial, and cytotoxicity activities. Bioengineering 2023, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Younis, I.Y.; El-Hawary, S.S.; Eldahshan, O.A.; Abdel-Aziz, M.M.; Ali, Z.Y. Green synthesis of magnesium nanoparticles mediated from Rosa floribunda charisma extract and its antioxidant, antiaging and antibiofilm activities. Sci. Rep. 2021, 11, 16868. [Google Scholar] [CrossRef] [PubMed]
- Vergheese, M.; Vishal, S.K.; Mary Vergheese, C. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J. Pharmacogn. Phytochem. 2018, 7, 1193–1200. [Google Scholar]
- Abdallah, Y.; Ogunyemi, S.O.; Abdelazez, A.; Zhang, M.; Hong, X.; Ibrahim, E.; Hossain, A.; Fouad, H.; Li, B.; Chen, J. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. Biomed Res. Int. 2019, 5620989. [Google Scholar] [CrossRef]
- Amrulloh, H.; Fatiqin, A.; Simanjuntak, W.; Afriyani, H.; Annissa, A. Antioxidant and antibacterial activities of magnesium oxide nanoparticles prepared using aqueous extract of Moringa Oleifera bark as green agents. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 44–53. [Google Scholar] [CrossRef]
- Sarala, E.; Vinuth, M.; Naik, M.M.; Reddy, Y.V.R. Green synthesis of nickel ferrite nanoparticles using Terminalia catappa: Structural, magnetic and anticancer studies against MCF-7 cell lines. J. Hazard. Mater. Adv. 2022, 8, 100150. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Hameed, S.; Munir, A.; Kanwal, S. Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem. 2019, 33, e4950. [Google Scholar] [CrossRef]
- Ali, T.; Warsi, M.F.; Zulfiqar, S.; Sami, A.; Ullah, S.; Rasheed, A.; Alsafari, I.A.; Agboola, P.O.; Shakir, I.; Baig, M.M. Green nickel/nickel oxide nanoparticles for prospective antibacterial and environmental remediation applications. Ceram. Int. 2022, 48, 8331–8340. [Google Scholar] [CrossRef]
- Din, M.I.; Tariq, M.; Hussain, Z.; Khalid, R. Single step green synthesis of nickel and nickel oxide nanoparticles from Hordeum vulgare for photocatalytic degradation of methylene blue dye. Inorg. Nano-Metal Chem. 2020, 50, 292–297. [Google Scholar] [CrossRef]
- Riaz, T.; Munnwar, A.; Shahzadi, T.; Zaib, M.; Shahid, S.; Javed, M.; Iqbal, S.; Rizwan, K.; Waqas, M.; Khalid, B.; et al. Phyto-mediated synthesis of nickel oxide (NiO) nanoparticles using leaves’ extract of Syzygium cumini for antioxidant and dyes removal studies from wastewater. Inorg. Chem. Commun. 2022, 142, 109656. [Google Scholar] [CrossRef]
- Yuan, C.; Jiang, B.; Xu, X.; Wan, Y.; Wang, L.; Chen, J. Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract. J. Exp. Nanosci. 2022, 17, 113–125. [Google Scholar] [CrossRef]
- Al-Zaqri, N.; Umamakeshvari, K.; Mohana, V.; Muthuvel, A.; Boshaala, A. Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J. Mater. Sci. Mater. Electron. 2022, 33, 11864–11880. [Google Scholar] [CrossRef]
- Baloch, H.; Siddiqua, A.; Nawaz, A.; Latif, M.S.; Zahra, S.Q.; Alomar, S.Y.; Ahmad, N.; Elsayed, T.M. Synthesis and characterization of sulfur nanoparticles of Citrus limon extract embedded in nanohydrogel formulation: In vitro and in vivo studies. Gels 2023, 9, 284. [Google Scholar] [CrossRef]
- Al Banna, L.S.; Salem, N.M.; Jaleel, G.A.; Awwad, A.M. Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and nematicidal activity against Meloidogyne javanica. Chem. Int. 2020, 6, 137–143. [Google Scholar]
- Himanshi; Joshi, D.P. Comparative study of green synthesised sulphur nanoparticles in different acidic media. Adv. Nat. Sci. Nanosci. Nanotechnol. 2022, 13, 025003. [Google Scholar] [CrossRef]
- Ismalita; Khairan, K.; Rahmi; Muhammad, S.; Indra, I. Green synthesis of sulfur nanoparticles using Allium sativum: Its effects on the growth of Pogostemon cablin Benth. and the chemical characterization of the patchouli oil after being harvested. Nanotechnol. Environ. Eng. 2022, 7, 359–375. [Google Scholar] [CrossRef]
- Najafi, S.; Razavi, S.M.; Khoshkam, M.; Asadi, A. green synthesized of sulfur nanoparticles and its application on lettuce plants metabolic profiling. Bionanoscience 2022, 12, 116–127. [Google Scholar] [CrossRef]
- Hafeez, M.; Shaheen, R.; Akram, B.; Zain-Ul-Abdin; Haq, S.; Mahsud, S.; Ali, S.; Khan, R.T. Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express 2020, 7, 025019. [Google Scholar] [CrossRef]
- Gingasu, D.; Mindru, I.; Calderon-Moreno, J.M.; Culita, D.C.; Patron, L.; Diamandescu, L. Green synthesis of cobalt ferrite nanoparticles using ginger roots or cadmium seeds extract. Rev. Roum. Chim. 2017, 62, 645–653. [Google Scholar]
- Vinodhini, S.; Vithiya, B.S.M.; Prasad, T.A.A. Green synthesis of palladium nanoparticles using aqueous plant extracts and its biomedical applications. J. King Saud Univ. Sci. 2022, 34, 102017. [Google Scholar] [CrossRef]
- Chitturi, K.L.; Yaramma, A.; Merugu, R.; Dachepalli, R.; Kandhadi, J. Synthesis and characterisation of In2O3 nanoparticles from Astragalus gummifer. Adv. Nanoparticles 2016, 5, 114–122. [Google Scholar] [CrossRef]
- Phokha, S.; Seraphin, S.; Maensiri, S.; Laokul, P.; Klinkaewnarong, J.; Phokha, S.; Seraphin, S. Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties. Optoelectron. Adv. Mater. Commun. 2008, 2, 161–165. [Google Scholar]
- Zhang, T.; Dang, M.; Zhang, W.; Lin, X. Gold nanoparticles synthesized from Euphorbia fischeriana root by green route method alleviates the isoprenaline hydrochloride induced myocardial infarction in rats. J. Photochem. Photobiol. B Biol. 2020, 202, 111705. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M.; Al jomaa, A.; kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K.; Prasad, K.; Kulkarni, A.R. Plant system: Nature’s nanofactory. Colloids Surf. B Biointerfaces 2009, 73, 219–223. [Google Scholar] [CrossRef] [PubMed]
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Au salt | Ricinus communis | Seed | Methanolic | Spherical | <100 | Antimicrobial | [15] |
AuCl3 | Vitis vinifera | Fruit | Aqueous | NI | NI | Antimicrobial | [18] |
HAuCl4 | Moringa oleifera | Leaf | Methanolic | Spherical | 4 | Antimicrobial, antioxidant, cytotoxic, dye degradation | [19] |
AuCl3 | Jatropha integerrima | Flower | Aqueous | Spherical | 37 | Antimicrobial | [20] |
HAuCl4 | Licorice | Root | Aqueous | Spherical | 53 | Antimicrobial, anticancer | [21] |
HAuCl4 | Pistacia chinensis | Seed | Aqueous | Spherical | 10–100 | Analgesic, sedative | [23] |
HAuCl4 | Zingiber officinale | Root | Aqueous | Spherical | 5–53 | Antimicrobial, antioxidant, cytotoxic | [24] |
HAuCl4 | Clerodendrum inerme | Leaf | Aqueous | Spherical | 5.8 | Antimicrobial, antioxidant, cytotoxic | [25] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
AgNO3 | Achillea millefolium | Plant | Methanolic | Spherical | 18 | Antimicrobial, antioxidant | [28] |
AgNO3 | Annona muricata | Peel | Aqueous | Spherical | <100 | Anticancer | [30] |
AgNO3 | Zataria multiflora | Leaf | Aqueous | Rod-shape | 25 | Antimicrobial | [31] |
AgNO3 | Teucrium polium | Leaf | Aqueous | Spherical | 70–100 | Antitumor | [33] |
AgNO3 | Brillantaisia patula, Crossopteryx febrifuga, Senna siamea | Leaf | Aqueous | Spherical | 45–110 | Antimicrobial | [35] |
AgNO3 | Gymnema sylvestre | Leaf | Aqueous | Spherical | 20–30 | Antimicrobial | [36] |
AgNO3 | Lysiloma acapulcensis | Stem, roots | Aqueous | Spherical | 5 | Antimicrobial | [37] |
AgNO3 | Onion, tomato | Fruit | Ethanolic | Spherical | 5–100 | Dye degradation | [38] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Titanium dioxide solution (5 mM) | Azadirachta indica | Leaf | Aqueous | Spherical | 15–50 | Antibacterial | [41] |
Titanium dioxide solution (5 mM) | Sesbania grandiflor | Leaf | Aqueous | Square and spherical | 43–56 | NI | [43] |
Titanium dioxide solution (5 mM) | Ocimum sanctum | Leaf | Aqueous | Spherical, polygonal, and square | 75–123 | Wound-healing properties | [44] |
Titanium tetra isopropoxide | Mentha arvensis | Leaf | Ethanolic | Spherical | 20–70 | Antimicrobial | [45] |
Titanium-isopropoxide (5 mM) | Syzygium cumini | Leaf | Aqueous | Spherical | 18 | Wastewater treatment | [46] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Zinc nitrate | Limonia acidissima | Fruit (juice) | Aqueous | Spherical | 27 | Antimicrobial, dye degradation | [60] |
Zinc nitrate hexahydrate | Xanthium indicum | Leaf | Ethanolic | Spherical | 50–60 | Antioxidant, antimicrobial, antifungal, cytotoxicity, and photocatalyticactivities. | [66] |
Zinc acetate dihydrate | Eriobutria japonica | Seed | Aqueous | Spherical | <50 | Antimicrobial, antioxidant, Dye degradation | [57] |
Zinc nitrate | Hibiscus sabdariffa | Flower | Aqueous | Spherical | 8–30 | Dye degradation | [58] |
Zinc nitrate | Euphorbia hirta | Leaf | Ethanolic | Spherical | 20–25 | Antimicrobial, antifungal | [59] |
Zinc nitrate hexahydrate | Hydnocarpus alpina | Leaf and stem bark | Ethanolic | Spherical | 38.84 | Antimicrobial | [67] |
Zinc nitrate hexahydrate | Cayratia pedata | Leaf | Aqueous | Horizontal shape | 52.24 | Enzymeimmobilization | [68] |
Zinc acetate dihydrate | Lippiaadoensis | Leaf | Aqueous | Spherical and nanorod | 19.78 | Antimicrobial | [61] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Copper (II) Sulfate pentahydrate | Celastrus paniculatus Willd | Leaf | Aqueous | Spherical | 2–10 | Dye degradation, antifungal | [3] |
Cupric nitrate trihydrate | Genus santalum | Leaf | Aqueous | Irregular | 22 | Dye degradation | [70] |
Copper (II) sulfate pentahydrate | Calotropis procera | Leaf | Aqueous | Spherical | 20–80 | Antimicrobial | [73] |
Copper chloride (II) | Tinospora cardifolia | Leaf | Aqueous | Spherical | 63 | Antimicrobial | [74] |
Copper sulfate pentahydrate | Duranta erecta | Fruit | Aqueous | Spherical | 70 | Dye degradation | [69] |
Copper (II) acetate | Lantana camara | Flower | Aqueous | Rod-shape | 15–23 | Dye degradation | [75] |
Copper chloride | Jatropha curcas | Leaf | Aqueous | Spherical | 10–12 | Dye degradation | [71] |
Copper sulphate | Cissus vitiginea | Leaf | Aqueous | Spherical | 5–20 | Antimicrobial | [72] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
H2PtCl6 | Cordyceps militaris | Flower | Aqueous | Spherical | 13 | Antimicrobial, antioxidant | [80] |
H2PtCl6 | Olive | Leaf | Aqueous | Spherical | 9.2 | Inhibitory effect of aspartate aminotransferase | [83] |
H2PtCl6 | Nymphaea tetragona | Flower | Aqueous | Spherical | 4 | Antioxidant, skin protection | [81] |
H2PtCl6 | Atriplex halimus | Leaf | Aqueous | Spherical | 3 | Antimicrobial, antioxidant | [82] |
H2PtCl6 | Ajwa and Barni dates | Fruit | Aqueous | Spherical | 1–2 | Antimicrobial, anticancer agent | [79] |
H2PtCl6 | Tea polyphenols | Leaf | Aqueous | Spherical | 2.7 | H2O2 detection | [78] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Zirconium isopropoxide | Azadirachta indicia | Gum of the bark | Aqueous | Irregular | <200 | Antimicrobial | [87] |
Zirconylchloride octahydrate | Laurus nobilis | Leaf | Aqueous | Cubic | 20–100 | Antimicrobial | [88] |
Zirconyl nitrate | Sphagneticola trilobata | Leaf | Aqueous | Spherical, triangular, and oval | 20–100 | Antimicrobial | [86] |
Zirconyl chloride | Phyllanthus niruri | Leaf | Aqueous | Spherical | 121 | Antimicrobial, dye degradation | [89] |
Zirconylchloride octahydrate | Sapindus mukorossias | Pericarp | Aqueous | Spherical | 10 | Dye degradation | [93] |
H2PtCl6 | Tea polyphenols | Leaf | Aqueous | Spherical | 2.7 | H2O2 detection | [78] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Ferric chloride hexahydrate | Plantago major | Leaf | Aqueous | Spherical | 4–30 | Dye degradation | [97] |
Ferric nitrate | Platanus orientalis | Leaf | Aqueous | Spherical | 38 | Antimicrobial | [99] |
FeSO4 | Ixora finlaysonian | Plant | Methanolic | Rectangular and Cubic | 50–200 | Antioxidant, Dye degradation | [100] |
Ferric chloride hexahydrate | Carica papaya | Leaf | Aqueous | Irregular | 21 | Dye degradation, antimicrobial | [101] |
Ferric chloride hexahydrate | Ficus carica | Fruit | Aqueous | Core-shell | 9 | NI | [104] |
Ferric chloride hexahydrate | Phoenix dactylifera | Leaf | Aqueous | Spherical | 22 | Antioxidant | [102] |
Ferric chloride hexahydrate | Withania coagulans | Fruit | Aqueous | Rods | 16 | Dye degradation | [105] |
Ferric chloride hexahydrate | Pomegranate | Seed | Aqueous | Semi-spherical | 25–55 | Dye degradation | [103] |
Ferric chloride hexahydrate | Rhus punjabensis | Plant | Aqueous | Spherical | 41 | Antimicrobial, antioxidant, anticancer | [98] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Sodium selenite | Crataegus monogyna | Fruit | Methanolic | Spherical | 30–60 | Anticancer antioxidant, | [106] |
Sodium selenite | Melia azedarach | Leaf | Aqueous | Spherical | 74 | Antifungal | [107] |
Sodium selenite | Rosmarinus officinali | Plant | Aqueous | Spherical | 20–40 | Antimicrobial | [108] |
Sodium selenite | Orange | Peel | Aqueous | Spherical | 16–95 | Antimicrobial | [109] |
Selenium dioxide | Cleistocalyx operculatus | Leaf | Ethanolic | Spherical | 50–200 | Antimicrobial | [110] |
Sodium selenite | Portulaca oleracea | Leaf | Aqueous | Spherical | 2–22 | Antimicrobial, antiviral, mosquitocidal | [111] |
Selenium dioxide | Urtica dioica | Leaf | Aqueous | Spherical | 85–162 | Antimicrobial, anticancer | [112] |
Sodium selenite | Abelmoschus esculentus | Plant | Aqueous | Spherical | 30 | Antimicrobial | [113] |
Sodium selenite | Cordia myxa | Fruit | Aqueous | Spherical | 42–61 | Anticancer | [114] |
Selenious acid | Withania somnifera | Leaf | Ethanolic | Spherical | 45–90 | Antioxidant, antimicrobial, antiproliferative, dye degradation | [115] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Magnesium nitrate | Trigonella foenum-graecum | Leaf | Aqueous | Spherical | 13 | Antibacterial | [121] |
Aqueous magnesium solution | Rosmarinus officinalis | Flowers | Aqueous | Round | <20 | Antibacterial | [122] |
Magnesium nitrate hexahydrate | Dalbergia sissoo | Leaf | Aqueous | Spherical | 42 | Antibacterial and photocatalytic | [118] |
Magnesium nitrate hexahydrate | Rosa floribunda charisma | Flowers | Aqueous | Polyhedral | 35–55 | Antioxidant, antiaging, and antibiofilm | [119] |
MgCl2 solution | Moringa oleifera | Leaf | Aqueous | Cubic | 20–50 | Antibacterial | [117] |
MgCl2 solution | Moringa oleifera | Bark | Aqueous | Spherical | 60–100 | Antioxidant and antibacterial | [123] |
Mg(NO3)2 | Abrus precatorius | Bark | Aqueous | Irregular | <100 | Antioxidant and cytotoxic | [119] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Nickel nitrate | Hordeum vulgare | Seed | Methanolic | NI | <100 | Dye degradation | [127] |
Nickel(II) chloride hexahydrate | Syzygium cumini | Leaf | Aqueous | Spherical | 10 | Dye degradation, antioxidant | [128] |
NI | Hammada scoparia | Leaf | NI | NI | NI | Dye degradation, antimicrobial | [76] |
Nickel nitrate | Senna auriculata | Flower | Aqueous | Quasi-spherical | 53 | Dye degradation, antimicrobial | [130] |
Nickel chloride | Lactuca Serriola | Seed | Aqueous | Spherical | NI | Dye degradation, Antimicrobial | [126] |
Nickel nitrate | Rhamnus virgata | Leaf | Aqueous | Spherical | 24 | Antimicrobial. anticancer, antileishmanial, antioxidant | [125] |
Nickel(II) sulfate hexahydrate | Alhagi maurorum | Leaf | Aqueous | Spherical | 20–36 | Anticancer | [129] |
Nickel nitrate | Terminalia catappa | Leaf | Aqueous | Spherical | 19 | Anticancer | [124] |
Precursor Used | Plant Name | Part Used | Type of Extract | Shape | Size (nm) | Application | Ref. |
---|---|---|---|---|---|---|---|
Sodium thiosulfate pentahydrate | Rosmarinus officinalis | Leaf | Aqueous | Spherical | 40 | Nematicidal | [132] |
Sodium thiosulfate pentahydrate | Citrus limon | Leaf | Aqueous | Spherical | 40 | Antimicrobial, wound healing | [131] |
Sodium thiosulfate pentahydrate | Aloe vera | Leaf | Aqueous | Spherical | 69 | No information | [133] |
Sodium thiosulfate pentahydrate | Allium sativum | Plant | Aqueous | Irregular | 45 | Plant-growth-promoting | [134] |
Sodium thiosulfate pentahydrate | Cinnamomum zeylanicum | Bark | Aqueous | Spherical | 43–61 | Plant-growth-promoting | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villagrán, Z.; Anaya-Esparza, L.M.; Velázquez-Carriles, C.A.; Silva-Jara, J.M.; Ruvalcaba-Gómez, J.M.; Aurora-Vigo, E.F.; Rodríguez-Lafitte, E.; Rodríguez-Barajas, N.; Balderas-León, I.; Martínez-Esquivias, F. Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles. Resources 2024, 13, 70. https://doi.org/10.3390/resources13060070
Villagrán Z, Anaya-Esparza LM, Velázquez-Carriles CA, Silva-Jara JM, Ruvalcaba-Gómez JM, Aurora-Vigo EF, Rodríguez-Lafitte E, Rodríguez-Barajas N, Balderas-León I, Martínez-Esquivias F. Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles. Resources. 2024; 13(6):70. https://doi.org/10.3390/resources13060070
Chicago/Turabian StyleVillagrán, Zuamí, Luis Miguel Anaya-Esparza, Carlos Arnulfo Velázquez-Carriles, Jorge Manuel Silva-Jara, José Martín Ruvalcaba-Gómez, Edward F. Aurora-Vigo, Ernesto Rodríguez-Lafitte, Noé Rodríguez-Barajas, Iván Balderas-León, and Fernando Martínez-Esquivias. 2024. "Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles" Resources 13, no. 6: 70. https://doi.org/10.3390/resources13060070
APA StyleVillagrán, Z., Anaya-Esparza, L. M., Velázquez-Carriles, C. A., Silva-Jara, J. M., Ruvalcaba-Gómez, J. M., Aurora-Vigo, E. F., Rodríguez-Lafitte, E., Rodríguez-Barajas, N., Balderas-León, I., & Martínez-Esquivias, F. (2024). Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles. Resources, 13(6), 70. https://doi.org/10.3390/resources13060070