Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solid Biofuel Characterization
2.2. Emissions Testing
3. Results and Discussion
3.1. Fuel Characterization
3.2. Emission Profile Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- IEA. Bioenergy, Energy System Overview; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/bioenergy (accessed on 3 March 2023).
- Ganguly, R.; Garlapati, V.K. Comparative Account of Carbon Footprints of Burning Gasoline and Ethanol. In Advances in Sugarcane Biorefinery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 241–252. [Google Scholar] [CrossRef]
- EEA. Air Pollution Emission Inventory Guidebook; EEA: Oslo, Norway, 2019; Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-small-combustion/view (accessed on 3 March 2023).
- Guo, M.X.; Song, W.P.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Manandhar, A.; Mousavi-Avval, S.H.; Tatum, J.; Shrestha, E.; Nazemi, P.; Shah, A. Solid biofuels. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 343–370. [Google Scholar] [CrossRef]
- Zbytek, Z.; Adamczyk, F. Possibility of Solid Biomass Use. Part 1. Legal Regulations and Division of Solid Biomass. Technika Rolnicza Ogrodnicza Leśna. 2017. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-97ff5bcd-1386-41fc-a794-c6a8dbad9ee9 (accessed on 5 March 2023).
- Van Meerbeek, K.; Muys, B.; Hermy, M. Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renew. Sustain. Energy Rev. 2019, 102, 139–149. [Google Scholar] [CrossRef]
- Wang, L.; Skjevrak, G.; Hustad, J.E.; Grønli, M.G. Effects of Sewage Sludge and Marble Sludge Addition on Slag Characteristics during Wood Waste Pellets Combustion. Energy Fuels 2011, 25, 5775–5785. Available online: https://pubs.acs.org/doi/10.1021/ef2007722 (accessed on 19 March 2023).
- Nunes, J.; Freitas, H. An indicator to assess the pellet production per forest area. A case-study from Portugal. For. Policy Econ. 2016, 70, 99–105. [Google Scholar] [CrossRef]
- Telmo, C.; Lousada, J. Heating values of wood pellets from different species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Venturini, E.; Vassura, I.; Agostini, F.; Pizzi, A.; Toscano, G.; Passarini, F. Effect of fuel quality classes on the emissions of a residential wood pellet stove. Fuel 2018, 211, 269–277. [Google Scholar] [CrossRef]
- ISO 17225-2:2021; Solid Biofuels—Fuel Specifications and Classes—Part 2: Graded Wood Pellets. International Organization for Standardization: Geneva, Switzerland, 2021. Available online: https://www.iso.org/obp/ui/#iso:std:iso:17225:-2:ed-2:v1:en (accessed on 5 October 2023).
- Duca, D.; Pedretti, E.F.; Toscano, G. Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel 2014, 135, 9–14. [Google Scholar] [CrossRef]
- García-Maraver, A.; Popov, V.; Zamorano, M. A review of European standards for pellet quality. Renew. Energy 2011, 36, 3537–3540. [Google Scholar] [CrossRef]
- Glavonjić, B.; Lazarević, A.; Čomić, D. Impact of wood pellets export on the development of their production in Serbia with the effects of substituting energy from fossil fuels and reduction of carbon dioxide emission. Glas. Šumarskog Fak. 2016, 114, 55–74. Available online: http://www.doiserbia.nb.rs/Article.aspx?ID=0353-45371614055G (accessed on 7 March 2023). [CrossRef]
- Glavonjić, B. Wood pellets market in the Western Balkans: State and prospects for development. In Proceedings of the 7th Central European Biomass Conference, Graz, Austria, 18 January 2023. [Google Scholar]
- Kurchania, A. Biomass energy. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 91–122. [Google Scholar] [CrossRef]
- Lam, M.K.; Minh Loy, A.C.; Yusup, S.; Lee, K.T. Biohydrogen production from algae. In Biohydrogen; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–245. [Google Scholar] [CrossRef]
- EUBIA. Biomass Co-Combustion. 2023. Available online: https://www.eubia.org/cms/wiki-biomass/co-combustion-with-biomass/ (accessed on 16 March 2023).
- Li, J.; Brzdekiewicz, A.; Yang, W.; Blasiak, W. Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl. Energy 2012, 99, 344–354. [Google Scholar] [CrossRef]
- Fang, M.; Yang, L.; Chen, G.; Shi, Z.; Luo, Z.; Cen, K. Experimental study on rice husk combustion in a circulating fluidized bed. Fuel Process. Technol. 2004, 85, 1273–1282. [Google Scholar] [CrossRef]
- Win, K.M.; Persson, T. Emissions from residential wood pellet boilers and stove characterized into start-up, steady operation, and stop emissions. Energy Fuels 2014, 28, 2496–2505. [Google Scholar] [CrossRef]
- Pavlović, B.; Ivezić, D.; Živković, M. State and perspective of individual household heating in Serbia: A survey-based study. Energy Build. 2021, 247, 111128. [Google Scholar] [CrossRef]
- HEAL. Air Pollution and Health in Serbia; HEAL: Brussels, Belgium, 2014; Available online: https://www.env-health.org/IMG/pdf/heal_briefing_air_serbia_eng.pdf (accessed on 19 March 2023).
- Czech, H.; Miersch, T.; Orasche, J.; Abbaszade, G.; Sippula, O.; Tissari, J.; Michalke, B.; Schnelle-Kreis, J.; Streibel, T.; Jokiniemi, J.; et al. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances. Sci. Total Environ. 2018, 612, 636–648. [Google Scholar] [CrossRef] [PubMed]
- All Companies in Serbia, Pellet Production. Available online: https://kompanije.co.rs/kategorija/proizvodnja-peleta (accessed on 15 February 2023).
- Britannica, Beech. Encyclopedia Britannica. Available online: https://www.britannica.com/plant/beech (accessed on 6 March 2023).
- Packham, J.R.; Thomas, P.A.; Atkinson, M.D.; Degen, T. Biological Flora of the British Isles: Fagus sylvatica. J. Ecol. 2012, 100, 1557–1608. [Google Scholar] [CrossRef]
- Fang, J.; Lechowicz, M.J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 2006, 33, 1804–1819. [Google Scholar] [CrossRef]
- De Rigo, D.; Caudullo, G.; Durrant, T.H.; San-Miguel-Ayanz, J. The European Atlas of Forest Tree Species: Modelling, Data and Information on Forest Tree Species; Publication Office of the European Union: Luxemburg, 2016; pp. 40–45. Available online: https://forest.jrc.ec.europa.eu/media/atlas/Fagus_sylvatica.pdf (accessed on 6 March 2023).
- Walthert, L.; Pannatier, E.G.; Meier, E.S. Shortage of nutrients and excess of toxic elements in soils limit the distribution of soil-sensitive tree species in temperate forests. For. Ecol. Manag. 2013, 297, 94–107. [Google Scholar] [CrossRef]
- Horgan, T.; Keane, M.; McCarthy, R.; Lally, M.; Thompson, D. A Guide to Forest Tree Species Selection and Silviculture in Ireland; National Council for Forest Research and Development (COFORD): Wexford, UK, 2003; Available online: http://www.coford.ie/media/coford/content/publications/projectreports/speciesmanual.pdf (accessed on 6 March 2023).
- Srbijašume. Glavne Vrste Šumskog Drveća. 2021. Available online: https://srbijasume.rs/gazdovanje-sumama/sumski-fond/glavne-vrste-sumskog-drveca/ (accessed on 7 March 2023).
- ISO 21945:2020; Solid biofuels — Simplified Sampling Method for Small Scale Applications. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/72270.html (accessed on 8 April 2023).
- ISO 14780:2017; Solid biofuels—Sample Preparation. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/obp/ui/#iso:std:iso:14780:ed-1:v1:en (accessed on 8 April 2023).
- ISO 18134–3:2015; Solid Biofuels—Determination of Moisture Content—Oven Dry Method. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:18134:-3:ed-1:v1:en (accessed on 8 April 2023).
- ISO 18123:2015; Solid Biofuels—Determination of Volatile Matter. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:18123:ed-2:v1:en (accessed on 9 April 2023).
- ISO 18122; Solid Biofuels—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:18122:ed-2:v1:en (accessed on 9 April 2023).
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/obp/ui/#iso:std:iso:18125:ed-1:v1:en (accessed on 10 April 2023).
- ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:16948:ed-1:v1:en (accessed on 10 April 2023).
- ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. International Organization for Standardization: Geneva, Switzerland, 2016. Available online: https://www.iso.org/obp/ui/#iso:std:iso:16994:ed-2:v1:en (accessed on 12 April 2023).
- ISO 16995:2015; Solid Biofuels—Determination of the Water Soluble Chloride, Sodium and Potassium Content. International Organization for Standardization: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/58083.html (accessed on 12 April 2023).
- ISO 21404:2020; Solid Biofuels—Determination of Ash Melting Behaviour. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/obp/ui/#iso:std:iso:21404:ed-1:v1:en (accessed on 14 April 2023).
- EN 16510-1:2018; Residential Solid Fuel Burning Appliances—Part 1: Genereral Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2018. Available online: https://standards.cen.eu/dyn/www/f?p=204:110:0 (accessed on 16 April 2023).
- Sanlisoy, A.; Melez, H.; Carpinlioglu, M.O. Characteristics of the solid fuels for the plasma gasification. Energy Procedia 2017, 141, 282–286. [Google Scholar] [CrossRef]
- Mansaray, K.; Ghaly, A.E.; Al-Taweel, A.M.; Hamdullahpur, F.; Ugursal, V.I. Air gasification of rice husk in a dual distributor type fluidized bed gasifier. Biomass Bioenergy 1999, 17, 315–332. [Google Scholar] [CrossRef]
- Duong, V.M.; Flener, U.; Hrbek, J.; Hofbauer, H. Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove. Renew. Energy 2022, 186, 183–194. [Google Scholar] [CrossRef]
- Spirchez, C.; Lunguleasa, A. Comparative study of spruce and beech pellets in terms of physical, mechanical, and energy properties. Pro Ligno 2019, 15, 321–328. Available online: http://www.proligno.ro/en/articles/2019/4/SPIRCHEZ.pdf (accessed on 21 April 2023).
- Ciupek, B.; Gołoś, K. Concentration of nitrogen oxides when burning wood pellets of various origins. J. Ecol. Eng. 2020, 21, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Masche, M.; Puig-Arnavat, M.; Jensen, P.A.; Holm, J.K.; Clausen, S.; Ahrenfeldt, J.; Henriksen, U.B. From wood chips to pellets to milled pellets: The mechanical processing pathway of Austrian pine and European beech. Powder Technol. 2019, 350, 134–145. [Google Scholar] [CrossRef]
- Kantová, N.; Holubčík, M.; Čaja, A.; Trnka, J.; Hrabovský, P.; Belány, P. Co-Combustion Investigation of Wood Pellets Blended with FFP2 Masks: Analysis of the Ash Melting Temperature. Forests 2023, 14, 636. [Google Scholar] [CrossRef]
- Saletnik, B.; Saletnik, A.; Zaguła, G.; Bajcar, M.; Puchalski, G. The Use of Wood Pellets in the Production of High Quality Biocarbon Materials. Materials 2022, 15, 4404. [Google Scholar] [CrossRef] [PubMed]
- Lunguleasa, A.; Spirchez, C.; Olarescu, A.M. Calorific Characteristics of Larch (Larix decidua) and Oak (Quercus robur) Pellets Realized from Native and Torrefied Sawdust. Forests 2022, 13, 361. [Google Scholar] [CrossRef]
- Miranda, T.; Montero, I.; Sepúlveda, F.J.; Arranz, J.I.; Rojas, C.V.; Nogales, S. A review of pellets from different sources. Materials 2015, 8, 1413–1427. [Google Scholar] [CrossRef]
- Aniszewska, M.; Gendek, A. Comparison of heat of combustion and calorific value of the cones and wood of selected forest tree species. Lesn. Pr. Badaw. 2014, 75, 231. [Google Scholar] [CrossRef]
- Arranz, J.; Miranda, M.T.; Montero, I.; Sepúlveda, F.J.; Rojas, C.V. Characterization and combustion behaviour of commercial and experimental wood pellets in South West Europe. Fuel 2015, 142, 199–207. [Google Scholar] [CrossRef]
- Perez-Jimenez, J.A. Gaseous Emissions from the Combustion of Biomass Pellets. Biomass Pelletization Stand. Prod. 2015, 2, 85. Available online: https://books.google.cz/books?hl=sr&lr=&id=Mn_6CAAAQBAJ&oi=fnd&pg=PA85&ots=yJ9V8XrjeB&sig=MhJUm3mn2P0c21UloLF9BivdSEo&redir_esc=y#v=onepage&q&f=false (accessed on 30 April 2023).
- Sippula, O.; Hytönen, K.; Tissari, J.; Raunemaa, T.; Jokiniemi, J. Effect of wood fuel on the emissions from a top-feed pellet stove. Energy Fuels 2007, 21, 1151–1160. Available online: https://pubs.acs.org/doi/full/10.1021/ef060286e (accessed on 30 April 2023). [CrossRef]
- Schmidt, G.; Trouvé, G.; Leyssens, G.; Schönnenbeck, C.; Genevray, P.; Cazier, F.; Dewaele, D.; Vandenbilcke, C.; Faivre, E.; Denance, Y.; et al. Wood washing: Influence on gaseous and particulate emissions during wood combustion in a domestic pellet stove. Fuel Process. Technol. 2018, 174, 104–117. [Google Scholar] [CrossRef]
- Lamberg, H.; Tissari, J.; Jokiniemi, J.; Sippula, O. Fine particle and gaseous emissions from a small-scale boiler fueled by pellets of various raw materials. Energy Fuels 2013, 27, 7044–7053. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Nominal heat output | 8 | [kW] |
Range of heat output | 2.4–8.3 | [kW] |
Type of fuel | Wood pellets | |
Start-up method | Electric ignition | |
Capacity of pellet hopper | 32 | [kg] |
Combustion time per hopper (min./max.) | 20/60 | [h] |
Thermal efficiency | 90/95 | [%] |
Temperature of flue gas | 206 | [°C] |
Chimney draught at nominal heat output | 11 | [Pa] |
Chimney draught at minimal heat output | 5 | [Pa] |
Flue gases mass flow rate | 5.6 | [g/s] |
Dimensions | ||
Height | 1201 | [mm] |
Width | 544 | [mm] |
Depth | 499 | [mm] |
Flue gas outlet diameter | 80 | [mm] |
Weight | 110 | [kg] |
Parameter | Value | Unit | |
---|---|---|---|
A1 | A2 | ||
Start time | 08:45 | 16:45 | [hh:mm] |
End time | 15:00 | 23:00 | [hh:mm] |
Actual measurement duration | 6.25 | 6.25 | [h] |
Solid biofuel mass | 9.92 | 11.25 | [kg] |
Solid biofuel mass flow | 1.587 | 1.800 | [kg/h] |
Ambient temperature | 9.3 | 7.0 | [°C] |
Atmospheric pressure | 1024 | 1023 | [hPa] |
Atmospheric relative humidity | 59 | 69 | [%] |
Average room temperature | 20.1 | 19.5 | [°C] |
Average exhaust gas temperature | 193.5 | 211.3 | [°C] |
Average negative pressure in the exhaust gas draught | 34.2 | 35.3 | [Pa] |
Average exhaust gas flow rate at standard conditions | 17.11 | 19.6 | [m3/h] |
Air to fuel ratio (λ) | 1.5 | 1.5 | [-] |
Power consumption | 27.30 | 31.71 | [MJ/h] |
Parameter | Value | Unit | |||||
---|---|---|---|---|---|---|---|
A1 | A2 | ||||||
Raw | Dry | Daf | Raw | Dry | Daf | ||
Proximate analysis | |||||||
Moisture content | 7.16 | 0.00 | 0.00 | 5.54 | 0.00 | 0.00 | [%] |
Volatile matter | 78.35 | 84.40 | 84.79 | 77.88 | 82.45 | 83.45 | [%] |
Ash content | 0.43 | 0.46 | 0.00 | 1.13 | 1.20 | 0.00 | [%] |
Fixed carbon | 14.06 | 15.15 | 15.21 | 15.45 | 16.35 | 16.55 | [%] |
Specific energy | |||||||
HHV | 17,205 | 18,532 | 18,617 | 17,620 | 18,653 | 18,879 | [kJ/kg] |
LHV | 15,804 | 17,211 | 17,290 | 16,253 | 17,349 | 17,559 | [kJ/kg] |
Ultimate analysis | |||||||
C | 45.06 | 48.53 | 48.75 | 45.59 | 48.26 | 48.84 | [%] |
H | 5.62 | 6.06 | 6.09 | 5.65 | 5.98 | 6.05 | [%] |
N | 0.11 | 0.12 | 0.12 | 0.19 | 0.20 | 0.20 | [%] |
S | 0.04 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 | [%] |
Cl | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | [%] |
O | 41.58 | 44.79 | 44.99 | 41.91 | 44.37 | 44.90 | [%] |
Ash melting temperature | |||||||
DT | 890 | 980 | [°C] | ||||
SST | 900 | 1000 | [°C] | ||||
HT | 1450 | 1430 | [°C] | ||||
FT | 1460 | 1440 | [°C] |
Air Pollutant | Value | Unit | |
---|---|---|---|
A1 | A2 | ||
Measurement readings | |||
Oxygen | 15.42 | 14.36 | [%] |
Carbon dioxide | 5.30 | 6.35 | [%] |
Carbon monoxide | 1149 | 815 | [ml/m3] |
Nitrogen oxides as NO2 | 63.9 | 93.7 | [ml/m3] |
Sulfur dioxide | 1.5 | 1.6 | [ml/m3] |
Total organic carbon as C3H8 | 26.4 | 11.5 | [ml/m3] |
Mass concentration at standard conditions | |||
Carbon monoxide | 2064 | 1465 | [mg/m3] |
Nitrogen oxides as NO2 | 188 | 276 | [mg/m3] |
Sulfur dioxide | 6.08 | 6.47 | [mg/m3] |
Total organic carbon as C3H8 | 61.46 | 26.75 | [mg/m3] |
Average mass flow | |||
Carbon monoxide | 35.31 | 28.72 | [g/h] |
Nitrogen oxides as NO2 | 3.22 | 5.41 | [g/h] |
Sulfur dioxide | 0.10 | 0.13 | [g/h] |
Total organic carbon as C3H8 | 1.05 | 0.52 | [g/h] |
Average emission factor referring to the fuel quantity | |||
Carbon monoxide | 22.25 | 15.96 | [g/kg] |
Nitrogen oxides as NO2 | 2.03 | 3.01 | [g/kg] |
Sulfur dioxide | 0.07 | 0.07 | [g/kg] |
Total organic carbon as C3H8 | 0.66 | 0.29 | [g/kg] |
Average emission factor referring to the fuel energy content | |||
Carbon monoxide | 1293 | 906 | [mg/MJ] |
Nitrogen oxides as NO2 | 118 | 171 | [mg/MJ] |
Sulfur dioxide | 4.1 | 4.0 | [mg/MJ] |
Total organic carbon as C3H8 | 39 | 17 | [mg/MJ] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matijašević, V.; Beňo, Z.; Tekáč, V.; Duong, V.M. Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia. Resources 2024, 13, 104. https://doi.org/10.3390/resources13080104
Matijašević V, Beňo Z, Tekáč V, Duong VM. Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia. Resources. 2024; 13(8):104. https://doi.org/10.3390/resources13080104
Chicago/Turabian StyleMatijašević, Vasilije, Zdeněk Beňo, Viktor Tekáč, and Van Minh Duong. 2024. "Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia" Resources 13, no. 8: 104. https://doi.org/10.3390/resources13080104
APA StyleMatijašević, V., Beňo, Z., Tekáč, V., & Duong, V. M. (2024). Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia. Resources, 13(8), 104. https://doi.org/10.3390/resources13080104