The Combined Use of GIS and Generative Artificial Intelligence in Detecting Potential Geodiversity Sites and Promoting Geoheritage
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
- The identification of points of interest (potential geodiversity sites) by employing an automated method that involves the use of GIS;
- The generation of informative and promotional materials for stakeholders, local communities and potential geotourists using GAI;
- The manual verification of results by using data layers in GIS, photographs available publicly on the Internet and field work.
3.1. Identification of Points of Interest
3.2. Generation of Content
3.3. Validation of Generated Data
4. Results
5. Discussion
5.1. Challenges of the Use of GAI
5.2. Limitations of the Study
5.3. Future Directions
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrera-Franco, G.; Carrión-Mero, P.; Alvarado, N.; Morante-Carballo, F.; Maldonado, A.; Caldevilla, P.; Briones-Bitar, J.; Berrezueta, E. Geosites and georesources to foster geotourism in communities: Case study of the Santa Elena Peninsula Geopark Project in Ecuador. Sustainability 2020, 12, 4484. [Google Scholar] [CrossRef]
- Štrba, Ľ.; Vravcová, A.; Podoláková, M.; Varcholová, L.; Kršák, B. Linking Geoheritage or Geosite Assessment Results with Geotourism Potential and Development: A Literature Review. Sustainability 2023, 15, 9539. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Borja-Bernal, C.; Herrera-Franco, G.; Morante-Carballo, F.; Jaya-Montalvo, M.; Maldonado-Zamora, A.; Paz-Salas, N.; Berrezueta, E. Geosites and geotourism in the local development of communities of the Andes Mountains. A case study. Sustainability 2021, 13, 4624. [Google Scholar] [CrossRef]
- Mariotto, F.P.; Drymoni, K.; Bonali, F.L.; Tibaldi, A.; Corti, N.; Oppizzi, P. Geosite assessment and communication: A review. Resources 2023, 12, 29. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H. GEOAM: A Holistic Assessment Tool for Unveiling the Geoeducational Potential of Geosites. Geosciences 2023, 13, 210. [Google Scholar] [CrossRef]
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The foundation for sustainable geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Prosser, C.D.; Díaz-Martínez, E.; Larwood, J.G. The conservation of geosites. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. [Google Scholar]
- Coratza, P.; Vandelli, V.; Fiorentini, L.; Paliaga, G.; Faccini, F. Bridging terrestrial and marine geoheritage: Assessing geosites in Portofino Natural Park (Italy). Water 2019, 11, 2112. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature; Wiley Blackwell: Chichester, UK, 2013; pp. 154–196. [Google Scholar]
- Boothroyd, A.; McHenry, M. Old processes, new movements: The inclusion of geodiversity in biological and ecological discourse. Diversity 2019, 11, 216. [Google Scholar] [CrossRef]
- Maliniemi, T.; Tukiainen, H.; Hjort, J.; Toivanen, M.; Vernham, G.; Bailey, J.J.; Baines, O.; Benniston, L.; Brilha, J.; Field, R.; et al. Too much diversity—Multiple definitions of geodiversity hinder its potential in biodiversity research. Divers. Distrib. 2024, 30, e13843. [Google Scholar] [CrossRef]
- Comer, P.J.; Pressey, R.L.; Hunter, M.L., Jr.; Schloss, C.A.; Buttrick, S.C.; Heller, N.E.; Shaffer, M.L. Incorporating geodiversity into conservation decisions. Conserv. Biol. 2015, 29, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Lü, Y.; Hu, J.; Yin, L. Geodiversity underpins biodiversity but the relations can be complex: Implications from two biodiversity proxies. Glob. Ecol. Conserv. 2021, 31, e01830. [Google Scholar] [CrossRef]
- Tukiainen, H.; Toivanen, M.; Maliniemi, T. Geodiversity and biodiversity. Geol. Soc. Lond. Spec. Publ. 2023, 530, 31–48. [Google Scholar] [CrossRef]
- Gill, J.L.; Blois, J.L.; Benito, B.; Dobrowski, S.; Hunter, M.L., Jr.; McGuire, J.L. A 2.5-million-year perspective on coarse-filter strategies for conserving nature’s stage. Conserv. Biol. 2015, 29, 640–648. [Google Scholar] [CrossRef]
- Hjort, J.; Gordon, J.E.; Gray, M.; Hunter, M.L., Jr. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 2015, 29, 630–639. [Google Scholar] [CrossRef]
- Lawler, J.J.; Ackerly, D.D.; Albano, C.M.; Anderson, M.G.; Dobrowski, S.Z.; Gill, J.L.; Weiss, S.B. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 2015, 29, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Gordon, J.E.; Brown, E.J. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc. 2013, 124, 659–673. [Google Scholar] [CrossRef]
- Stoffelen, A. Where is the community in geoparks? A systematic literature review and call for attention to the societal embedding of geoparks. Area 2020, 52, 97–104. [Google Scholar] [CrossRef]
- Vernham, G.; Bailey, J.J.; Chase, J.M.; Hjort, J.; Field, R.; Schrodt, F. Understanding trait diversity: The role of geodiversity. Trends Ecol. Evol. 2023, 38, 736–748. [Google Scholar] [CrossRef]
- Martin, S.; Reynard, E.; Pellitero Ondicol, R.; Ghiraldi, L. Multi-scale web mapping for geoheritage visualisation and promotion. Geoheritage 2014, 6, 141–148. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Legoinha, P.; González-Delgado, J.A.; Dabrio, C.J.; Pais, J.; Goy, J.L.; Cunha, T. Augmented reality in a hiking tour of the Miocene Geoheritage of the Central Algarve cliffs (Portugal). Geoheritage 2017, 9, 121–131. [Google Scholar] [CrossRef]
- Marino Alfonso, J.L.; Poblete Piedrabuena, M.Á.; Beato Bergua, S.; Herrera Arenas, D. Geotourism itineraries and augmented reality in the geomorphosites of the Arribes del Duero Natural Park (Zamora Sector, Spain). Geoheritage 2021, 13, 16. [Google Scholar] [CrossRef]
- Giordano, E.; Magagna, A.; Ghiraldi, L.; Bertok, C.; Lozar, F.; d’Atri, A.; Violanti, D. Multimedia and virtual reality for imaging the climate and environment changes through Earth history: Examples from the Piemonte (NW Italy) geoheritage (PROGEO-Piemonte Project). In Engineering Geology for Society and Territory-Volume 8: Preservation of Cultural Heritage; Lollino, G., Giordan, D., Marunteanu, C., Christaras, B., Yoshinori, I., Margottini, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 257–260. [Google Scholar]
- Martínez-Graña, A.; González-Delgado, J.A.; Nieto, C.; Villalba, V.; Cabero, T. Geodiversity and Geoheritage to promote geotourism using augmented reality and 3D virtual flights in the Arosa Estuary (NW Spain). Land 2023, 12, 1068. [Google Scholar] [CrossRef]
- Papadopoulou, E.E.; Papakonstantinou, A.; Zouros, N.; Soulakellis, N. Scale-variant flight planning for the creation of 3D geovisualization and augmented reality maps of geosites: The case of Voulgaris Gorge, Lesvos, Greece. Appl. Sci. 2021, 11, 10733. [Google Scholar] [CrossRef]
- Antoniou, V.; Nomikou, P.; Panousis, D.; Zafeirakopoulou, E. Nisyros Volcanic island: A geosite through a tailored GIS story. Geosciences 2021, 11, 132. [Google Scholar] [CrossRef]
- Mariotto, F.P.; Corti, N.; Drymoni, K. Advanced technologies for geosite visualization and valorization: A review. Appl. Sci. 2023, 13, 5598. [Google Scholar] [CrossRef]
- Mariotto, F.P.; Bonali, F.L. Virtual geosites as innovative tools for geoheritage popularization: A case study from Eastern Iceland. Geosciences 2021, 11, 149. [Google Scholar] [CrossRef]
- Rapprich, V.; Lisec, M.; Fiferna, P.; Závada, P. Application of modern technologies in popularization of the Czech volcanic geoheritage. Geoheritage 2017, 9, 413–420. [Google Scholar] [CrossRef]
- Cayla, N.; Martin, S. Digital geovisualisation technologies applied to geoheritage management. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 289–303. [Google Scholar]
- Pica, A.; Reynard, E.; Grangier, L.; Kaiser, C.; Ghiraldi, L.; Perotti, L.; Del Monte, M. GeoGuides, urban geotourism offer powered by mobile application technology. Geoheritage 2018, 10, 311–326. [Google Scholar] [CrossRef]
- Gambino, F.; Borghi, A.; d’Atri, A.; Gallo, L.M.; Ghiraldi, L.; Giardino, M.; Macadam, J. TOURinSTONES: A free mobile application for promoting geological heritage in the city of Torino (NW Italy). Geoheritage 2019, 11, 3–17. [Google Scholar] [CrossRef]
- Tormey, D. New approaches to communication and education through geoheritage. Int. J. Geoheritage Parks 2019, 7, 192–198. [Google Scholar] [CrossRef]
- Quesada-Valverde, M.E.; Quesada-Román, A. Worldwide trends in methods and resources promoting geoconservation, geotourism, and geoheritage. Geosciences 2023, 13, 39. [Google Scholar] [CrossRef]
- Cooper, G. Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. J. Sci. Educ. Technol. 2023, 32, 444–452. [Google Scholar] [CrossRef]
- Chang, C.H.; Kidman, G. The rise of generative artificial intelligence (AI) language models—Challenges and opportunities for geographical and environmental education. Int. Res. Geogr. Environ. Educ. 2023, 32, 85–89. [Google Scholar] [CrossRef]
- Ruiz-Rojas, L.I.; Acosta-Vargas, P.; De-Moreta-Llovet, J.; Gonzalez-Rodriguez, M. Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability 2023, 15, 11524. [Google Scholar] [CrossRef]
- Yu, H.; Guo, Y. Generative artificial intelligence empowers educational reform: Current status, issues, and prospects. Front. Educ. 2023, 8, 1183162. [Google Scholar] [CrossRef]
- Chen, X.; Wu, D. Automatic generation of multimedia teaching materials based on generative AI: Taking Tang poetry as an example. IEEE Trans. Learn. Technol. 2024, 17, 1353–1366. [Google Scholar] [CrossRef]
- Barreto, F.; Moharkar, L.; Shirodkar, M.; Sarode, V.; Gonsalves, S.; Johns, A. Generative artificial intelligence: Opportunities and challenges of large language models. In Intelligent Computing and Networking, Proceedings of the International Conference on Intelligent Computing and Networking, Singapore, 24–25 February 2023; Balas, V.E., Semwal, V.B., Khandare, A., Eds.; Springer Nature: Singapore, 2023; pp. 545–553. [Google Scholar]
- Baidoo-Anu, D.; Ansah, L.O. Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. J. AI 2023, 7, 52–62. [Google Scholar] [CrossRef]
- Wang, S.; Hu, T.; Xiao, H.; Li, Y.; Zhang, C.; Ning, H.; Zhu, R.; Li, Z.; Ye, X. GPT, large language models (LLMs) and generative artificial intelligence (GAI) models in geospatial science: A systematic review. Int. J. Digit. Earth 2024, 17, 2353122. [Google Scholar] [CrossRef]
- Corchado, J.M.; López, S.; Garcia, R.; Chamoso, P. Generative artificial intelligence: Fundamentals. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2023, 12, e31704. [Google Scholar] [CrossRef]
- Chowdhary, K.R. Natural language processing. In Fundamentals of Artificial Intelligence; Chowdhary, K.R., Ed.; Springer: New Delhi, India, 2020; pp. 603–649. [Google Scholar]
- Mahowald, K.; Ivanova, A.A.; Blank, I.A.; Kanwisher, N.; Tenenbaum, J.B.; Fedorenko, E. Dissociating language and thought in large language models. Trends Cogn. Sci. 2024, 28, 517–540. [Google Scholar] [CrossRef] [PubMed]
- Koh, J.Y.; Fried, D.; Salakhutdinov, R.R. Generating images with multimodal language models. In Advances in Neural Information Processing Systems; Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2023; Volume 36, pp. 21487–21506. [Google Scholar]
- Davila, A.; Colan, J.; Hasegawa, Y. Comparison of fine-tuning strategies for transfer learning in medical image classification. Image Vis. Comput. 2024, 146, 105012. [Google Scholar] [CrossRef]
- Chen, J.; Lin, H.; Han, X.; Sun, L. Benchmarking large language models in retrieval-augmented generation. Proc. AAAI Conf. Artif. Intell. 2024, 38, 17754–17762. [Google Scholar] [CrossRef]
- Venerito, V.; Bilgin, E.; Iannone, F.; Kiraz, S. AI am a rheumatologist: A practical primer to large language models for rheumatologists. Rheumatology 2023, 62, 3256–3260. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Trugman, D.; Lin, Y. SeismoGen: Seismic waveform synthesis using GAN with application to seismic data augmentation. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020077. [Google Scholar] [CrossRef]
- Kuckreja, K.; Danish, M.S.; Naseer, M.; Das, A.; Khan, S.; Khan, F.S. Geochat: Grounded large vision-language model for remote sensing. arXiv 2023, arXiv:2311.15826. [Google Scholar]
- Garza, A.; Mergenthaler-Canseco, M. TimeGPT-1. arXiv 2023, arXiv:2310.03589. [Google Scholar]
- Hadid, A.; Chakraborty, T.; Busby, D. When geoscience meets generative AI and large language models: Foundations, trends, and future challenges. arXiv 2024, arXiv:2402.03349. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, T.; He, Z.; Xu, Y.; Chen, Q.; Shi, Y.; Fu, L.; Zhang, W.; Wang, X.; Zhou, C.; et al. K2: A foundation language model for geoscience knowledge understanding and utilization. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining, Merida, Mexico, 4–8 March 2024; pp. 161–170. [Google Scholar]
- Khan, U.; Khan, K.A. Generative artificial intelligence (GAI) in hospitality and tourism marketing: Perceptions, risks, benefits, and policy implications. J. Glob. Hosp. Tour. 2024, 3, 269–284. [Google Scholar]
- Reynard, E. Scientific research and tourist promotion of geomorphological heritage. Geogr. Fis. Din. Quat. 2008, 31, 225–230. [Google Scholar]
- Henriques, M.H.; Canales, M.L.; García-Frank, A.; Gomez-Heras, M. Accessible geoparks in Iberia: A challenge to promote geotourism and education for sustainable development. Geoheritage 2019, 11, 471–484. [Google Scholar] [CrossRef]
- Rossi, G.S.; Garcia, M.D.G.M.; Bourotte, C.L.M. Educational Materials on Geosciences: Analysis from UNESCO Global Geoparks and Potential for Application to Protected Areas. Geoconserv. Res. 2022, 5, 165–194. [Google Scholar]
- Tomasi, S.; Paviotti, G.; Cavicchi, A. Educational tourism and local development: The role of universities. Sustainability 2020, 12, 6766. [Google Scholar] [CrossRef]
- Sanz, J.; Zamalloa, T.; Maguregi, G.; Fernandez, L.; Echevarria, I. Educational potential assessment of geodiversity sites: A proposal and a case study in the Basque Country (Spain). Geoheritage 2020, 12, 23. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Nowak, I.; Baran-Zgłobicka, B.; Głuszek, A. The Use of Geosites in Education—A Case Study in Central Poland. Resources 2024, 13, 15. [Google Scholar] [CrossRef]
- Sulaiman, M.Z.; Wilson, R. Tourism Promotional Materials. In Translation and Tourism: Strategies for Effective Cross-Cultural Promotion; Sulaiman, M.Z., Wilson, R., Eds.; Springer: Singapore, 2019; pp. 154–196. [Google Scholar]
- Zakharovskyi, V.; Németh, K. Qualitative-quantitative assessment of geodiversity of Western Samoa (SW Pacific) to identify places of interest for further geoconservation, geoeducation, and geotourism development. Geographies 2021, 1, 362–380. [Google Scholar] [CrossRef]
- Li, B.X.; Németh, K.; Zakharovskyi, V.; Palmer, J.; Palmer, A.; Proctor, J. Geodiversity estimate of the Arxan–Chaihe Volcanic Field extending across two geoparks in Inner Mongolia, NE China. Geol. Soc. London Spec. Publ. 2023, 530, 107–125. [Google Scholar] [CrossRef]
- Zakharovskyi, V.; Kósik, S.; Li, B.; Németh, K. Geosite determination based on geodiversity assessment utilizing the volcanic history of a near-sea-level explosive eruption-dominated volcanic island: Tūhua/Mayor Island, New Zealand. Geol. Soc. London Spec. Publ. 2023, 530, 127–140. [Google Scholar] [CrossRef]
- Ólafsdóttir, R.; Tverijonaite, E. Geotourism: A systematic literature review. Geosciences 2018, 8, 234. [Google Scholar] [CrossRef]
- Duarte, A.; Braga, V.; Marques, C.; Sá, A.A. Geotourism and territorial development: A systematic literature review and research agenda. Geoheritage 2020, 12, 65. [Google Scholar] [CrossRef]
- Nemeth, B.; Nemeth, K.; Procter, J.N.; Farrelly, T. Geoheritage conservation: Systematic mapping study for conceptual synthesis. Geoheritage 2021, 13, 45. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Mata-Perelló, J.; Caicedo-Potosí, J.; Carrión-Mero, P. Vulnerability in Geosites: A Systematic Literature Review. In Sustainability in Practice: Addressing Challenges and Creating Opportunities in Latin America; Filho, W.L., Frankenberger, F., Tortato, U., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 395–407. [Google Scholar]
- Koupatsiaris, A.A.; Drinia, H. Exploring Greek UNESCO Global Geoparks: A Systematic Review of Grey Literature on Greek Universities and Future Research Avenues for Sustainable Development. Geosciences 2023, 13, 296. [Google Scholar] [CrossRef]
- Tanaś, J. The origin of the buyers of properties in Poznań and its suburbs. Real Estate Manag. Valuation 2014, 22, 5–12. [Google Scholar] [CrossRef]
- Tylmann, K.; Rinterknecht, V.R.; Woźniak, P.P.; Bourles, D.; Schimmelpfennig, I.; Guillou, V.; Aster Team. The Local Last Glacial Maximum of the southern Scandinavian Ice Sheet front: Cosmogenic nuclide dating of erratics in northern Poland. Quat. Sci. Rev. 2019, 219, 36–46. [Google Scholar] [CrossRef]
- Szuman, I.; Kalita, J.Z.; Ewertowski, M.W.; Clark, C.D.; Livingstone, S.J. Dynamics of the last Scandinavian Ice Sheet’s southernmost sector revealed by the pattern of ice streams. Boreas 2021, 50, 764–780. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Hildebrandt-Radke, I.; Mazurek, M.; Makohonienko, M. Anthropogeomorphological metamorphosis of an urban area in the postglacial landscape: A case study of Poznań city. In Urban Geomorphology. Landforms and Processes in Cities; Thornbush, M., Allen, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 55–77. [Google Scholar]
- Kacprzak, E.; Głębocki, B. Urban sprawl a zmiany zasobów użytków rolnych na obszarach wiejskich aglomeracji poznańskiej w latach 1990–2016. Rozw. Reg. Polityka Reg. 2016, 34, 99–118. [Google Scholar]
- Lityński, P. Urban Sprawl of Poznań: Morphological and Microeconomic Profile. Rozw. Reg. Polityka Reg. 2020, 52, 81–99. [Google Scholar]
- Szoszkiewicz, K.; Zydron, A.; Górna, M. Znaczenie Wielkopolskiego Parku Narodowego dla mieszkańców aglomeracji poznańskiej. Sylwan 2015, 159, 259–264. [Google Scholar]
- Zwoliński, Z.; Hildebrandt-Radke, I.; Mazurek, M.; Makohonienko, M. Existing and proposed urban geosites values resulting from geodiversity of Poznań city. Quaest. Geogr. 2017, 36, 125–149. [Google Scholar] [CrossRef]
- Wolniewicz, P. Classification and quantification of urban geodiversity and its intersection with cultural heritage. Geoheritage 2022, 14, 63. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Ochrona przyrody nieożywionej na terenie Wielkopolskiego Parku Narodowego. Landf. Anal. 2011, 16, 191–193. [Google Scholar]
- Górska-Zabielska, M. Ochrona głazów narzutowych w Wielkopolskim Parku Narodowym. Probl. Ekol. Krajobrazu 2011, 29, 141–149. [Google Scholar]
- Lorenc, M. Ścieżka Dydaktyczna “Na Tropach Lądolodu”. Przewodnik po Ścieżce Dydaktycznej; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2020; pp. 1–40. [Google Scholar]
- Giełda-Pinas, K. Waloryzacja przyrodnicza krajobrazu Pojezierza Gnieźnieńskiego. Probl. Ekol. Kraj. 2012, 33, 77–85. [Google Scholar]
- Piotrowska, I. Geopark Poznański Przełom Warty. Przegląd Wielkop. 2012, 97, 14–22. [Google Scholar]
- Rogowski, M. Geopark Morasko jako potencjalny produkt turystyczny. Stud. Perieget. 2015, 13, 215–230. [Google Scholar]
- Yin, R.K. Case Study Research: Design and Methods, 4th ed.; Sage Inc.: Thousand Oaks, CA, USA, 2009; pp. 154–196. [Google Scholar]
- Rowley, J. Using case studies in research. Manag. Res. News 2002, 25, 16–27. [Google Scholar] [CrossRef]
- Baxter, P.; Jack, S. Qualitative case study methodology: Study design and implementation for novice researchers. Qual. Rep. 2008, 13, 544–559. [Google Scholar] [CrossRef]
- Mastej, W.; Bartuś, T. Supervised classification of morphodiversity using artificial neural networks on the example of the Pieniny Mts (Poland). Catena 2024, 242, 108086. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Viewpoint geosites—Values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Diniz, M.T.M.; de Araújo, I.G.D. Proposal of a quantitative assessment method for viewpoint geosites. Resources 2022, 11, 115. [Google Scholar] [CrossRef]
- Kubalíková, L.; Kirchner, K.; Kuda, F. Viewpoint geosites and their potential for geoeducation and geotourism. In Public Recreation and Landscape Protection with Environment Hand in Hand; Fialová, J., Ed.; Mendel University in Brno: Brno, Czech Republic, 2022; pp. 440–445. [Google Scholar]
- Stepinski, T.F.; Jasiewicz, J. Geomorphons—A new approach to classification of landforms. Geomorphometry Proc. 2011, 2011, 109–112. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Hognogi, G.G.; Pop, A.M.; Mălăescu, S.; Nistor, M.M. Increasing territorial planning activities through viewshed analysis. Geocarto Int. 2022, 37, 627–637. [Google Scholar] [CrossRef]
- Roumeliotis, K.I.; Tselikas, N.D.; Nasiopoulos, D.K. LLMs in e-commerce: A comparative analysis of GPT and LLaMA models in product review evaluation. Nat. Lang. Process. J. 2024, 6, 100056. [Google Scholar] [CrossRef]
- Sandmann, S.; Riepenhausen, S.; Plagwitz, L.; Varghese, J. Systematic analysis of ChatGPT, Google search and Llama 2 for clinical decision support tasks. Nat. Commun. 2024, 15, 2050. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Zhang, K.; Dan, R.; Jiang, S.; Zhang, Y. Chatdoctor: A medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain knowledge. Cureus 2024, 15, e40895. [Google Scholar] [CrossRef]
- Zhang, X.; Rajabi, N.; Duh, K.; Koehn, P. Machine translation with large language models: Prompting, few-shot learning, and fine-tuning with qlora. In Proceedings of the Eighth Conference on Machine Translation, Singapore, 6–7 December 2023; Koehn, P., Haddow, B., Kocmi, T., Monz, C., Eds.; Association for Computational Linguistics: Singapore, 2023; pp. 468–481. [Google Scholar]
- Meng, Y.; Michalski, M.; Huang, J.; Zhang, Y.; Abdelzaher, T.; Han, J. Tuning language models as training data generators for augmentation-enhanced few-shot learning. In Proceedings of the International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; pp. 24457–24477. [Google Scholar]
- Raiaan, M.A.K.; Mukta, M.S.H.; Fatema, K.; Fahad, N.M.; Sakib, S.; Mim, M.M.J.; Ahmad, J.; Ali, M.E.; Azam, S. A review on large Language Models: Architectures, applications, taxonomies, open issues and challenges. IEEE Access 2024, 12, 26839–26874. [Google Scholar] [CrossRef]
- Hose, T.A. Geotourism and interpretation. In Geotourism; Dowling, R.K., Newsome, D., Eds.; Routledge: Oxford, UK, 2006; pp. 221–241. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; CPS: Los Alamitos, CA, USA, 2022; pp. 10684–10695. [Google Scholar]
- Turchi, T.; Carta, S.; Ambrosini, L.; Malizia, A. Human-AI co-creation: Evaluating the impact of large-scale text-to-image generative models on the creative process. In International Symposium on End User Development; Spano, L.D., Schmidt, A., Santoro, C., Stumpf, S., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 35–51. [Google Scholar]
- Wolniewicz, P. Quantifying geodiversity at the continental scale: Limitations and prospects. Resources 2023, 12, 59. [Google Scholar] [CrossRef]
- Pesovski, I.; Santos, R.; Henriques, R.; Trajkovik, V. Generative AI for customizable learning experiences. Sustainability 2024, 16, 3034. [Google Scholar] [CrossRef]
- Božić, S.; Tomić, N. Canyons and gorges as potential geotourism destinations in Serbia: Comparative analysis from two perspectives—‘general geotourists’ and ‘pure geotourists’. Open Geosci. 2015, 7, 20150040. [Google Scholar] [CrossRef]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Kirova, V.D.; Ku, C.S.; Laracy, J.R.; Marlowe, T.J. The ethics of artificial intelligence in the era of generative AI. J. Syst. Cybern. Inform. 2023, 21, 42–50. [Google Scholar] [CrossRef]
- Wach, K.; Duong, C.D.; Ejdys, J.; Kazlauskaitė, R.; Korzynski, P.; Mazurek, G.; Paliszkiewicz, J.; Ziemba, E. The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrep. Bus. Econ. Rev. 2023, 11, 7–30. [Google Scholar] [CrossRef]
- Zlateva, P.; Steshina, L.; Petukhov, I.; Velev, D. A Conceptual Framework for Solving Ethical Issues in Generative Artificial Intelligence. In Electronics, Communications and Networks, Proceedings of the 13th International Conference (CECNet 2023), Macao, China, 17–20 November 2023; Tallón-Ballesteros, A.J., Cortés-Ancos, E., López-García, D.A., Eds.; IOS Press: Amsterdam, The Netherlands, 2024; pp. 110–119. [Google Scholar]
- Bonadio, E.; McDonagh, L. Artificial intelligence as producer and consumer of copyright works: Evaluating the consequences of algorithmic creativity. Intell. Prop. Q. 2020, 2, 112–137. [Google Scholar]
- Lucchi, N. ChatGPT: A case study on copyright challenges for generative artificial intelligence systems. Eur. J. Risk Regul. 2023, 1–23. [Google Scholar] [CrossRef]
- Cyphert, A.B. Generative AI, plagiarism, and copyright infringement in legal documents. Minn. J. Law Sci. Technol. 2024, 25, 49. [Google Scholar]
- Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Toronto, ON, Canada, 3–10 March 2021; pp. 610–623. [Google Scholar]
- Paullada, A.; Raji, I.D.; Bender, E.M.; Denton, E.; Hanna, A. Data and its (dis) contents: A survey of dataset development and use in machine learning research. Patterns 2021, 2, 11. [Google Scholar] [CrossRef]
- Franceschelli, G.; Musolesi, M. Copyright in generative deep learning. Data Policy 2022, 4, e17. [Google Scholar] [CrossRef]
- Sag, M. Copyright safety for generative AI. Hous. L. Rev. 2023, 61, 295. [Google Scholar] [CrossRef]
- Richter, K.F.; Scheider, S. Current topics and challenges in geoAI. KI-Künstl. Intell. 2023, 37, 11–16. [Google Scholar] [CrossRef]
- Zednik, C. Solving the black box problem: A normative framework for explainable artificial intelligence. Philos. Technol. 2021, 34, 265–288. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Hussain, A. Interpreting black-box models: A review on explainable artificial intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Azamfirei, R.; Kudchadkar, S.R.; Fackler, J. Large language models and the perils of their hallucinations. Crit. Care 2023, 27, 120. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, Q.; Yuan, Y.; Wen, Z.; Fan, G.; Liu, D.; Zhang, D.; Li, Z.; Xiao, Y. Hallucination detection: Robustly discerning reliable answers in large language models. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, Birmingham, UK, 21–25 October 2023; CIKM ’23. Association for Computing Machinery: New York, NY, USA, 2023; pp. 245–255. [Google Scholar]
- Štrba, Ľ. Analysis of criteria affecting geosite visits by general public: A case of Slovak (geo) tourists. Geoheritage 2019, 11, 291–300. [Google Scholar] [CrossRef]
- Kubalíková, L.; Zapletalová, D. Geo-cultural aspects of building stone extracted within Brno city (Czech Republic): A bridge between natural and cultural heritage. Geoheritage 2021, 13, 78. [Google Scholar] [CrossRef]
- de Lima, J.T.M.; de Souza Carvalho, I. Geological or cultural heritage? The ex situ scientific collections as a remnant of nature and culture. Geoheritage 2020, 12, 3. [Google Scholar] [CrossRef]
- Szepesi, J.; Ésik, Z.; Soós, I.; Németh, B.; Sütő, L.; Novák, T.J.; Harangi, S.; Lukács, R. Identification of geoheritage elements in a cultural landscape: A case study from Tokaj Mts, Hungary. Geoheritage 2020, 12, 1–21. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Geoheritage and cultural heritage—A review of recurrent and interlinked themes. Geosciences 2022, 12, 98. [Google Scholar] [CrossRef]
- Górska-Zabielska, M. Scandinavian Erratics in the Cultural Heritage Sites of Western Poland. Land 2024, 13, 1282. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, H.; Hu, C.; Liu, H.; Cheng, Y. Deep learning of DEM image texture for landform classification in the Shandong area, China. Front. Earth Sci. 2022, 16, 352–367. [Google Scholar] [CrossRef]
- Gentile, M.; Città, G.; Perna, S.; Allegra, M. Do we still need teachers? Navigating the paradigm shift of the teacher’s role in the AI era. Front. Educ. 2023, 8, 1161777. [Google Scholar] [CrossRef]
- Lameras, P.; Arnab, S. Power to the teachers: An exploratory review on artificial intelligence in education. Information 2021, 13, 14. [Google Scholar] [CrossRef]
- Arolas, E.E.; Ladrón-de-Guevara, F.G. Towards an integrated crowdsourcing definition. J. Inf. Sci. 2012, 38, 189–200. [Google Scholar] [CrossRef]
Data Set | Layer | Resolution/Scale | Publisher |
---|---|---|---|
Digital Terrain Model (DTM) 1 | Topography | Ground resolution of 100 m | Head Office of Geodesy and Cartography of Poland |
Topographic Objects Database (BDOT10k) 2 | Land use patterns; transport network | 1:10,000 | Head Office of Geodesy and Cartography of Poland |
Detailed Geological Map of Poland 3 | Lithological diversity | 1:50,000 | Polish Geological Institute |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolniewicz, P. The Combined Use of GIS and Generative Artificial Intelligence in Detecting Potential Geodiversity Sites and Promoting Geoheritage. Resources 2024, 13, 119. https://doi.org/10.3390/resources13090119
Wolniewicz P. The Combined Use of GIS and Generative Artificial Intelligence in Detecting Potential Geodiversity Sites and Promoting Geoheritage. Resources. 2024; 13(9):119. https://doi.org/10.3390/resources13090119
Chicago/Turabian StyleWolniewicz, Paweł. 2024. "The Combined Use of GIS and Generative Artificial Intelligence in Detecting Potential Geodiversity Sites and Promoting Geoheritage" Resources 13, no. 9: 119. https://doi.org/10.3390/resources13090119
APA StyleWolniewicz, P. (2024). The Combined Use of GIS and Generative Artificial Intelligence in Detecting Potential Geodiversity Sites and Promoting Geoheritage. Resources, 13(9), 119. https://doi.org/10.3390/resources13090119