Competitive Potential of Stable Biomass in Poland Compared to the European Union in the Aspect of Sustainability
Abstract
:1. Introduction
- Recognition of advantages and disadvantages of solid biomass production.
- Recognition of the competitive advantages of solid biomass production.
- Elaboration of a prognosis for solid biomass production in Poland.
- What are the sustainability benefits of using biomass?
- What are the advantages and disadvantages of biomass energy compared to other renewable energy sources?
- What is the competitive potential of biomass compared to other renewable energy sources?
2. Sustainability Issues of Biomass Production
3. Materials and Methods
3.1. Data Sources
Energy from Biomass, Biogas and Biofuels | Other RES |
---|---|
Advantages | |
|
|
Disadvantages | |
|
|
3.2. Potential of Biomass in Poland Compared to Other EU Countries
- -
- low-quality wood and wood waste,
- -
- straw, hay, and other agricultural waste,
- -
- sewage sludge,
- -
- animal excrement,
- -
- vegetable oils and animal fats,
- -
- organic waste (seaweed grown specifically for such purposes),
- -
- branches from orchard cuttings,
- -
- other waste from plant and vegetable production,
- -
- plantations of energy crops,
- -
- trees and branches from the felling and sanitary felling of forests [48].
3.3. Methods
4. Results
4.1. Global Production of Bio-Energy and Share of RES in Gross Final Energy Consumption in 2022
4.2. ADF Test of Stable Biomass Production in Poland
4.3. Forecast of Stable Biomass Production in Poland Using the VAR Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ADF test | Augmented Dickey–Fuller test |
ARiMA model | Auto-Regressive Moving Average model |
Ca | Calcium |
CAP | Common Agricultural Policy |
CO2 | Carbon dioxide |
EU | European Union |
GARCH | Generalized Auto-Regressive Conditional Heteroskedasticity |
GHG | Greenhouse gas |
K | Potassium |
NOx | Nitrogen oxides |
PM | Particle Matter |
RED | Renewable Energy Directive |
RES | Renewable Energy Sources |
Si | Silicon |
SO2 | Sulfur dioxide |
TJ | Terajoule |
References
- Chum, H.L.; Overend, R.P. Biomass and renewable fuels. Fuel Process. Technol. 2001, 71, 187–195. [Google Scholar] [CrossRef]
- Demibras, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Srirangan, K.; Akawi, L.; Moo-Young, M.; Chou, C.P. Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 2012, 100, 172–186. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Shuit, S.; Tan, K.; Lee, K.; Kamaruddin, A.H. Oil plan biomass as a suitable energy sources: A Malaysian case study. Energy 2009, 34, 1225–1235. [Google Scholar] [CrossRef]
- Welfle, A.; Gilbert, P.; Thornley, P. Increasing biomass resource availability through supply chain analysis. Biomass Bioenergy 2014, 70, 249–266. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 2010, 14, 919–937. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Awasthi, A.K.; Sivakumar, N.; Lukk, T.; Pecoraro, L.; Thakur, V.K.; Roberts, D.; Newbold, J.; Gupta, V.K. Bioprocessing of waste biomass for sustainable product development and minimizing environmental impacts. Bioresour. Technol. 2021, 322, 124548. [Google Scholar] [CrossRef] [PubMed]
- Demibras, M.F.; Balat, M.; Balat, H. Potential combustion of biomass to the sustainable energy development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- Le, T.-H.; Chang, Y.; Park, D. Renewable and Nonrenewable Energy Consumption, Economic Growth, and Emissions: International Evidence. Energy J. 2020, 41, 73–92. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change; Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Farahani, S., Kadner, K., Seyboth, A., Adler, I., Baum, S., Brunner, P., Eickemeier, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Bhat, R.A.; Dervash, M.A.; Hakeem, K.R.; Masoodi, K.Z. Environmental Biotechnology Sustainable Remediation of Contamination in Different Environs; Taylor & Francis Group: Abingdon, UK, 2022; Available online: https://www.taylorfrancis.com/books/edit/10.1201/9781003277279/environmental-biotechnology-moonisa-aslam-dervash-rouf-ahmad-bhat-khalid-zaffar-masoodi-khalid-rehman-hakeem?refId=b9208215-f2d2-4cc4-9b20-5972dc4a1d94&context=ubx (accessed on 1 July 2024).
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Ali1, S.H.; de Oliveira, J.A.P. Pollution and economic development: An empirical research review. Environ. Res. Lett. 2018, 13, 123003. [Google Scholar] [CrossRef]
- Karasar, H.A.; Oğu, S. Imagining a Common Horizon for Humanity and the Planet; Cappadocia University Press: Cappadocia, Turkey, 2023. [Google Scholar] [CrossRef]
- Muhammed, Z.; Abubakar, I.R. Improving the Quality of Life of Urban Communities in Developing Countries; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Gołębiewski, J. Zrównoważona biogospodarka—Potencjał i czynniki rozwoju. In Proceedings of the IX Kongres Ekonomistów Polskich, Warsaw, Poland, 28–29 November 2013. [Google Scholar]
- Uzoha, I.M.; Babalola, O.O. Rhizosphere biodiversity as a premise for application in bio-economy. Agric. Ecosyst. Environ. 2018, 265, 524–534. [Google Scholar] [CrossRef]
- Rogall, H. Ekonomia Zrównoważonego Rozwoju, Teoria i Praktyka; Zysk i S-ka.: Poznan, Poland, 2010; pp. 1–580. ISBN 978-83-7506-551-0. [Google Scholar]
- Josephsen, L. Working Paper Approaches to the Implementation of the Sustainable Development Goals: Some Considerations on the Theoretical Underpinnings of the 2030 Agenda; Economics Discussion Papers; Kiel Institute for the World Economy: Kiel, Germany, 2017; p. 60. [Google Scholar]
- Lucia, U.; Grisolia, G. A Thermo-Economic Measure of Sustainability. Processes 2024, 12, 713. [Google Scholar] [CrossRef]
- Torchio, M.F.; Lucia, U.; Grisolia, G. Development Indexes, Environmental Cost Impact, and Well-Being: Trends and Comparisons in Italy. Sustainability 2024, 16, 4380. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Magnetocaloric Refrigeration in the Context of Sustainability: A Review of Thermodynamic Bases, the State of the Art, and Future Prospects. Energies 2024, 17, 3585. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Nuclear_energy_statistics#Nuclear_heat_and_gross_electricity_production (accessed on 14 July 2024).
- Energia ze Źródeł Odnawialnych w 2023 Roku. Główny Urząd Statystyczny. Warszawa. 2024. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2023-roku,10,7.html (accessed on 22 December 2024).
- Stolarski, M.J.; Krzyzaniak, M.; Warminski, K.; Tworkowski, J.; Szczukowski, J.; Olba-Ziety, E.; Gołaszewski, J. Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers. Energy 2017, 134, 50–60. [Google Scholar] [CrossRef]
- Carneiro, P.; Ferreira, P. The economic, environmental and strategic value of biomass. Renew. Energy 2012, 44, 17–22. [Google Scholar] [CrossRef]
- Bossard, L.; Guillaumin, M.; Van Gool, L. Food-101—Mining Discriminative Components with Random Forests. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8694. [Google Scholar] [CrossRef]
- Akinrinola, F.S.; Darvell, L.I.; Jones, J.M.; Williams, A.; Fuwape, J.A. Characterization of Selected Nigerian Biomass for Combustion and Pyrolysis Applications. Energy Fuels 2014, 28, 3821–3832. [Google Scholar] [CrossRef]
- FAOSTAT. Forestry Production and Trade, Production and Trade of Industrial Roundwood, Fuelwood and Wood Pellets. FAO. 2020. Available online: https://www.fao.org/faostat/en/#data/FO (accessed on 18 May 2020).
- AEBIOM. Bioenergy Europe’s Statistical Report 2014. In Pellet Plants: Capacity and Real Production in 2010; Bioenergy Europe (Formerly AEBIOM): Brussels, Belgium, 2014. [Google Scholar]
- Bioenergy International. The Pellets Map 2010–2011. In Pellet Production Capacities and Real Production in 2010; Bioenergy International: Stockholm, Sweden, 2011. [Google Scholar]
- Sikkema, R.; Junginger, W.; Pichler, W.; Hayes, S.; Faaij, A.P.C. The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and The Netherlands. Biofuels Bioprod. Biorefin. 2010, 4, 132–153. [Google Scholar] [CrossRef]
- Sikkema, R.; Junginger, H.M.; McFarlane, P.; Faaij, A. The GHG contribution of the cascaded use of harvested wood products in comparison with the use of wood for energy—A case study on available forest resources in Canada. Environ. Sci. Policy 2013, 31, 96–108. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, A. Government subsidies, market competition and the TFP of new energy enterprises. Renew. Energy 2023, 216, 119090. [Google Scholar] [CrossRef]
- Ratajczak, E.; Szostak, A.; Bidzinska, G.; Herbeć, M. Demand for wood biomass for energy purposes in Poland by 2015. Drewno. Pr. Nauk. Donies. Komunik. 2012, 55, 187. [Google Scholar]
- Unia Europejska i Obszary Leśne. Available online: https://www.europarl.europa.eu/factsheets/pl/sheet/105/unia-europejska-i-obszary-lesne (accessed on 14 July 2024).
- Dellano-Paz, F.; Calvo-Silvosa, A.; Antelo, S.I.; Soares, I. The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach. Renew. Sustain. Energy Rev. 2015, 48, 49–61. [Google Scholar] [CrossRef]
- Forests, Forestry and Logging. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging#Forests_and_other_wooded_land (accessed on 14 July 2024).
- Central Statistical Office. GUS 2019—Rocznik Statystyczny Rzeczypospolitej Polskiej. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rzeczypospolitej-polskiej-2019%2C2%2C19.html (accessed on 22 December 2024).
- Olsztyńska, I. Factors shaping the national potential of solid biofuels. Inst. Gospod. Surowcami Miner. Energ. Pol. Akad. Nauk. Zesz. Nauk. 2018, 104, 107–118. [Google Scholar] [CrossRef]
- Jezierska-Thöle, A.; Rudnicki, R.; Kluba, M. Development of energy crops cultivation for biomass production in Poland. Renew. Sustain. Energy Rev. 2016, 62, 534–545. [Google Scholar] [CrossRef]
- Energia ze Źródeł Odnawialnych 2020 Roku; GUS: Warszawa, Poland, 2021. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2020-roku,3,15.html (accessed on 22 December 2024).
- Christoffersen, P. Value-at-RISK-Models; Handbook of Financial Time series; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Matuszczak, A.; Kryszak, Ł.; Czyżewski, B.; Łopatka, A. Environment and political economics: Left-wing liberalism or conservative leftism—Which is better for eco-efficiency? Evidence from Poland. Sci. Total Environ. 2020, 743, 140779. [Google Scholar] [CrossRef] [PubMed]
- Bórawski, P.; Bełdycka-Bórawska, A.; Kapsdorferová, Z.; Rokicki, T.; Parzonko, A.; Holden, L. Perspectives of Electricity Production from Biogas in the European Union. Energies 2024, 17, 1169. [Google Scholar] [CrossRef]
- Inoue, A.; Kilian, L. Corrigendum to “Inference on impulse response functions in structural VAR models”. J. Econom. 2019, 209, 139–143. [Google Scholar] [CrossRef]
- Bams, D.; Lehnert, T.; Wolff, C.C. An evaluation framework for alternative VaR models. J. Int. Money Financ. 2005, 24, 944–958. [Google Scholar] [CrossRef]
- Metwally, A.B.M.; Nabil, S.M.; Yasser, M.M. Hydropower & HDI Nexus in Nordic Countries using VAR techniques. Economies 2024, 12, 60. [Google Scholar] [CrossRef]
- Canova, F. The economics of VAR models. In Macroeconometrics; Hoover, K.D., Ed.; Springer: New York, NY, USA, 1995. [Google Scholar]
- Manganelli, S.; Engle, R.F. Value at Risk Models in Finance; Working Paper 75; European Central Bank: Frankfurt, Germany, 2001; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=356220 (accessed on 10 July 2024).
- Lopez, J.A. Regulatory Evaluation of Value-at-Risk Model; Federal Reserve Bank: San Francisco, CA, USA, 1996; 32p, Available online: https://onlinelibrary.wiley.com/doi/10.1111/1540-6261.00455?msockid=0e27a90dbcc46d8910a8bbe1bdaf6cf0 (accessed on 10 July 2024).
- Berkowitz, J.; O’Brien, J. How accurate are value-at-risk models at commercial banks? J. Financ. 2002, 57, 1093–1111. [Google Scholar] [CrossRef]
- Wong, M.C.S.; Cheng, W.Y.; Wong, C.Y.P. Market risk management of banks: Implications from the accuracy of Value-at-Risk forecasts. J. Forecast. 2003, 22, 23–33. [Google Scholar] [CrossRef]
- Berkelaar, A.; Cumperayot, P.; Kouwenberg, R. The Effect of VaR Based Risk Management on Asset Prices and the Volatility Smile. Eur. Financ. Manag. 2002, 8, 139–164. [Google Scholar] [CrossRef]
- Total Production of Bioenergy Worldwide from 1990 to 2022 (in 1000 Terajoules). Available online: https://www.statista.com/statistics/1497660/global-production-of-bioenergy/ (accessed on 14 July 2024).
- Statistics|Eurostat (Europa.Eu). Available online: https://commission.europa.eu/about/departments-and-executive-agencies/eurostat-european-statistics_en (accessed on 30 June 2024).
- Czyżewski, B.; Kryszak, Ł. Sustainable Agriculture Policies for Human Well-Being Integrated Efficiency Approach; Springer: Berlin/Heidelberg, Germany, 2022; Available online: https://link.springer.com/book/10.1007/978-3-031-09796-6 (accessed on 14 July 2024).
- Bełdycka-Bórawska, A.; Bórawski, P.; Borychowski, M.; Wyszomierski, R.; Bórawski, M.B.; Rokicki, T.; Ochnio, L.; Jankowski, K.; Mickiewicz, B.; Dunn, J.W. Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies. Energies 2021, 14, 3587. [Google Scholar] [CrossRef]
- Cronin, J.; Florian Zabel, F.; Dessens, O.; Anandarajah, G. Land sustainability for energy crops under scenarios of climate change and land-use. GCB Bioenergy 2020, 12, 8. [Google Scholar] [CrossRef]
- European Commission. Renewable Energy Directive II (2018/2001/EC). 2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj/eng/pdf (accessed on 22 December 2024).
- European Commission. Directive (EU) 2018/2002/EC of 11 December 2018b. Amending Directive 2012/27/EC on Energy Efficiency, Official Journal of the European Union. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0210.01.ENG (accessed on 14 July 2024).
- European Commission. Clean Energy for All Europeans COM (2016) 860 Final. Brussels, Belgium: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016DC0860 (accessed on 22 December 2024).
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy- and forestry sectors? Renew. Energy 2021, 165, 758–772. [Google Scholar] [CrossRef]
- Kaczmarczyk, B.; Lis, K.; Bogucka, A. Renewable Energy Management in European Union Member States. Energies 2023, 16, 5863. [Google Scholar] [CrossRef]
- Zbroński, D.; Otwinowski, H.; Górecka-Zbrońska, A.; Urbaniak, D.; Wyleciał, T. Analysis of Changes in Electricity Generation from Renewable Energy Sources after Poland’s Accession to Structures of the European Union. Energies 2023, 16, 4794. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Vasile, C.; Risser, M.; Heitzler, J.C.; Keith, B. New air-conditioning and refrigeration magnetocaloric gas free system. In Proceedings of the 2010 International Symposium on Next-Generation Air Conditioning and Refrigeration Technology, Tokyo, Japan, 17–19 February 2010. [Google Scholar]
- Dupont, J.L. The Role of Refrigeration in the Global Economy. In Note (38th) on Refrigeration Technologies; IIF-IIR: Paris, France, 2019. [Google Scholar]
- Trenca, I.; Mutu, S.; Dezsi, E. Advantages and Limitations of Var Models Used in Managing Market Risk in Banks; Finance—Challenges of the Future. Available online: https://www.researchgate.net/profile/Eva-Dezsi/publication/254390858_Advantages_and_Limitations_of_VAR_Models_Used_in_Managing_Market_Risk_in_Banks/links/563f79fd08ae8d65c0150dba/Advantages-and-Limitations-of-VAR-Models-Used-in-Managing-Market-Risk-in-Banks.pdf (accessed on 1 August 2024).
Specification | Intercept Test | Test with Intercept and Linear Trend |
---|---|---|
Estimated value (a-1) | 0.10315 | −11.2914 |
Test tuac statistic | 0.8386 | −2.1593 |
p-value | 0.9947 | 0.5119 |
autocorrelation of first-order residuals | 0.146 | −0.331 |
AIC | BIC | HQC | Constant | Model for Biomass | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | Std. Error | t-Student | p-Value | Coefficient | Std. Error | t-Student | p-Value | ||||
Const | 23.483 | 23.582 | 23.506 | 25,714.8 | 21,639.8 | 1.188 | 0.2486 | 0.93525 | 0.0836 | 11.18 | 0.000 |
Arithmetic mean of the dependent variable | Sum of square rest | R-squared determination coefficient | F | Autocorrelation of rests | Standard deviation of dependent variable | Standard deviation error3 | Corrected R-square | p-value for F test | Durbin–Watson statistics | ||
257,506.4 | 1.700 | 0.86209 | 125.0257 | −0.0923 | 76,533.3 | 29,123.1 | 0.855198 | 0.000 | 2.1763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszomierski, R.; Bórawski, P.; Holden, L.; Bełdycka-Bórawska, A.; Rokicki, T.; Parzonko, A. Competitive Potential of Stable Biomass in Poland Compared to the European Union in the Aspect of Sustainability. Resources 2025, 14, 19. https://doi.org/10.3390/resources14020019
Wyszomierski R, Bórawski P, Holden L, Bełdycka-Bórawska A, Rokicki T, Parzonko A. Competitive Potential of Stable Biomass in Poland Compared to the European Union in the Aspect of Sustainability. Resources. 2025; 14(2):19. https://doi.org/10.3390/resources14020019
Chicago/Turabian StyleWyszomierski, Rafał, Piotr Bórawski, Lisa Holden, Aneta Bełdycka-Bórawska, Tomasz Rokicki, and Andrzej Parzonko. 2025. "Competitive Potential of Stable Biomass in Poland Compared to the European Union in the Aspect of Sustainability" Resources 14, no. 2: 19. https://doi.org/10.3390/resources14020019
APA StyleWyszomierski, R., Bórawski, P., Holden, L., Bełdycka-Bórawska, A., Rokicki, T., & Parzonko, A. (2025). Competitive Potential of Stable Biomass in Poland Compared to the European Union in the Aspect of Sustainability. Resources, 14(2), 19. https://doi.org/10.3390/resources14020019