A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study
Abstract
:1. Introduction
- Data collection at the farm level is often carried out through interviews with farmers who could be reluctant to participate in surveys or who may not have the information required [10]. In addition, it is sometimes difficult to verify the accuracy of the information provided by farmers [11,12]. This could be a limiting research factor because of issues of availability and quality of collected data.
2. Materials and Methods
2.1. Construction of a Framework for Agricultural Sustainability Assessment
- Phase 1: this is a first elaboration of primitive data that allows to obtain processed data containing the basic information for the successive elaborations;
- Phase 2: the calculation of sub-indicators provides integer and dimensionless values of that data for each farm. Values can range from negative to positive, according to their maximum scores;
- Phase 3: the calculation of indicators consists of the sum of two or more sub-indicators. A minimum of 0 and a maximum (variable) score is applied, depending on the case. This way, maximum scores define the best performance in terms of sustainability [31];
- Phase 4: the sum of two or more indicators provides the value of components [0 to 50] and, in turn, each pillar [0 to 250] of sustainability.
- Descriptive analysis: this elaboration aims at the exploration of the main characteristics of the sample by applying descriptive statistics. This approach involves the use of means and standard deviation of scores between subjects and groups of them. Due to their immediacy, this analysis also employs histograms and radar charts in order to represent the dimensions of different attributes controlled;
- Data reduction analysis: indicators used for sustainability assessment may be redundant [13] and/or correlated [30]. In this view, a data reduction approach may help researchers by summarising the information contained in the original database. Furthermore, as the aggregative definition of sustainability components proposed in this framework is subjective, data reduction through Principal Components Analysis (PCA—[32]) can be used to confirm the dimensions obtained by the indicators. In the present paper, this data reduction was applied to each pillar by using the software package IBM SPSS 21.0. The evaluation of the PCA was performed using the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy, the Bartlett’s test of sphericity and the Kaiser criterion [33].
2.2. Selection of Sustainability Indicators
2.2.1. Environmental Indicators
2.2.2. Social Indicators
2.2.3. Economic Indicators
3. Results and Discussion
3.1. Data Collection
3.2. Score Analysis
3.2.1. Descriptive Analysis
3.2.2. Data Reduction Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- WCED (World Commission on Environment and Development). Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Pope, J.; Annandale, D.; Morrison-Saunders, A. Conceptualising sustainability assessment. Environ. Impact Assess. Rev. 2004, 24, 595–616. [Google Scholar] [CrossRef]
- Díez, E.; McIntosh, B. A review of the factors which influence the use and usefulness of information systems. Environ. Model. Softw. 2009, 24, 588–602. [Google Scholar] [CrossRef]
- Bond, A.J.; Morrison-Saunders, A. Sustainability Assessment: Pluralism, Practice and Progress; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Hansen, J.W. Is agricultural sustainability a useful concept? Agric. Syst. 1996, 50, 117–143. [Google Scholar] [CrossRef]
- Weaver, P.M.; Rotmans, J. Integrated sustainability assessment: What is it, why do it and how? Int. J. Innov. Sustain. Dev. 2006, 1, 284–303. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Sanchez-Fernandez, G. Empirical evaluation of agricultural sustainability using composite indicators. Ecol. Econ. 2010, 69, 1062–1075. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimension in indicator-based sustainability assessment in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Smith, C.S.; McDonald, G.T. Assessing the sustainability of agriculture at the planning stage. J. Environ. Manag. 1998, 52, 15–37. [Google Scholar] [CrossRef]
- Meul, M.; Van Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Van Hauwermeiren, A. MOTIFS: A monitoring tool for the integrated farm sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef]
- Freebairn, D.M.; King, C.A. Reflections on collectively working toward sustainability: Indicators for indicators! Aust. J. Exp. Agric. 2003, 43, 223–238. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Garcia Cidad, V.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE-A hierarchical framework for assessing the sustainability of agricultural systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Demartini, E.; Gaviglio, A.; Bertoni, D. Integrating agricultural sustainability into policy planning: A geo-referenced framework based on Rough Set theory. Environ. Sci. Policy 2015, 54, 226–239. [Google Scholar] [CrossRef]
- Omann, I.; Spangenberg, J.H. Assessing social sustainability. The social dimension of sustainability in a socio-economic Scenario. In Proceedings of the 7th Biennial Conference of the International Society for Ecological Economics, Sousse, Tunisia, 6–9 March 2002. [Google Scholar]
- Smith, B.; Smithers, J. Sustainable agriculture: Interpretations, analyses and prospects. Can. J. Reg. Sci. 1993, 16, 499–524. [Google Scholar]
- Rigby, D.; Woodhouse, P.; Young, T.; Burton, M. Constructing a farm level indicator of sustainable agricultural practice. Ecol. Econ. 2001, 39, 463–478. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Ind. 2009, 9, 189–212. [Google Scholar] [CrossRef]
- Chatzinikolaou, P.; Manos, B. Review of Existing Methodologies and Tools for Measuring Sustainability in Rural Areas. 2012. Available online: http://www.feem-project.net/belpasso_2012/files/studpapers/Paper_Chatzinikolaou.pdf (accessed on 8 September 2012).
- Nijkamp, P.; Vreeker, R. Sustainability assessment of development scenarios: Methodology and application to Thailand. Ecol. Econ. 2000, 33, 7–27. [Google Scholar] [CrossRef]
- Munda, G. Multiple criteria decision analysis and sustainable development. In Multiple Criteria Decision Analysis. State of the Art Surveys; Figueira, J., Greco, S., Ehrgot, M.M., Eds.; Springer: New York, NY, USA, 2005; pp. 953–986. [Google Scholar]
- Hák, T.; Moldan, B.; Lyon Dahl, A. Sustainability Indicators: A Scientific Assessment; Island Press: Washington, DC, USA, 2007. [Google Scholar]
- Gitau, T.; Gitau, M.W.; Waltner-Toews, D. Integrated Assessment of Health and Sustainability of Agroecosystems; Taylor and Francis: Oxfordshire, UK, 2009. [Google Scholar]
- De Luca, A.I.; Iofrida, N.; Leskinen, P.; Stillitano, T.; Falcone, G.; Strano, A.; Gulisano, G. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 2017, 595, 352–370. [Google Scholar] [CrossRef] [PubMed]
- Leeuwis, C. Communication for Rural Innovation, Rethinking Agricultural Extension; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Bélanger, V.; Vanasse, A.; Parent, D.; Allard, G.; Pellerin, D. Development of agri-environmental indicators to assess dairy farm sustainability in Quebec. East. Can. Ecol. Ind. 2012, 23, 421–430. [Google Scholar] [CrossRef]
- Girardin, P.; Bockstaller, C.; van der Werf, H.M.G. Indicators: Tools to evaluate the environmental impacts of farming systems. J. Sustain. Agric. 1999, 13, 5–21. [Google Scholar] [CrossRef]
- Bockstaller, C.; Girardin, P.; Van der Werf, H.M.G. Use of agro-ecological indicators for the evaluation of farming systems. Eur. J. Agron. 1997, 7, 261–270. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Girardin, P.; Vilain, L.; Mouchet, C. Assessing farm sustainability with the IDEA method—From the concept of farm sustainability to case studies on French farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nation (FAO). Sustainability Assessment in Food and Agriculture Systems (SAFA). 2013. Available online: http://www.fao.org/nr/sustainability/sustainability-assessments-safa/en/ (accessed on 18 October 2013).
- Paracchini, M.L.; Bulgheroni, C.; Borreani, G.; Tabacco, E.; Banterle, A.; Bertoni, D.; Rossi, G.; Parolo, G.; Origgi, R.; De Paola, C. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 2015, 133, 35–53. [Google Scholar] [CrossRef]
- Mitchell, G.; May, A.; McDonald, A. PICABUE: A methodological framework for the development of indicators of sustainable development. Int. J. Sustain. Dev. World Ecol. 1995, 2, 104–123. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Grenz, J.; Thalmann, C.; Stämpfli, A.; Studer, C.; Häni, F. RISE, a method for assessing the sustainability of agricultural production at farm level. Rural Dev. News 2009, 1, 5–9. [Google Scholar]
- Gaviglio, A.; Bertocchi, M.; Demartini, E. Lessons learned from a process of farm sustainability assessment: Literature review, methodology and governance opportunities. Riv. Stud. Sulla Sostenibilità 2016, 2, 129–139. [Google Scholar] [CrossRef]
- Coteur, I.; Marchand, F.; Debruyne, L.; Dalemans, F.; Lauwers, L. A framework for guiding sustainability assessment and on-farm strategic decision making. Environ. Impact Assess. Rev. 2016, 60, 16–23. [Google Scholar] [CrossRef]
- De Mey, K.; D’Haene, K.; Marchand, F.; Meul, M.; Lauwers, L. Learning through stakeholder involvement in the implementation of MOTIFS: An integrated assessment model for sustainable farming in Flanders. Int. J. Agric. Sustain. 2011, 9, 350–363. [Google Scholar]
- Triste, L.; Marchand, F.; Debruyne, L.; Meul, M.; Lauwers, L. Reflection on the development process of a sustainability assessment tool: Learning from a Flemish case. Ecol. Soc. 2014, 19, 47. [Google Scholar] [CrossRef]
- Von Wiren-Lehr, S. Sustainability in agriculture—An evaluation of principal goals-oriented concepts to close the gap between theory and practice. Agric. Ecosyst. Environ. 2001, 93, 131–145. [Google Scholar] [CrossRef]
- Thivierge, M.-N.; Parent, D.; Bélanger, V.; Angers, D.A.; Allard, G.; Pellerin, D.; Vanasse, A. Environmental sustainability indicators for cash-crop farms in Quebec, Canada: A participatory approach. Ecol. Indic. 2014, 45, 677–686. [Google Scholar] [CrossRef]
- Goodland, R. The concept of environmental sustainability. Ann. Rev. Ecol. Ecosyst. 1995, 26, 1–24. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Petit, J. Evaluation of the environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Agric. Ecosyst. Environ. 2002, 93, 131–145. [Google Scholar] [CrossRef]
- Lafebrve, A.; Eilers, W.; Chunn, B. Environmental Sustainability of Canadian Agriculture. In Agri-Environmental Indicator Report Series—Report 2; Agriculture and Agri-Food: Ottawa, ON, Canada, 2005. [Google Scholar]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Pacini, C.; Wossinka, A.; Giesen, G.; Vazzana, C.; Huirne, R. Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agric. Ecosyst. Environ. 2003, 95, 273–288. [Google Scholar] [CrossRef]
- Carvalheiro, L.G.; Kunin, W.E.; Keil, P.; Aguirre-Gutiérrez, J.; Ellis, W.N.; Fox, R. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol. Lett. 2013, 16, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Häni, F.; Braga, F.; Stämpfli, A.; Keller, T.; Fisher, M.; Porche, H. RISE, a tool for holistic sustainability assessment at the farm level. Int. Food Agribus. Manag. Rev. 2003, 6, 78–90. [Google Scholar]
- Parolo, G.; Abeli, T.; Gusmeroli, F.; Rossi, G. Large scale heterogeneous cattle grazing affects plant diversity and forage value of alpine species. Grass Forage Sci. 2011, 66, 541–550. [Google Scholar] [CrossRef]
- Bartoli, A.; Cavicchioli, D.; Kremmydas, D.; Rozakis, S.; Olper, A. The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy. Energy Policy 2016, 96, 351–363. [Google Scholar] [CrossRef]
- Bacon, C.M.; Getz, C.; Kraus, S.; Montenegro, M.; Holland, K. The social dimensions of sustainability and change in diversified farming systems. Ecol. Soc. 2012, 17, 41. [Google Scholar] [CrossRef]
- Gaviglio, A.; Bertocchi, M.; Marescotti, M.E.; Demartini, E.; Pirani, A. The social pillar of sustainability: A quantitative approach at the farm level. Agric. Food Econ. 2016, 4, 15. [Google Scholar] [CrossRef]
- Littig, B.; Griessler, E. Social sustainability: A catchword between political pragmatism and social theory. Int. J. Sustain. Dev. 2005, 8, 65–79. [Google Scholar] [CrossRef]
- Santini, F.; Paloma, S.G. Short Food Supply Chains and Local Food Systems in the EU: A State of Play of Their Socio-Economic Characteristics; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Bertocchi, M.; Gaviglio, A.; Demartini, E. A new framework for the assessment of environmental sustainability of farms. Calit. Suppl. Q. Access Success 2016, 17, 566–573. [Google Scholar]
- Falguera, V.; Aliguer, N.; Falguera, M. An integrated approach to current trends in food consumption: Moving toward functional and organic products? Food Control 2012, 26, 274–281. [Google Scholar] [CrossRef]
- Gaviglio, A.; Pirani, A. Consumer perception of cured pork meats: The added value of the organic attribute food analysis. Czech J. Food Sci. 2015, 33, 32–36. [Google Scholar] [CrossRef]
- Bessière, J. Local development and heritage: Traditional food and cuisine as tourist attractions in rural areas. Soc. Rural 1998, 38, 21–34. [Google Scholar] [CrossRef]
- Lockie, S. Responsibility and agency within alter-native food networks: Assembling the “citizen consumer”. Agric. Hum. Values 2009, 26, 193–201. [Google Scholar] [CrossRef]
- Seyfang, G. Ecological citizenship and sustainable consumption: Examining local organic food networks. J. Rural Stud. 2006, 22, 383–395. [Google Scholar] [CrossRef]
- Bonneau, M.; Klauke, T.N.; Gonzàlez, J.; Rydhmer, L.; Ilari-Antoine, E.; Dourmad, J.Y.; de Greef, K.; Houwers, H.W.J.; Cinar, M.U.; Fàbrega, E.; et al. Evaluation of the sustainability of contrasted pig farming systems: Integrated evaluation. Animal 2014, 8, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
- Reig-Martínez, E.; Gómez-Limón, J.A.; Picazo-Tadeo, A.J. Ranking farms with a composite indicator of sustainability. Agric. Econ. 2011, 42, 561–575. [Google Scholar] [CrossRef]
- Bertoni, D.; Cavicchioli, D. Farm succession, occupational choice and farm adaptation at the rural-urban interface: The case of Italian horticultural farms. Land Use Policy 2016, 57, 739–748. [Google Scholar] [CrossRef]
- Broom, D.M. Animal welfare: An aspect of care, sustainability, and food quality. J. Vet. Med. Educ. 2010, 37, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19, 42. [Google Scholar] [CrossRef]
- Lien, G.; Hardaker, J.B.; Flaten, O. Risk and economic sustainability of crop farming systems. Agric. Syst. 2007, 94, 541–552. [Google Scholar] [CrossRef]
- Grande, J. New venture creation in the farm sector—Critical resources and capabilities. J. Rural Stud. 2011, 27, 220–233. [Google Scholar] [CrossRef]
- Olper, A.; Raimondi, V.; Cavicchioli, D.; Vigani, M. Do CAP payments reduce farm labour migration? A panel data analysis across EU regions. Eur. Rev. Agric. Econ. 2014, 41, 843–873. [Google Scholar] [CrossRef]
- Jongeneel, R.A.; Polman, N.B.P.; Slangen, L.H.G. Why are Dutch farmers going multifunctional? Land Use Policy 2008, 25, 81–94. [Google Scholar] [CrossRef]
- Meert, H.; Van Huylenbroeck, G.; Vernimmen, T.; Bourgeois, M.; van Hecke, E. Farm household survival strategies and diversification on marginal farms. J. Rural Stud. 2005, 21, 81–97. [Google Scholar] [CrossRef]
- Gafsi, M.; Favreau, J.L. Appropriate method to assess the sustainability of organic farming systems. In Proceedings of the 9th European IFSA Symposium, Vienna, Austria, 4–7 July 2010; pp. 912–921. [Google Scholar]
- Álvarez, A.; Arias, C. Technical efficiency and farm size: A conditional analysis. Agric. Econ. 2004, 30, 241–250. [Google Scholar] [CrossRef]
- Gavrilescu, C.; Toma, C.; Turtoi, C. Assessment of the sustainability degree of agricultural holdings in Macroregion 1 using the IDEA Method. Bull. UASVM Hortic. 2012, 69, 122–130. [Google Scholar]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.G.; Bokkers, E.A.M.; de Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Ind. 2016, 66, 391–404. [Google Scholar] [CrossRef]
Indicator | Weight | Inspiration | Data Sources |
---|---|---|---|
1-Annual crop diversity | 14 | Idea, Motifs | Questionnaire, SIARL Database |
2-Tree crops diversity | 14 | Idea, Motifs | Questionnaire, SIARL Database |
3-Animal diversity | 14 | Idea, Motifs | Questionnaire, SIARL Database |
4-Safeguard of animal and vegetal diversity | 8 | Idea | Questionnaire, Previous projects |
5-Crop rotation | 14 | Idea, Motifs, Rise | Questionnaire, SIARL Database |
6-Plot management | 6 | Idea, Motifs, Rise | Questionnaire |
7-Ecological buffer zones | 20 | Idea, Rise, Safe, Sostare | Questionnaire |
8-Environmental and landscapes safeguard | 4 | Idea | Questionnaire |
9-Stocking rate | 6 | Idea | SIARL Database |
10-Fertilisation | 20 | Idea, Motifs, Sostare | Questionnaire, SIARL Database |
11-Pesticides | 20 | Idea, Motifs, Sostare | Questionnaire |
12-Veterinary treatments | 3 | Idea | Questionnaire |
13-Management of livestock effluents | 7 | Idea | Questionnaire |
14-Soil management | 20 | Idea, Sostare | Questionnaire |
15-Water resource management | 20 | Idea, Rise, Sostare | Questionnaire |
16-Organic matter management | 10 | Idea | Questionnaire |
17-Energy dependence | 25 | Idea, Rise, Sostare, Safe, Motifs | Questionnaire, SIARL Database |
18-Renewable energy | 25 | New | Questionnaire |
19-Quality of the products | 20 | Idea, Safe | Questionnaire |
20-Rural buildings | 12 | Idea, Motifs | Questionnaire |
21-Landscape and territory | 18 | Idea, Motifs | Questionnaire |
22-Short food supply chain | 30 | Idea | Questionnaire, Previous projects |
23-Related activities | 20 | Idea | Questionnaire, Previous projects |
24-Work | 25 | Idea | Questionnaire, SIARL Database |
25-Sustainability of the employment | 15 | Idea, Safe | Questionnaire |
26-Training | 10 | Idea | Questionnaire |
27-Livestock management | 25 | New | Questionnaire |
28-Associations and social implications | 15 | Idea | Questionnaire |
29-Cooperation | 10 | Idea | Questionnaire, Previous projects |
30-Waste management | 15 | Rise | Questionnaire |
31-Accessibility to the farm spaces | 10 | Idea | Questionnaire |
32-Sustainable use of materials | 15 | Idea | Questionnaire |
33-Education | 10 | New | Questionnaire |
34-Value of production | 30 | Motifs, Sostare | Questionnaire |
35-Added value | 20 | Rise, Safe, Motifs, Sostare | Questionnaire |
36-Farm ability to generate income | 25 | Motifs, Sostare | Questionnaire |
37-Income per family worker | 25 | Sostare | Questionnaire |
38-CAP independence | 25 | Idea, Safe, Sostare | Questionnaire, SIARL database |
39-Autonomy | 25 | Idea, Safe | Questionnaire |
40-Diversification of the production | 30 | New | Questionnaire |
41-Business diversification | 20 | Idea, Sostare | Questionnaire |
42-Multifunctionality | 50 | New | Questionnaire |
Farm Characteristics | Quantity (N) | Percentage (%) |
---|---|---|
Type of Breeding | ||
No breeding | 20 | 40.0 |
Cattle (meat prod.) | 7 | 14.0 |
Cattle (dairy farms) | 15 | 30.0 |
Poultry | 4 | 8.0 |
Pigs | 3 | 6.0 |
Sheep/Goat | 1 | 2.0 |
Land area—Utilised Agricultural Area | ||
<50 ha | 23 | 46.0 |
50–100 ha | 18 | 36.0 |
>100 ha | 9 | 18.0 |
Multifunctionality | ||
Non-multifunctional (no related activities) | 15 | 30.0 |
Multifunctional (one or more related activities) | 35 | 70.0 |
Type of production | ||
Conventional | 41 | 82.0 |
Organic | 9 | 18.0 |
Economic size—Standard Output | ||
SO < 100 | 28 | 56.0 |
100 < SO < 300 | 14 | 28.0 |
SO > 300 | 8 | 16.0 |
Total | 50 | 100.0 |
Sustainability Attributes | Level | Range | Mean | SD | Min | Max | ||
---|---|---|---|---|---|---|---|---|
Min | Max | Val. | % | Val. | Val. | Val. | ||
Environment | Pillar | 0 | 250 | 95.1 | 38.0 | 21.8 | 61 | 158 |
ENV_1—Diversity | Component | 0 | 50 | 16.2 | 32.4 | 8.7 | 2 | 40 |
1—Annual crop diversity | Indicator | 0 | 14 | 6.1 | 43.6 | 3.7 | 1 | 14 |
2—Tree crops diversity | Indicator | 0 | 14 | 3.4 | 24.0 | 3.9 | 0 | 14 |
3—Animal diversity | Indicator | 0 | 14 | 6.0 | 43.1 | 4.9 | 0 | 14 |
4—Safeguard of animal and vegetal diversity | Indicator | 0 | 8 | 0.7 | 9.0 | 1.5 | 0 | 6 |
ENV_2—Organisation of spaces | Component | 0 | 50 | 17.2 | 34.4 | 6.0 | 6 | 32 |
5—Crop rotation | Indicator | 0 | 14 | 2.4 | 16.9 | 3.3 | 0 | 14 |
6—Plot management | Indicator | 0 | 6 | 5.6 | 94.0 | 1.1 | 0 | 6 |
7—Ecological buffer zones | Indicator | 0 | 20 | 5.3 | 26.5 | 3.1 | 0 | 12 |
8—Environmental and landscapes safeguard | Indicator | 0 | 4 | 2.8 | 70.0 | 0.8 | 0 | 4 |
9—Stocking rate | Indicator | 0 | 6 | 1.2 | 20.7 | 2.1 | 0 | 6 |
ENV_3—Agricultural practices | Component | 0 | 50 | 25.4 | 50.9 | 6.4 | 13 | 39 |
10—Fertilisation | Indicator | 0 | 20 | 9.3 | 46.4 | 5.4 | 0 | 17 |
11—Pesticides | Indicator | 0 | 20 | 13.6 | 68.1 | 3.2 | 9 | 20 |
12—Veterinary treatments | Indicator | 0 | 3 | 2.1 | 70.0 | 1.0 | 0 | 3 |
13—Management of the livestock effluents | Indicator | 0 | 7 | 0.5 | 6.6 | 0.7 | 0 | 3 |
ENV_4—Natural resources | Component | 0 | 50 | 25.3 | 50.6 | 8.4 | 11 | 47 |
14—Soil management | Indicator | 0 | 20 | 10.6 | 53.2 | 4.5 | 0 | 20 |
15—Water resource management | Indicator | 0 | 20 | 8.1 | 40.7 | 4.8 | 5 | 20 |
16—Organic matter management | Indicator | 0 | 10 | 6.5 | 65.2 | 3.2 | 0 | 10 |
ENV_5—Energy | Component | 0 | 50 | 10.9 | 21.8 | 5.3 | 2 | 21 |
17—Energy dependence | Indicator | 0 | 25 | 7.1 | 28.4 | 5.1 | 0 | 17 |
18—Renewable energy | Indicator | 0 | 25 | 3.8 | 15.2 | 2.9 | 0 | 10 |
Society | Pillar | 0 | 250 | 106.9 | 42.8 | 43.4 | 37 | 220 |
SOC_1—Quality | Component | 0 | 50 | 22.0 | 44.1 | 8.8 | 11 | 47 |
19—Quality of the products | Indicator | 0 | 20 | 3.3 | 16.6 | 6.7 | 0 | 20 |
20—Rural buildings | Indicator | 0 | 12 | 7.1 | 59.0 | 2.1 | 0 | 11 |
21—Landscape and territory | Indicator | 0 | 18 | 11.6 | 64.7 | 3.7 | 4 | 18 |
SOC_2—Short supply chain and related activities | Component | 0 | 50 | 16.7 | 33.5 | 14.4 | 0 | 50 |
22—Short food supply chain | Indicator | 0 | 30 | 11.8 | 39.4 | 10.9 | 0 | 30 |
23—Related activities | Indicator | 0 | 20 | 4.9 | 24.6 | 5.7 | 0 | 20 |
SOC_3—Work | Component | 0 | 50 | 23.5 | 46.9 | 10.4 | 5 | 42 |
24—Work | Indicator | 0 | 25 | 13.7 | 54.9 | 6.3 | 5 | 25 |
25—Sustainability of the employment | Indicator | 0 | 15 | 4.4 | 29.5 | 3.1 | 0 | 12 |
26—Training | Indicator | 0 | 10 | 5.3 | 53.2 | 3.7 | 0 | 10 |
SOC_4—Ethic and social development | Component | 0 | 50 | 19.2 | 38.5 | 11.5 | 0 | 42 |
27—Livestock management | Indicator | 0 | 25 | 10.8 | 43.3 | 9.1 | 0 | 22 |
28—Associations and social implications | Indicator | 0 | 15 | 7.0 | 46.5 | 4.9 | 0 | 15 |
29—Cooperation | Indicator | 0 | 10 | 1.4 | 14.4 | 2.0 | 0 | 8 |
SOC_5—Culture and education | Component | 0 | 50 | 25.5 | 50.9 | 9.2 | 6 | 44 |
30—Waste management | Indicator | 0 | 15 | 6.9 | 45.7 | 3.7 | 0 | 15 |
31—Accessibility to the farm spaces | Indicator | 0 | 10 | 6.8 | 68.0 | 3.6 | 0 | 10 |
32—Sustainable use of materials | Indicator | 0 | 15 | 6.8 | 45.6 | 5.1 | 0 | 15 |
33—Education | Indicator | 0 | 10 | 5.0 | 49.6 | 2.3 | 0 | 8 |
Economy | Pillar | 0 | 250 | 141.5 | 56.6 | 27.7 | 80 | 196 |
ECO_1—Economic viability | Component | 0 | 50 | 35.4 | 70.7 | 9.4 | 12 | 48 |
34—Value of production | Indicator | 0 | 30 | 20.5 | 68.3 | 4.1 | 9 | 25 |
35—Added value | Indicator | 0 | 20 | 14.88 | 74.4 | 5.6 | 0 | 23 |
ECO_2—Persistence | Component | 0 | 50 | 30.60 | 61.2 | 12.1 | 0 | 45 |
36—Farm ability to generate income | Indicator | 0 | 25 | 11.5 | 45.8 | 5.9 | 0 | 21 |
37—Income per family worker | Indicator | 0 | 25 | 19.1 | 76.6 | 7.7 | 0 | 25 |
ECO_3—Independence | Component | 0 | 50 | 41.4 | 82.9 | 5.6 | 24 | 50 |
38—CAP independence | Indicator | 0 | 25 | 19.6 | 78.2 | 4.6 | 0 | 25 |
39—Autonomy | Indicator | 0 | 25 | 21.9 | 87.5 | 5.1 | 0 | 25 |
ECO_4—Diversification | Component | 0 | 50 | 19.5 | 39.1 | 7.1 | 8 | 42 |
40—Diversification of the production | Indicator | 0 | 30 | 11.8 | 39.5 | 3.6 | 6 | 22 |
41—Business diversification | Indicator | 0 | 20 | 7.7 | 38.5 | 4.8 | 0 | 20 |
ECO_5—Multifunctionality | Component | 0 | 50 | 14.6 | 29.2 | 16.8 | 0 | 50 |
42—Multifunctionality | Indicator | 0 | 50 | 14.6 | 29.2 | 16.8 | 0 | 50 |
Indicator | Principal Component | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
1 Annual crops diversity | 0.681 | −0.040 | 0.523 | 0.022 | 0.114 |
2 Tree crops diversity | 0.811 | −0.019 | 0.049 | 0.181 | 0.074 |
3 Animal diversity | 0.111 | 0.688 | −0.341 | 0.065 | 0.186 |
4 Safeguard of animal and vegetal diversity | 0.448 | −0.117 | −0.181 | 0.212 | 0.671 |
5 Crop rotation | 0.794 | 0.082 | −0.009 | −0.099 | −0.109 |
6 Plot management | 0.155 | 0.168 | −0.085 | 0.656 | −0.045 |
7 Ecological buffer zones | 0.577 | −0.043 | −0.213 | −0.384 | −0.050 |
8 Environmental and landscape safeguard | 0.129 | 0.067 | −0.720 | 0.186 | 0.091 |
10 Fertilisation | 0.279 | −0.775 | −0.041 | 0.089 | 0.129 |
11 Pesticides | 0.600 | 0.357 | 0.394 | 0.065 | −0.229 |
14 Soil management | 0.396 | 0.060 | −0.141 | 0.117 | −0.817 |
15 Water resource management | 0.274 | 0.144 | 0.666 | 0.312 | 0.195 |
16 Organic matter management | 0.352 | 0.591 | 0.396 | 0.150 | −0.165 |
17 Energy dependence | −0.086 | −0.815 | −0.093 | 0.027 | 0.085 |
18 Renewable Energy | 0.234 | 0.265 | −0.064 | −0.767 | −0.075 |
Indicator | Principal Component | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
19 Quality of the products | −0.008 | 0.769 | −0.027 | 0.423 | −0.180 |
20 Rural buildings | 0.144 | 0.081 | 0.080 | 0.207 | 0.807 |
21 Landscape and territory | 0.427 | 0.204 | 0.240 | 0.090 | −0.450 |
22 Short food supply chain | 0.252 | 0.176 | 0.601 | 0.548 | 0.179 |
23 Related activities | 0.773 | 0.060 | 0.364 | 0.231 | −0.081 |
24 Work | 0.209 | 0.165 | 0.904 | 0.068 | −0.053 |
25 Sustainability of the employment | 0.250 | 0.797 | 0.175 | −0.123 | −0.037 |
26 Training | 0.605 | 0.336 | 0.384 | −0.211 | 0.317 |
28 Associations and social implications | 0.658 | 0.097 | −0.132 | 0.442 | −0.002 |
29 Cooperation | 0.145 | 0.117 | 0.134 | 0.851 | 0.150 |
30 Waste management | 0.046 | 0.712 | 0.321 | 0.134 | 0.161 |
31 Accessibility to the farm spaces | 0.836 | 0.164 | 0.213 | 0.030 | 0.106 |
33 Education | 0.537 | 0.673 | −0.058 | 0.104 | 0.138 |
Indicator | Principal Component | ||
---|---|---|---|
1 | 2 | 3 | |
34 Value of production | 0.905 | −0.128 | 0.064 |
35 Value added | 0.951 | 0.000 | 0.207 |
36 Farm ability to generate income | 0.742 | −0.014 | 0.333 |
37 Income per family worker | 0.936 | −0.134 | −0.150 |
38 CAP independence | 0.346 | −0.056 | 0.680 |
39 Autonomy | 0.006 | −0.034 | −0.824 |
40 Diversification of the production | 0.042 | 0.650 | −0.280 |
41 Business diversification | −0.102 | 0.907 | 0.004 |
42 Multifunctionality | −0.165 | 0.760 | 0.325 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaviglio, A.; Bertocchi, M.; Demartini, E. A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study. Resources 2017, 6, 60. https://doi.org/10.3390/resources6040060
Gaviglio A, Bertocchi M, Demartini E. A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study. Resources. 2017; 6(4):60. https://doi.org/10.3390/resources6040060
Chicago/Turabian StyleGaviglio, Anna, Mattia Bertocchi, and Eugenio Demartini. 2017. "A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study" Resources 6, no. 4: 60. https://doi.org/10.3390/resources6040060
APA StyleGaviglio, A., Bertocchi, M., & Demartini, E. (2017). A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study. Resources, 6(4), 60. https://doi.org/10.3390/resources6040060