Assessing the Impacts of Climate Change on Distribution of Major Non-Timber Forest Plants in Chitwan Annapurna Landscape, Nepal
Abstract
:1. Introduction
1.1. Non-Timber Products in Nepal: Current Context
1.2. Impacts of Climate Change on Himalayan Flora
1.3. Modelling the Impacts of Climate Change
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Data on Distribution of NTFPs
2.2.2. Bioclimatic Data
2.2.3. Modelling Approach & Validation
3. Results & Discussion
3.1. Prediction Accuracy of Species Distribution Models
3.2. Current Distribution of NTFPs
3.3. Range Expansion and Reduction by 2050
3.4. Implications for Management of Non-Timber Forest Products
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lanly, J.-P. Tropical Forest Resources; FAO, Roma (Italia) United Nations Environment Programme: Nairobi, Kenia, 1982; ISBN 9251011877. [Google Scholar]
- Dangi, R.B. Impact of NTFP Harvesting in Forest Conservation. Initiation 2008, 2, 165–171. [Google Scholar] [CrossRef]
- Ojha, H.R. Current Policy Issues in NTFP Development in Nepal; Asia Network Small-Scale Bio-Resources: Kathmandu, Nepal, 2000. [Google Scholar]
- Banjade, M.R.; Paudel, N.S. Economic Potential of Non-timber Forest Products in Nepal: Myth or Reality? J. For. Livelihood 2008, 7, 36–48. [Google Scholar]
- Agrawal, A.; Cashore, B.; Hardin, R.; Shepherd, G.; Benson, C.; Miller, D. Economic Contributions of Forests. United Nations Forum on Forests, Background Paper No.1, Tenth Session, 8–19 April, 2013, 1–127. Available online: http://www.un.org/esa/forests/pdf/session_documents/unff10/EcoContrForests.pdf (accessed on 22 August 2018).
- Subedi, B.P. Utilization of non-timber forest products: Issues and strategies for environmental conservation and economic development. In Theme Paper Presented at the Workshop on the Utilisation of NTFPs for Environmental Conservation and Economic Development in Nepal; Asia Network for Small Scale Agricultural Bioresources: Kathmandu, Nepal, 1997; 11p. [Google Scholar]
- Edwards, D.M. Non-timber Forest Products from Nepal: Aspect of the Trade in Medicinal and Aromatic Plants; FORESC Monograph no. 1/96; Forest Research and Survey Centre, Ministry of Forest and Soil Conservation: Kathmandu, Nepal, 1996; 134p.
- Forest Stewardship Council, Standards for Non-Timber Forest Products. 2002. FSC Web Page. Available online: http://www.fscstandards.org/regions/pacific/non_forest.html (accessed on 22 August 2018).
- Myers, N. Tropical forests: Much more than stocks of wood. J. Trop. Ecol. 1988, 4, 209–221. [Google Scholar] [CrossRef]
- Ramesh, K.V.; Goswami, P. Reduction in temporal and spatial extent of the Indian summer monsoon. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Shrestha, D.; Singh, P.; Nakamura, K. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J. Geophys. Res. Atmos. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Metzger, M.J.; Wang, M.; Oli, K.P.; Xu, J. Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal. Clim. Chang. 2014, 125, 445–460. [Google Scholar] [CrossRef]
- Ebi, K.L.; Woodruff, R.; von Hildebrand, A.; Corvalan, C. Climate Change-related Health Impacts in the Hindu Kush-Himalayas. Ecohealth 2007, 4, 264–270. [Google Scholar] [CrossRef]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Diaz, H.F., Ed.; Springer: Dordrecht, The Netherlands, 2003; pp. 5–31. ISBN 978-94-015-1252-7. [Google Scholar]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Maikhuri, R.K.; Rao, K.S.; Semwal, R.L. Changing scenario of Himalayan agro- ecosystem: Loss of agro-biodiversity an indicator of environment change in Central Himalaya, India. Environmentalist 2001, 21, 23–39. [Google Scholar] [CrossRef]
- Chaudhary, P.; Bawa, K.S. Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol. Lett. 2011. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lebel, L.; Sturgeon, J. Functional links between biodiversity, livelihoods, and culture in a hani swidden landscape in southwest china. Ecol. Soc. 2009, 14. [Google Scholar] [CrossRef]
- Xu, J.; Shrestha, A.; Vaidya, R.; Eriksson, M.; Hewitt, K. The Melting Himalayas: Regional Challenges and Local Impacts of Climate Change on Mountain Ecosystems and Livelihoods; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2007. [Google Scholar]
- Schild, A. ICIMOD’s Position on Climate Change and Mountain Systems. Mt. Res. Dev. 2008, 28, 328–331. [Google Scholar] [CrossRef]
- Telwala, Y.; Brook, B.W.; Manish, K.; Pandit, M.K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 2013, 8, e57103. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 2012, 7, e36741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheffers, B.R.; De Meester, L.; Bridge, T.C.L.; Hoffmann, A.A.; Pandolfi, J.M.; Corlett, R.T.; Butchart, S.H.M.; Pearce-Kelly, P.; Kovacs, K.M.; Dudgeon, D. The broad footprint of climate change from genes to biomes to people. Science 2016, 354, aaf7671. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.E.; Robinson, S.K.; Levey, D.J. Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology 2010, 91, 1877–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, J.E.; Londoño, G.A.; Robinson, S.K.; Chappell, M.A. Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography 2013, 36, 1–12. [Google Scholar] [CrossRef]
- Salick, J.; Ghimire, S.K.; Fang, Z.; Dema, S.; Konchar, K.M. Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 2014, 34, 276–293. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting Species Distribution: Offering More than Simple Habitat Models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Raven, P.H. Predicting Species Occurrences: Issues of Accuracy and Scale; Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A., Samson, F., Eds.; Island Press: Washington, DC, USA, 2002; ISBN 1-55963-787-0. [Google Scholar]
- Fleishman, E.; Nally, R.M.; Fay, J.P.; Murphy, D.D. Modeling and predicting species occurrence using broad-scale environmental variables: An example with butterflies of the Great Basin. Conserv. Biol. 2001, 15, 1674–1685. [Google Scholar] [CrossRef]
- Nakazato, T.; Warren, D.L.; Moyle, L.C. Ecological and geographic modes of species divergence in wild tomatoes. Am. J. Bot. 2010, 97, 680–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, A.T. Predicting SPECIES’Geographic Distributions Based on Ecological Niche Modeling. Condor 2001, 103, 599–605. [Google Scholar] [CrossRef]
- Wintle, B.A.; Bardos, D.C. Modeling species–habitat relationships with spatially autocorrelated observation data. Ecol. Appl. 2006, 16, 1945–1958. [Google Scholar] [CrossRef]
- Burgman, M.A.; Lindenmayer, D.B.; Elith, J. Managing Landscapes for Conservation under Uncertainty. Ecology 2005, 86, 2007–2017. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Modell. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Kadmon, R.; Farber, O.; Danin, A. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol. Appl. 2004, 14, 401–413. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Kumar, S.; Stohlgren, T.J.; Chong, G.W. Spatial heterogeneity influences native and nonnative plant species richness. Ecology 2006, 87, 3186–3199. [Google Scholar] [CrossRef]
- Chitale, V.S.; Behera, M.D. Can the distribution of sal (Shorea robusta Gaertn. f.) shift in the northeastern direction in India due to changing climate? Curr. Sci. 2012, 102, 1126–1135. [Google Scholar]
- Gopalakrishnan, R.; Jayaraman, M.; Swarnim, S.; Chaturvedi, R.K.; Bala, G.; Ravindranath, N.H. Impact of climate change at species level: A case study of teak in India. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 199–209. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L. A method for estimating vulnerability of Douglas-fir growth to climate change in the northwestern US. For. Chron. 2005, 81, 369–374. [Google Scholar] [CrossRef]
- McNulty, S.G.; Vose, J.M.; Swank, W.T. Potential climate change effects on loblolly pine forest productivity and drainage across the southern United States. In Ambio; Springer: Berlin, Germany, 1996; Volume 25, pp. 449–453. [Google Scholar]
- Gautam, A.P.; Thapa, B.R.; Pandit, B.H.; Dhungana, B.M.; Tiwari, K.R.; Neupane, M.P.; Balla, M.K.; Joshi, M.R.; Sharma, U.R. Chitwan-Annapurna Landscape: A Rapid Assessment; WWF Nepal: Kathmandu, Nepal, 2013. [Google Scholar]
- Silwal, R.; Maharjan, S.; Shrestha, B.; Chitale, V.; Murthy, M. An Innovative Approach for Understanding the Patterns in Distribution and Extraction of Non-Timber Forest Products in Chitwan Annapurna Landscape, Nepal. Indian For. 2018, 144, 243–251. [Google Scholar]
- Pearson, R.G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 2007, 50, 56–89. [Google Scholar]
- Parry, M.; Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4, ISBN 0521880106. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef] [Green Version]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the earth sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Rasul, G.; Karki, M.; Sah, R.P. The role of non-timber forest products in poverty reduction in India: Prospects and problems. Dev. Pract. 2008, 18, 779–788. [Google Scholar] [CrossRef]
- Schaafsma, M.; Morse-Jones, S.; Posen, P.; Swetnam, R.D.; Balmford, A.; Bateman, I.J.; Burgess, N.D.; Chamshama, S.A.O.; Fisher, B.; Green, R.E.; et al. Towards transferable functions for extraction of Non-timber Forest Products: A case study on charcoal production in Tanzania. Ecol. Econ. 2012, 80, 48–62. [Google Scholar] [CrossRef]
- Arico, S.; Bridgewater, P.; El-beltagy, A.; Harms, E.; Program, S.; Hepworth, R.; Leitner, K.; Oteng-yeboah, A.; Ramos, M.A.; Watson, R.T. Millennium Ecosystem Assessment, Ecosystems and Human Well-Being: Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Shackleton, C.; Sheona, S. The importance of non-timber forest products in rural livelihood security and as safety nets: A review of evidence from South Africa. S. Afr. J. Sci. 2004, 100, 658–664. [Google Scholar]
- Vedeld, P.; Angelsen, A.; Bojö, J.; Sjaastad, E.; Kobugabe Berg, G. Forest environmental incomes and the rural poor. For. Policy Econ. 2007, 9, 869–879. [Google Scholar] [CrossRef]
- Sudhakar Reddy, C.; Vazeed Pasha, S.; Satish, K.V.; Saranya, K.R.L.; Jha, C.S.; Krishna Murthy, Y.V.N. Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): Implications on forest fragmentation. Biodivers. Conserv. 2018, 27, 91–107. [Google Scholar] [CrossRef]
- REDD-Forestry and Climate Change Cell. Role of Forest on Climate Change Adaptation; REDD-Forestry and Climate Change Cell, Ministry of Forests and Soil Conservation, Government of Nepal: Kathmandu, Nepal, 2011; 49p.
- Sharma, E.; Chettri, N.; Tse-Ring, K.; Shrestha, A.B.; Jing, F.; Mool, P.; Eriksson, M. Climate Change Impacts and Vulnerability in the Eastern Himalayas; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2009. [Google Scholar]
Sl. No. | Name of the Species | Nepali Name | Broad Vegetation Class | Altitudinal Range (m) | Usage | Plant Part Used | Sample Points |
---|---|---|---|---|---|---|---|
1 | Alnus nepalensis D. Don | Utis | Subtropical broadleaved forest | 900 to 2000 | Fuelwood, mulching, fodder | Stem, leaves | 55 |
2 | Castanopsis tribuloides (Sm.) A. DC | Katus | Subtropical broadleaved forest | 650 to 2100 | Timber, Fuelwood | Stem, fruits | 45 |
3 | Diploknema butyracea (Roxb.) H.J. Lam | Chiuri | Subtropical broadleaved forest | 400 to 1800 | Medicine, Food | Leaves, fruits, bark | 47 |
4 | Myrica esculenta Buch.-Ham. Ex D. Don | Kaphal | Temperate broadleaved forests | 1200 to 2100 | Medicine | Fruit | 39 |
5 | Persea odoratissima Ness. | Kaula | Sub-tropical to Temperate forests | 500 to 2200 | Fodder | Leaves, fruits | 42 |
6 | Pinus patula Schiede & Deppe | Patte Salla | Subtropical coniferous forests | 1650 to 3000 | Timber, Fuelwood | Stem, branches | 124 |
7 | Pinus roxburghii Sarg. | Khote Salla | Subtropical coniferous forests | 900 to 2200 | Timber, Fuelwood | Stem, branches | 65 |
8 | Rhododendron arboreum Sm. | Laligurans | Montane broadleaved forests | 2500 to 3300 | Fuelwood, Medicine | Stem, flowers | 45 |
9 | Shorea robusta Gaertn. f. | Sal | Subtropical broadleaved forest | 500 to 1000 | Timber, Fuelwood | Stem, bark | 102 |
10 | Taxus wallichiana Zucc. | Loth Salla | Temperate & subalpine forest | 2800 to 3600 | Medicine | Bark | 89 |
Sl. No. | Scientific Name | Present Time Period | Future Time Period (RCP 4.5, 2050) | ||||
---|---|---|---|---|---|---|---|
Most Significant Climate Variable | Training | Test | Most Significant Climate Variable | Training | Test | ||
1 | Alnus nepalensis D. Don | Mean Temperature of Driest Quarter | 0.901 | 0.788 | Temperature Seasonality (standard deviation *100) | 0.897 | 0.789 |
2 | Castanopsis tribuloides (Sm.) A. DC | Max Temperature of Warmest Month | 0.829 | 0.795 | Max Temperature of Warmest Month | 0.828 | 0.797 |
3 | Diploknema butvracea Roxb | Mean Diurnal Range (Mean of monthly (max temp − min temp)) | 0.862 | 0.677 | Precipitation of Warmest Quarter, Annual Precipitation | 0.882 | 0.663 |
4 | Myrica esculenta Buch.-Ham. Ex D. Don | Mean Diurnal Range (Mean of monthly (max temp − min temp)) | 0.862 | 0.677 | Precipitation of Warmest Quarter, Annual Precipitation | 0.882 | 0.663 |
5 | Persea odoratissima (Nees) Kosterm | Temperature Seasonality (standard deviation *100), Temperature Annual Range (BIO5-BIO6) | 0.815 | 0.930 | Temperature Seasonality (standard deviation *100) | 0.838 | 0.988 |
6 | Pinus patula Schiede & Deppe | Precipitation of Driest Quarter, Precipitation of Coldest Quarter | 0.910 | 0.633 | Precipitation of Driest Quarter | 0.831 | 0.536 |
7 | Pinus roxburghii Sarg. | Mean Temperature of Driest Quarter, Min Temperature of Coldest Month | 0.845 | 0.724 | Mean Temperature of Driest Quarter | 0.838 | 0.763 |
8 | Rhododendron arboretum Sm. | Max Temperature of Warmest Month | 0.872 | 0.787 | Mean Temperature of Coldest Quarter, Min Temperature of Coldest Month | 0.892 | 0.807 |
9 | Shorea robusta Gaertn f. | Mean Temperature of Driest Quarter, Min Temperature of Coldest Month | 0.860 | 0.745 | Annual Mean Temperature | 0.837 | 0.849 |
10 | Taxus wallichiana (Zucc.) Pilger | Temperature Seasonality (standard deviation *100), Temperature Annual Range (BIO5-BIO6) | 0.890 | 0.632 | Temperature Annual Range (BIO5-BIO6) | 0.895 | 0.613 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chitale, V.; Silwal, R.; Matin, M. Assessing the Impacts of Climate Change on Distribution of Major Non-Timber Forest Plants in Chitwan Annapurna Landscape, Nepal. Resources 2018, 7, 66. https://doi.org/10.3390/resources7040066
Chitale V, Silwal R, Matin M. Assessing the Impacts of Climate Change on Distribution of Major Non-Timber Forest Plants in Chitwan Annapurna Landscape, Nepal. Resources. 2018; 7(4):66. https://doi.org/10.3390/resources7040066
Chicago/Turabian StyleChitale, Vishwas, Ramesh Silwal, and Mir Matin. 2018. "Assessing the Impacts of Climate Change on Distribution of Major Non-Timber Forest Plants in Chitwan Annapurna Landscape, Nepal" Resources 7, no. 4: 66. https://doi.org/10.3390/resources7040066
APA StyleChitale, V., Silwal, R., & Matin, M. (2018). Assessing the Impacts of Climate Change on Distribution of Major Non-Timber Forest Plants in Chitwan Annapurna Landscape, Nepal. Resources, 7(4), 66. https://doi.org/10.3390/resources7040066