Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Tensile Properties
3.2. Flexural Properties
3.3. Impact Strength
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferrão, P.; Amaral, J. Assessing the economics of auto recycling activities in relation to European Union Directive on end of life vehicles. Technol. Forecast. Soc. Chang. 2006, 73, 277–289. [Google Scholar] [CrossRef]
- Akçaözoğlu, S. Evaluation of waste plastics as recycled plastic composite materials. Edorium J. Waste Manag. 2015, 1, 16–19. [Google Scholar] [CrossRef]
- Kengkhetkit, N.; Amornsakchai, T. A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Mater. Des. 2014, 55, 292–299. [Google Scholar] [CrossRef]
- Leao, A.L.; Fouza, S.F.; Cherian, B.M.; Frollini, E.; Thomas, S.; Pothan, L.A.; Kottaisamy, M. Agro-based biocomposites for industrial applications. Mol. Cryst. Liq. Cryst. 2010, 522, 318–327. [Google Scholar] [CrossRef]
- Uma Devi, L.; Joseph, K.; Munikandan Nair, K.C.; Thomas, S. Ageing studies of pineapple leaf fiber-reinforced polyester composites. J. Appl. Polym. Sci. 2004, 94, 503–510. [Google Scholar] [CrossRef]
- Nega, A.; Worku, A. Composite manufacturing from recycled medical gloves reinforced with jute fiber. J. Text. Sci. Eng. 2018, 8, 369–371. [Google Scholar] [CrossRef]
- Yang, Y.; Ota, T.; Morii, T.; Hamada, H. Mechanical property and hydrothermal aging of injection molded jute/polypropylene composites. J. Mater. Sci. 2010, 46, 2678–2684. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, M.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Al-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.T.; Jawaid, M. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Constr. Build. Mater. 2015, 76, 87–96. [Google Scholar] [CrossRef]
- Tye, Y.Y.; Lee, K.T.; Abdullah, W.N.W.; Leh, C.P. The world availability of nonwood lignocellulosic biomass for the production of cellulosic ethanol and potentialpretreatments for the enhancement of enzymatic saccharification. Renew. Sustain. Energy Rev. 2016, 60, 155–172. [Google Scholar] [CrossRef]
- Joseph, K.; Thomas, S.; Pavithran, C.; Brahmakumar, M. Tensile properties of short sisal fiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 1993, 47, 1731–1739. [Google Scholar] [CrossRef]
- Shibata, M.; Takachiyo, K.I.; Ozawa, K.; Yosomiya, R.; Takeishi, H. Biodegradable polyester composites reinforced with short abaca fiber. J. Appl. Polym. Sci. 2002, 85, 129–138. [Google Scholar] [CrossRef]
- Paul, S.A.; Boudenne, A.; Ibos, L.; Candau, Y.; Joseph, K.; Thomas, S. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1582–1588. [Google Scholar] [CrossRef]
- Sapuan, S.; Mohamed, A.; Siregar, J.; Ishak, M. Pineapple Leaf Fibers and PALF-reinforced Polymer Composites. In Cellulose Fibers: Bio-and Nano-Polymer Composites; Kalia, S., Kaith, B., Kaur, I., Eds.; Springer: Berlin, Germany, 2011; pp. 325–343. ISBN 978-3-642-17370-7. [Google Scholar]
- Sheltami, R.M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym. 2012, 88, 772–779. [Google Scholar] [CrossRef]
- Piah, M.R.M.; Baharum, A.; Abdullah, I. Mechanical properties of bio-composite natural rubber/high density polyethylene/mengkuang fiber (NR/HDPE/MK). Polym. Polym. Compos. 2016, 24, 767–774. [Google Scholar] [CrossRef]
- Fauzi, F.A.; Ghazalli, A.; Siregar, J.P.; Tezara, C. Investigation of thermal behaviour for natural fibres reinforced epoxy using thermogravimetric and differential scanning calorimetric analysis. MATEC Web Conf. 2016, 78, 1042. [Google Scholar] [CrossRef]
- Hashim, F.; Ismail, H.; Rusli, A. Properties and characterization of ([mengkuang leaf fiber]-filled ethylene vinyl acetate)/(natural rubber) blend: Effects of blending sequences and mengkuang leaf fiber loading. J. Vinyl Addit. Technol. 2018, 24, 109–115. [Google Scholar] [CrossRef]
- Halim, N.A.; Siregar, J.P.; Mathivanan, D.; Bachtiar, D.; Ghazali, Z.; Rejab, M.R.M.; Tezara, C. The performance of mengkuang leaf fiber reinforced low density polyethylene composites. J. Mech. Eng. Sci. 2018, 12, 3645–3655. [Google Scholar] [CrossRef]
- Das, G.; Biswas, S. Physical, mechanical and water absorption behaviour of coir fiber reinforced epoxy composites filled with Al2O3 particulates. IOP Conf. Ser. Mater. Sci. Eng. 2016, 115, 12012. [Google Scholar] [CrossRef]
- Hamizol, M.S.; Megat-Yusoff, P.S.M. Tensile strength of single continuous fiber extracted from mengkuang leaves. J. Teknol. 2015, 76, 101–107. [Google Scholar] [CrossRef]
- Liu, M.; Meyer, A.S.; Fernando, D.; Silva, D.A.S.; Daniel, G.; Thygesen, A. Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 724–735. [Google Scholar] [CrossRef]
- Zulkifli, N.I.; Samat, N. Mechanical Properties of Green Recycled Polypropylene Composites: Effect of Maleic Anhydride Grafted Polypropylene (MAPP) Coupling Agent. Adv. Mater. Res. 2013, 812, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Zulkifli, N.I.; Samat, N.; Anuar, H.; Zainuddin, N. Mechanical Properties and failure modes of recycled polypropylene/microcrytalline cellulose composites. Mater. Des. 2015, 69, 114–123. [Google Scholar] [CrossRef]
- Hamdan, M.H.M.; Siregar, J.P.; Bachtiar, D.; Bachtiar, D.; Rejab, M.R.M.; Tezara, C. Mechanical properties of mengkuang leave fiber reinforced low density polyethylene composites. In Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites; Sapuan, S.M., Ismail, H., Zainudin, E.S., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: Cambridge, UK, 2018; pp. 181–196. [Google Scholar]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, M.Z.; Che Aslan, N.H. Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources 2019, 8, 97. https://doi.org/10.3390/resources8020097
Abdullah MZ, Che Aslan NH. Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources. 2019; 8(2):97. https://doi.org/10.3390/resources8020097
Chicago/Turabian StyleAbdullah, Mohamad Zaki, and Nasrul Haziq Che Aslan. 2019. "Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber" Resources 8, no. 2: 97. https://doi.org/10.3390/resources8020097
APA StyleAbdullah, M. Z., & Che Aslan, N. H. (2019). Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources, 8(2), 97. https://doi.org/10.3390/resources8020097