Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan
Abstract
:1. Introduction
2. Data Mining
- Activity (statistics and status) of MSW and IBA
- Technological reuse methods
- Regulatory measures for IBA recycling
3. Results and Discussion
3.1. Trend Analysis of MSW Generation and Treatment
3.2. Trend Analysis of Electricity Power and IBA Generation from MSW Incineration Plants
3.3. Regulatory Promotion for MSW Incineration Bottom Ash Recycling
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Niessen, W.R. Combustion and Incineration Processes: Applications in Environmental Engineering; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Tsai, W.T.; Chou, Y.H. An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan. Renew. Sustain. Energy Rev. 2006, 10, 491–502. [Google Scholar] [CrossRef]
- Tsai, W.T.; Kuo, K.C. An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy 2010, 35, 4824–4830. [Google Scholar] [CrossRef]
- Takaoka, M.; Takeda, N.; Yamagata, N.; Masuda, T. Current status of waste to power generation in Japan and resulting reduction of carbon dioxide emissions. J. Mater. Cycles Waste Manag. 2011, 13, 198–205. [Google Scholar] [CrossRef]
- Tsai, W.T. Analysis of municipal solid waste incineration plants for promoting power generation efficiency in Taiwan. J. Mater. Cycles Waste Manag. 2016, 6, 975–981. [Google Scholar] [CrossRef]
- Chen, Y.C. Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. J. Clean. Prod. 2018, 192, 262–269. [Google Scholar] [CrossRef]
- Phoungthong, K.; Xia, Y.; Zhang, H.; Shao, L.; He, P. Leaching toxicity characteristics of municipal solid waste incineration bottom ash. Front. Environ. Sci. Eng. 2016, 10, 399–411. [Google Scholar] [CrossRef]
- Beylot, A.; Hochar, A.; Michel, P.; Descat, M.; Ménard, Y.; Villeneuve, J. Municipal solid waste incineration in France: An overview of air pollution control techniques, emissions, and energy efficiency. J. Ind. Ecol. 2018, 22, 1016–1026. [Google Scholar] [CrossRef]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Concentrations of trace elements and PCDD/Fs around a municipal solid waste incinerator in Girona (Catalonia, Spain). Human health risks for the population living in the neighborhood. Sci. Total. Environ. 2018, 630, 34–45. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resour. Conserv. Recycl. 2019, 140, 23–35. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Y.; Cheng, H. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef]
- Environmental Protection Administration (EPA, Taiwan). Yearbook of Environmental Protection Statistics 2019; EPA: Taipei, Taiwan, 2020.
- Ministry of Economic Affairs (MOEA). Energy Statistics Handbook 2019; MOEA: Taipei, Taiwan, 2020.
- Laws and Regulation Retrieving System. Available online: https://law.moj.gov.tw/Eng/index.aspx (accessed on 15 August 2020).
- Huang, C.M.; Yang, W.F.; Ma, H.W.; Song, Y.R. The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manag. 2006, 26, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liao, W.P.; Wu, P.H. Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan. J. Environ. Manag. 2012, 104, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M.J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J.M.; Dahlbo, H.; et al. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag. 2020, 102, 868–883. [Google Scholar] [CrossRef] [PubMed]
- Lynn, C.J.; Dhir, R.K.; Ghataora, G.S. Municipal incinerated bottom ash characteristics and potential for use as aggregate in concrete. Constr. Build. Mater. 2016, 127, 504–517. [Google Scholar] [CrossRef]
- Joseph, A.M.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The use of municipal solid waste incineration ash in various building materials: A Belgian point of view. Materials 2018, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Xuan, D.; Tang, P.; Poon, C.S. Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications–A review. Constr. Build. Mater. 2018, 190, 1091–1102. [Google Scholar] [CrossRef]
- Vateva, I.; Laner, D. Grain-size specific characterisation and resource potentials of municipal solid waste incineration (MSW) bottom ash: A German case study. Resources 2020, 9, 66. [Google Scholar] [CrossRef]
- Kuo, N.W.; Ma, H.W.; Yang, W.F.; Hsiao, T.Y.; Huang, C.M. An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan. Waste Manag. 2007, 27, 1673–1679. [Google Scholar] [CrossRef]
- Allegrini, E.; Maresca, A.; Olsson, M.E.; Holtze, M.S.; Boldrin, A.; Astrup, T.F. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Manag. 2014, 34, 1627–1636. [Google Scholar] [CrossRef]
- Allegrini, E.; Vadenbo, C.; Boldrin, A.; Astrup, T.F. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. J. Environ. Manag. 2015, 151, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; He, P.; Shao, L.; Zhang, H. Metal distribution characteristic of MSWI bottom ash in view of metal recovery. J. Environ. Sci. 2017, 52, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Syc, M.; Simon, F.G.; Hyks, J.; Braga, R.; Biganzoli, L.; Costa, G.; Funari, V.; Grosso, M. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J. Hazard. Mater. 2020, 393, 122433. [Google Scholar] [CrossRef] [PubMed]
- Flow Management System of Recycled Aggregate from Incineration Bottom Ash. Available online: https://rams.epa.gov.tw/RAMS/ (accessed on 10 August 2020).
- Chang, Y.M.; Liu, C.C.; Hung, C.Y.; Hu, A.; Chen, S.S. Change in MSW characteristics under recent strategies in Taiwan. Waste Manag. 2008, 28, 2443–2455. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T. Promoting the circular economy via waste-to-power (WTP) in Taiwan. Resources 2019, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- ECOVE, Creating a Circular Taiwan. ECOVE: Taipei, Taiwan. 2018. Available online: http://www.ecove.com/upload/comF/10.3/ECOVE_CE.pdf (accessed on 15 August 2020).
Year | Total | MSW Generation by Type | Total | MSW Treatment by Method | |||||
---|---|---|---|---|---|---|---|---|---|
General Garbage | Recyclable Garbage | Food Waste | Recycling/Reuse | Incineration | Landfill | Others | |||
2010 | 7,957,601 | 4,072,603 | 3,115,834 | 769,164 | 7,957,601 | 3,884,998 | 3,888,641 | 181,771 | 2191 |
2011 | 7,554,589 | 3,610,848 | 3,132,541 | 811,199 | 7,554,589 | 3,943,740 | 3,468,620 | 142,155 | 74 |
2012 | 7,403,948 | 3,379,390 | 3,190,018 | 834,541 | 7,403,948 | 4,024,558 | 3,277,252 | 102,052 | 85 |
2013 | 7,332,694 | 3,300,151 | 3,237,330 | 795,213 | 7,332,694 | 4,032,544 | 3,208,721 | 91,355 | 75 |
2014 | 7,369,439 | 3,272,669 | 3,376,397 | 720,373 | 7,369,439 | 4,096,770 | 3,189,457 | 83,136 | 76 |
2015 | 7,229,290 | 3,236,389 | 3,383,195 | 609,706 | 7,229,290 | 3,992,901 | 3,143,054 | 91,655 | 1679 |
2016 | 7,461,342 | 3,133,582 | 3,751,828 | 575,932 | 7,461,342 | 4,327,760 | 2,993,435 | 77,940 | 62,206 |
2017 | 7,870,896 | 3,130,735 | 4,188,829 | 551,332 | 7,870,896 | 4,740,161 | 2,969,654 | 70,382 | 90,699 |
2018 | 9,740,671 | 4,317,339 | 4,828,340 | 594,992 | 9,613,982 | 5,423,332 | 4,103,398 | 87,251 | -- |
2019 | 9,812,418 | 4,290,856 | 5,023,517 | 498,045 | 9,650,074 | 5,521,562 | 4,042,110 | 86,402 | -- |
Year | Refuse Received | Refuse Incinerated | Bottom Ash | Fly Ash | Power Generation (% of Power Sold) | ||
---|---|---|---|---|---|---|---|
Total | MSW | General Industrial Waste | |||||
2010 | 6,406,781 | 4,441,197 | 1,965,584 | 6,235,390 | 992,583 | 301,846 | 3,026,003 (76.82%) |
2011 | 6,507,763 | 4,234,971 | 2,272,792 | 6,355,422 | 1,079,353 | 278,205 | 3,076,345 (76.87%) |
2012 | 6,506,907 | 4,204,289 | 2,302,618 | 6,404,987 | 1,060,376 | 289,157 | 3,056,476 (76.79%) |
2013 | 6,471,767 | 4,214,872 | 2,256,895 | 6,349,913 | 999,117 | 285,347 | 3,131,460 (77.05%) |
2014 | 6,420,400 | 4,192,142 | 2,228,258 | 6,294,479 | 937,177 | 290,015 | 3,187,484 (77.84%) |
2015 | 6,622,070 | 4,329,863 | 2,292,207 | 6,534,388 | 970,966 | 300,537 | 3,217,212 (78.14%) |
2016 | 6,441,999 | 4,271,179 | 2,170,820 | 6,392,159 | 916,152 | 295,526 | 295,526 (78.21%) |
2017 | 6,251,196 | 5,088,471 | 1,162,725 | 6,266,855 | 849,381 | 296,970 | 3,187,516 (78.32%) |
2018 | 6,464,184 | 4,781,393 | 1,682,791 | 6,443,777 | 893,738 | 300,066 | 3,359,480 (79.11%) |
2019 | 6,530,079 | 4,816,708 | 1,713,371 | 6,527,567 | 914,543 | 328,455 | 3,459,060 (79.15%) |
Toxic Inorganic Element | TCLP Standard (mg/L) | Comments |
---|---|---|
Mercury and its compounds (Total mercury) | 0.2 | |
Cadmium and its compounds (Total cadmium) | 1.0 | |
Selenium and its compounds (Total selenium) | 1.0 | |
Hexavalent chromium | 2.5 | |
Lead and its compounds (Total lead) | 5.0 | |
Chromium and its compounds (Total chromium) | 5.0 | Excluding waste leather powder, dander and leather piece from the manufacture or use of animal leather |
Arsenic and its arsenic (Total arsenic) | 5.0 | |
Silver and its compounds (Total silver) | 5.0 | Limited to waste liquors from photographic processing and photoengraving |
Copper and its compounds (Total copper) | 15.0 | Limited to waste catalyst, dust, waste liquor, sludge, filter material, incineration fly ash or bottom ash |
Barium and its compounds (Total barium) | 100.0 |
Item | Frequency | Standard |
---|---|---|
Combustible | Monthly | ≤2.0% |
Dioxin concentration by I-TEQ 1 | Quarterly | ≤1.0 ng/g |
Lead 2 | Quarterly | ≤5 mg/L |
Cadmium 2 | ≤1 mg/L | |
Chromium 2 | ≤5 mg/L | |
Selenium 2 | ≤1 mg/L | |
Copper 2 | ≤15 mg/L | |
Barium 2 | ≤100 mg/L | |
Hexavalent chromium 2 | ≤2.5 mg/L | |
Arsenic 2 | ≤5 mg/L | |
Mercury 2 | ≤0.2 mg/L |
Item | Class No.1 Standards 4 | Class No.2 Standards 5 | Specific Purpose Standards 6 |
---|---|---|---|
Dioxin concentration by I-TEQ 1 | ≤0.1 ng I-TEQ/g | ≤0.1 ng I-TEQ/g | ≤0.1 ng I-TEQ/g |
Particle size | ≤19 mm | ≤19 mm | ≤19 mm |
Impurity | Do not contain the following substances with over 20 mm by any two scales (length, width, depth): Combustibles, iron metals, non-iron metals, batteries and recognizable commercial products. | (Same as the left) | (Same as the left) |
Lead 2 | ≤0.01 mg/L | ≤0.1 mg/L | ≤4.0 mg/L |
Cadmium 2 | ≤0.005 mg/L | ≤0.05 mg/L | ≤0.8 mg/L |
Chromium 2 | ≤0.05 mg/L | ≤0.5 mg/L | ≤4.0 mg/L |
Copper 2 | ≤1.0 mg/L | ≤10 mg/L | ≤12.0 mg/L |
Arsenic 2 | ≤0.05 mg/L | ≤0.5 mg/L | ≤0.4 mg/L |
Mercury 2 | ≤0.002 mg/L | ≤0.02 mg/L | ≤0.016 mg/L |
Nickel 2 | ≤0.1 mg/L | ≤1 mg/L | -- |
Zinc 2 | ≤5.0 mg/L | ≤50 mg/L | -- |
Selenium 2 | -- 3 | -- | ≤0.8 mg/L |
Barium 2 | -- | -- | ≤10.0 mg/L |
Hexavalent chromium 2 | -- | -- | ≤0.2 mg/L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-H.; Shen, Y.-H.; Tsai, W.-T. Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan. Resources 2020, 9, 117. https://doi.org/10.3390/resources9100117
Tsai C-H, Shen Y-H, Tsai W-T. Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan. Resources. 2020; 9(10):117. https://doi.org/10.3390/resources9100117
Chicago/Turabian StyleTsai, Chi-Hung, Yun-Hwei Shen, and Wen-Tien Tsai. 2020. "Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan" Resources 9, no. 10: 117. https://doi.org/10.3390/resources9100117
APA StyleTsai, C. -H., Shen, Y. -H., & Tsai, W. -T. (2020). Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan. Resources, 9(10), 117. https://doi.org/10.3390/resources9100117