Hydrological Response to Drought Occurrences in a Brazilian Savanna Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.3. Hydrological Behavior
2.3.1. Baseflow
2.3.2. Hydrological Indicators
2.4. Meteorological and Hydrological Droughts
3. Results and Discussion
3.1. Hydrological Behavior
3.2. Meteorological and Hydrological Droughts
3.3. Drought Propagation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Hunke, P.; Mueller, E.N.; Schröder, B.; Zeilhofer, P. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 2015, 8, 1154–1180. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.A.M.; Andrade, A.C.O.; Viola, M.R.; Morais, M.A.V. Indicadores hidrológicos para a gestão de recursos hídricos na bacia hidrográfica do rio Manuel Alves Da Natividade, Tocantins. Sci. Agrar. 2016, 16. [Google Scholar] [CrossRef]
- Mello, C.R.; Viola, M.R.; Beskow, S. Vazões máximas e mínimas na região do Alto Rio Grande, MG. Ciência e Agrotecnologia 2010, 34, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.A.; Silva, A.M.; Coelho, G.; Pinto, L.C.; Eduardo, E.N. Minimum and reference discharges and specific yield for the state of Minas Gerais, Brazil. Rev. Bras. Ciencias Agrar. 2017, 12, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Rocha Júnior, R.L.; Santos Silva, F.D.; Costa, R.L.; Gomes, H.B.; Pinto, D.D.C.; Herdies, D.L. Bivariate assessment of drought return periods and frequency in brazilian northeast using joint distribution by copula method. Geosciences 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Pontes Filho, J.D.; Souza Filho, F.D.A.; Martins, E.S.P.R.; de Studart, T.M.D.C. Copula-Based Multivariate Frequency Analysis of the 2012–2018 Drought in Northeast Brazil. Water 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Juliani, B.H.T.; Okawa, C.M.P. Application of a standardized precipitation index for meteorological drought analysis of the semi-arid climate influence in Minas Gerais, Brazil. Hydrology 2017, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Junqueira, R.; Viola, M.R.; de Mello, C.R.; Vieira-Filho, M.; Alves, M.V.G.; Amorim, J.d.S. Drought severity indexes for the Tocantins River Basin, Brazil. Theor. Appl. Climatol. 2020, 140. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. Proc. Conf. Appl. Climatol. 1993, 17, 179–183. [Google Scholar]
- Jesus, E.T.; Amorim, J.S.; Junqueira, R.; Viola, M.R.; Mello, C.R. Meteorological and hydrological drought from 1987 to 2017 in Doce River Basin, Southeastern Brazil. Rev. Bras. Recur. Hídricos 2020, 25, 1–12. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; McVicar, T.R.; Tomas-Burguera, M.; Peña-Gallardo, M.; Noguera, I.; López-Moreno, J.I.; Peña, D.; El Kenawy, A. Global characterization of hydrological and meteorological droughts under future climate change: The importance of timescales, vegetation-CO2 feedbacks and changes to distribution functions. Int. J. Climatol. 2020, 40, 2557–2567. [Google Scholar] [CrossRef]
- Sienz, F.; Bothe, O.; Fraedrich, K. Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias. Hydrol. Earth Syst. Sci. 2012, 16, 2143–2157. [Google Scholar] [CrossRef] [Green Version]
- WMO—World Meteorological Organization. Standardized Precipitation Index User Guide; WMO-No. 1090; World Meteorological Organization: Geneva, Switzerland, 2012; Volume 21, p. 24. [Google Scholar]
- Pieper, P.; Düsterhus, A.; Baehr, J. Global and regional performances of SPI candidate distribution functions in observations and simulations. Hydrol. Earth Syst. Sci. Discuss. 2020, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Jahangir, M.H.; Abolghasemi, M. Determining the most appropriate probability distribution function for calculate and compare the SPEI and SPI drought index in Tehran. Desert Ecosyst. Eng. J. 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Santos, U.; Silva, P.C.; Barros, L.C.; Dergam, J.A. Fish fauna of the Pandeiros River, a region of environmental protection for fish species in Minas Gerais state, Brazil. Check List 2015, 11, 1507. [Google Scholar] [CrossRef] [Green Version]
- Nunes, Y.R.F.; Azevedo, I.F.P.; Neves, W.V.; Veloso, M.D.D.M.; Souza, R.d.A.; Fernandes, G.W. Pandeiros: O Pantanal Mineiro. MG Biota 2009, 2, 4–17. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Minas Gerais State Environmental Foundation (FEAM) Mapa de solos do Estado de Minas Gerais 2010. Available online: http://www.feam.br/-qualidade-do-solo-e-areas-contaminadas/mapa-de-solos (accessed on 6 November 2019).
- Brazilian Institute of Geography and Statistics (IBGE) Mapa de Cobertura e Uso da Terra do Brasil 2010 2018. Available online: https://www.ibge.gov.br/geociencias/informacoes-ambientais/cobertura-e-uso-da-terra/15831-cobertura-e-uso-da-terra-do-brasil.html?edicao=16023&t=sobre (accessed on 7 November 2019).
- Gao, P.; Li, P.; Zhao, B.; Xu, R.; Zhao, G.; Sun, W.; Mu, X. Use of double mass curves in hydrologic benefit evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- Gao, C.; Li, X. Precipitation thresholds of drought disaster for maize in areas in front of Bengbu Sluice, Huaihe River Basin, China. Water 2018, 10, 1395. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Silva, R.F.G.; Bacellar, L.d.A.P.; Fernandes, K.N. Estimativa de parâmetros de aquíferos através do coeficiente de recessão em áreas de embasamento cristalino de Minas Gerais. Rem Rev. Esc. Minas 2010, 63, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Amorim, J.D.S.; Junqueira, R.; Mantovani, V.A.; Viola, M.R.; de Mello, C.R.; Bento, N.L. Streamflow regionalization for the Mortes River Basin upstream from the Funil Hydropower Plant, MG. Ambient. Água 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Junqueira Junior, J.A.; Mello, C.R.; Owens, P.R.; Mello, J.M.; Curi, N.; Alves, G.J. Time-stability of soil water content (SWC) in an Atlantic Forest—Latosol site. Geoderma 2017, 288, 64–78. [Google Scholar] [CrossRef]
- Euclydes, H.P.; Ferreira, P.A.; Faria Filho, R.F. Atlas digital das águas de Minas, 1st ed.; UFV: Viçosa, Brazil, 2005. [Google Scholar]
- Freitas, S.; Bacellar, L. Avaliação da Recarga de Aquíferos em Microbacias do Alto Rio das Velhas, Minas Gerais. Rev. Bras. Recur. Hídricos 2013, 18, 31–38. [Google Scholar] [CrossRef]
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: A Precipitation and Evaporation Perspective. Curr. Clim. Chang. Reports 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Rodrigues, J.A.M.; Viola, M.R.; Alvarenga, L.A.; Mello, C.R.; Chou, S.C.; Oliveira, V.A.; Uddameri, V.; Morais, M.A.V. Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome. Int. J. Climatol. 2019, 1–16. [Google Scholar] [CrossRef]
- Santos, G.L.; Pereira, M.G.; Delgado, R.C.; Magistrali, I.C.; Silva, C.G.; Oliveira, C.M.M.; Teodoro, P.E. Anthropogenic and climatic influences in the swamp environment of the Pandeiros River basin, Minas Gerais-Brazil. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic characteristics of the 2010-2016 drought in the semiarid northeast Brazil region. An. Acad. Bras. Cienc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Melo, D.C.D.; Scanlon, B.R.; Zhang, Z.; Wendland, E.; Yin, L. Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil. Hydrol. Earth Syst. Sci. 2016, 20, 4673–4688. [Google Scholar] [CrossRef] [Green Version]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, L.A.; Alves, L.M. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 8, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, A.; Gutiérrez-Fonseca, P.E.; Kelly, S.P.; Engman, A.C.; Wagner, K.; Rosas, K.G.; Rodríguez, N. Drought facilitates species invasions in an urban stream: Results from a long-term study of tropical island fish assemblage structure. Front. Ecol. Evol. 2018, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, S.C.D.; Cardim, G.P.; Puga, F.; Singh, R.P.; Silva, E.A.D. Analysis of the 2012–2016 drought in the northeast Brazil and its impacts on the Sobradinho water reservoir. Remote Sens. Lett. 2018, 9, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.S.; Costa, V.A.F.; Fernandes, W.D.S.; de Paes, R.P. Time-space characterization of droughts in the São Francisco river catchment using the Standard Precipitation Index and continuous wavelet transform. Rev. Bras. Recur. Hidricos 2019, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
Hydrological Indicator | Abbreviation | Unit |
---|---|---|
Depletion coefficient | α | day−1 |
Water depth stored in the aquifer at the end of the hydrological year | Af | mm |
Baseflow index | BFI | - |
Aquifer restitution rate | ARR | % |
Evapotranspiration rate | ETR | % |
Surface runoff rate | SRR | % |
Long-term streamflow | Qmean | m3 s−1 |
Minimum streamflow | Qmin | m3 s−1 |
Maximum streamflow | Qmax | m3 s−1 |
Minimum streamflow that occurs in 90% of the time | Q90% | m3 s−1 |
Minimum streamflow that occurs in 95% of the time | Q95% | m3 s−1 |
Minimum streamflow in seven consecutive days and a return period of 10 years | Q7,10 | m3 s−1 |
Specific yield (SY) related to Qmean, Qmin, Qmax, Q90%, Q95%, and Q7,10 | SYmean, SYmin, SYmax, SY90%, SY95%, and SY7,10, respectively | L s−1 km−2 |
Classification | Indexes Values | Probability (%) |
---|---|---|
Extremely dry (ED) | SPI and SSI ≤ −2.0 | 2.3 |
Severely dry (SD) | −2.0 < SPI and SSI ≤ −1.5 | 4.4 |
Moderately dry (MD) | −1.5 < SPI and SSI ≤ −1.0 | 9.2 |
Near normal (NN) | −1.0 < SPI and SSI < 1.0 | 68.2 |
Moderately wet (MW) | 1.0 ≤ SPI and SSI < 1.5 | 9.2 |
Very wet (VW) | 1.5 ≤ SPI and SSI < 2.0 | 4.4 |
Extremely wet (EW) | SPI and SSI ≥ 2.0 | 2.3 |
Precipitation | Streamflow | |||||||
---|---|---|---|---|---|---|---|---|
Hy | L3 | L6 | L9 | L12 | Rs | Hy | Rs | |
Gumbel | 0.929 | 0.874 | 0.690 | 0.886 | 0.249 | 0.527 | 0.348 | 0.462 |
Gamma | 0.562 | 0.452 | 0.386 | 0.376 | 0.250 | 0.262 | 0.381 | 0.524 |
GEV | 0.552 | 0.421 | 0.387 | 0.320 | 0.216 | 0.258 | 0.350 | 0.465 |
Kappa | 0.537 | 0.398 | 0.368 | 0.318 | 0.217 | 0.243 | 0.359 | 0.520 |
GLO | 0.612 | 0.492 | 0.456 | 0.359 | 0.244 | 0.341 | 0.423 | 0.567 |
GPA | - | - | - | - | - | - | - | - |
Weibull | 0.528 * | 0.397 * | 0.358 | 0.300 | - | 0.239 | - | - |
Wakeby | 0.711 | 0.467 | 0.325 * | 0.279 * | 0.202 * | 0.206 * | 0.281 * | 0.388 * |
PE3 | 0.552 | 0.424 | 0.385 | 0.315 | 0.229 | 0.260 | 0.363 | 0.478 |
LN3 | 0.553 | 0.425 | 0.388 | 0.315 | 0.222 | 0.262 | 0.356 | 0.470 |
SPI Lags (Months) | 0 | 3 | 6 | 9 | 12 |
R | 0.64 | 0.65 | 0.64 | 0.47 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junqueira, R.; Viola, M.R.; Amorim, J.d.S.; Mello, C.R.d. Hydrological Response to Drought Occurrences in a Brazilian Savanna Basin. Resources 2020, 9, 123. https://doi.org/10.3390/resources9100123
Junqueira R, Viola MR, Amorim JdS, Mello CRd. Hydrological Response to Drought Occurrences in a Brazilian Savanna Basin. Resources. 2020; 9(10):123. https://doi.org/10.3390/resources9100123
Chicago/Turabian StyleJunqueira, Rubens, Marcelo R. Viola, Jhones da S. Amorim, and Carlos R. de Mello. 2020. "Hydrological Response to Drought Occurrences in a Brazilian Savanna Basin" Resources 9, no. 10: 123. https://doi.org/10.3390/resources9100123
APA StyleJunqueira, R., Viola, M. R., Amorim, J. d. S., & Mello, C. R. d. (2020). Hydrological Response to Drought Occurrences in a Brazilian Savanna Basin. Resources, 9(10), 123. https://doi.org/10.3390/resources9100123