Investigating the Suitability of Grape Husks Biochar, Municipal Solid Wastes Compost and Mixtures of Them for Agricultural Applications to Mediterranean Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Characterization
2.2. Production of Biochar
2.3. Leaching of Biochar/Compost Mixtures through Soil
3. Results and Discussion
3.1. Physical and Chemical Properties of Solid Materials
3.2. Leachability of the Various Species from the Soil/Compost/Biochar Mixtures
3.2.1. Release of Phenols and Anions of Nitrogen and Phosphorous
3.2.2. Release of Metals and Trace Elements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vamvuka, D. Biomass, Bioenergy and the Environment, 1st ed.; Tziolas Publications: Salonica, Greece, 2009. [Google Scholar]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef]
- Cambier, P.; Michaud, A.; Paradelo, R.; Germain, M.; Mercier, V.; Guérin-Lebourg, A.; Houot, S. Trace metal availability in soil horizons amended with various urban waste composts during 17 years-Monitoring and modelling. Sci. Total Environ. 2019, 651, 2961–2974. [Google Scholar] [CrossRef]
- Gondek, K.; Mierzwa-Hersztek, M.; Kopec, M. Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. J. Environ. Manag. 2018, 210, 87–95. [Google Scholar] [CrossRef]
- Cely, P.; Gasco, G.; Paz-Ferreiro, J.; Mendez, A. Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrolysis 2015, 111, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Manolikaki, I.; Mangolis, A.; Diamantopoulos, E. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. J. Environ. Manag. 2016, 181, 536–543. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, C.; Gray, E.M.; Boyd, S.E. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy 2017, 105, 136–146. [Google Scholar] [CrossRef]
- Vamvuka, D.; Sfakiotakis, S.; Pantelaki, O. Evaluation of gaseous and solid products from the pyrolysis of waste biomass blends for energetic and environmental applications. Fuel 2019, 236, 574–582. [Google Scholar] [CrossRef]
- De Figueiredo, C.C.; Chagas, J.K.M.; de Silva, J.; Paz-Ferreiro, J. Short-term effects of sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- Trakal, L.; Raya-Moreno, I.; Mitchell, K.; Beesley, L. Stabilization of metal (loid)s in two contaminated agricultural soils: Comparing biochar to its non-pyrolysed source material. Chemosphere 2017, 181, 150–159. [Google Scholar] [CrossRef]
- Vamvuka, D.; Dermitzakis, S.; Pentari, D.; Sfakiotakis, S. Valorization of meat andbone meal through pyrolysis for soil amendment or lead adsorption from wastewaters. Food Bioprod. Process. 2018, 109, 148–157. [Google Scholar] [CrossRef]
- Puga, A.; Melo, L.; De Abreu, C.; Coscione, A.; Paz-Ferreiro, J. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res. 2016, 164, 25–33. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Davis, D.; Horton, R.; Wang, B.; Karlen, D. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Venegas, A.; Rigol, A.; Vidal, M. Changes in heavy metal extractability from contaminated soils remediated with organic waste or biochar. Geoderma 2016, 279, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Limwikran, T.; Kheoruenromne, I.; Suddhiprakarn, A.; Prakongkep, N.; Gilkes, R.J. Dissolution of K, Ca and P from biochar grains in tropical soils. Geoderma 2018, 312, 139–150. [Google Scholar] [CrossRef]
- Ghorbani, M.; Asadi, H.; Abrishamkesh, S. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 2019, 7, 258–265. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Pyliotis, I.; Vamvuka, D.; Bartzas, G. Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals. Waste Biomass Valor. 2015, 6, 805–816. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Randolph, P.; Bansode, R.R.; Hassan, O.A.; Rehrah, D.J.; Ravella, R.; Reddy, M.R.; Ahmedna, M. Effect of biochars produced from solid organic municipal waste on soil quality parameters. J. Environ. Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef]
- Penido, E.S.; Martins, G.C.; Mendes, T.B.M.; Melo, L.G.A.; Guimaraes, I.R.; Guilherme, L.R.G. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxic. Environ. Saf. 2019, 172, 326–333. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Stromberger, M.E.; Lentz, R.D.; Dungan, R.S. Hardwood biochar and manure co-application to a calcareous soil. Chemosphere 2016, 142, 84–91. [Google Scholar] [CrossRef]
- Bouyoukos, G.H. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Zhang, J.; Zhao, J.; Luo, Z.; Tu, S.; Yin, Y. Properties of biochar obtained from pyrolysis of bamboo shoot shell. J. Anal. Appl. Pyrolysis 2015, 114, 172–178. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3. Chemical Methods; Bingham, J.M., Ed.; ASA-SSSA Madison: Wisconsin, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review on the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Mendez, A.; Terradillos, M.; Gasco, G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 124–130. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Biores. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Yang, X.Y.; Chang, K.; Kim, Y.J.; Zhang, J.; Yoo, G. Effects of different biochar amendments on carbon loss and leachate characterization from an agricultural soil. Chemosphere 2019, 226, 625–635. [Google Scholar] [CrossRef]
- Jouiad, M.; Al-Nofeli, N.; Khalifa, N.; Benyettou, F.; Yousef, L.F. Characteristics of slow pyrolysis biochars produced from Rhodes grass and fronds of edible date palm. J. Anal. Appl. Pyrolysis 2015, 111, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Kaudal, B.B.; Chen, D.; Madhavan, D.B.; Downie, A.; Weatherley, A. Pyrolysis of urban waste streams: Their potential use as horticultural media. J. Anal. Appl. Pyrolysis 2015, 112, 105–112. [Google Scholar] [CrossRef]
- EBC. European Biochar Certificate, Guidelines for a Sustainable Production of Biochar, Version 4.8. European Biochar Foundation (EBC), Arbaz, Switzerland. Available online: http://www.european-biochar.org/en/download (accessed on 7 July 2014).
- IBI. International Biochar Initiative, Standardized Product Definition and Product Testing Guidelines for Biochar that is used in Soil, Version 2.0. International Biochar Initiative (IBI). Available online: http://www.biochar-international.org/sites/default/files/IBI_Biochar_Standards_V2.0_final.pdf (accessed on 6 November 2014).
- DEFRA. Fertilizer Manual (RB209); Department for Environment, Food and Rural Affairs, The Stationary Office: Norwich, UK, 2010.
- Point 6 of the Draft Agenda FWG 2 June 2014: Revision of the Fertilisers Regulation: (a) Feedback of the FWG Members on Essential Safety Requirements Discussed on 17 March 2014. Spain. 2014. Available online: https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetailDoc&id=13108&no=5 (accessed on 13 March 2020).
- The Council of the European Union. Directive 86/278/EEC of 12 June 1986. Protection of the Environment and in Particular of the Soil, when Sewage Sludge is Used in Agriculture. Off. J. Eur. Communities. 1986. 4.7.1986. pp. 6–12. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31986L0278&from=EN (accessed on 13 March 2020).
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Liu, D. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, R.; Zhang, A.; Yang, S.; Liu, H.; Yang, Z. Biochar amendment reduces paddy and nitrogen leaching but increases net global warming potential in Ningxia irrigation. China Sci. Rep. 2017, 7, 1592–1602. [Google Scholar] [CrossRef] [Green Version]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Hu, R. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef]
- Iqbal, H.; Garcia-Perez, M.; Flury, M. Effect of biochar on leaching of organic carbon, nitrogen and phosphorous from compost in bioretention systems. Sci. Total Environ. 2015, 521, 37–45. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, H.; Li, D.; Zhu, X.; Zhang, W.; Fu, S.; Mo, J. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees. Biol. Fertil. Soils 2016, 52, 665–674. [Google Scholar] [CrossRef]
- EC Decision 2003/33/EC on WAC-EUR-Lex. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:011:0027:0049:EN:PDF (accessed on 19 June 2017).
- Beesley, L.; Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 2011, 43, 188–196. [Google Scholar] [CrossRef]
Sample | pH | EC (mS/cm) | CEC (mmol/kg) | Pore Volume × 102 (cm3/g) | Average Pore Size (Å) | Specific Surface Area (m2/g) | WHC (g/g) |
---|---|---|---|---|---|---|---|
Soil | 8.2 | 0.05 | 40.0 | 0.26 | |||
Compost | 7.7 | 6.5 | 653.9 | 0.19 | 54.1 | 0.8 | |
Biochar | 9.7 | 15.3 | 205.2 | 0.12 | 45.3 | 0.9 | 1.1 |
Sample | Soil | Compost | Biochar |
---|---|---|---|
Volatiles | 1.3 | 22.7 | 30.9 |
Fixed carbon | 0.9 | 26.9 | 38.7 |
TOM | 2.2 | 49.6 | 69.6 |
Ash | 97.8 | 50.4 | 30.4 |
C | 0.25 | 24.7 | 56.2 |
H | 0.16 | 2.6 | 1.8 |
N | 0.04 | 3.0 | 3.1 |
O | 1.7 | 13.7 | 8.1 |
S | - | 0.38 | 0.4 |
TOC | 0.01 | 4.2 | 56.2 |
H/C | 7.6 | 1.26 | 0.38 |
O/C | 5.4 | 0.41 | 0.11 |
N/C | 0.15 | 0.10 | 0.05 |
Sample | Leaching Time (h) | COD (mg/L) | NO3− (mg/L) | PO43− (mg/L) | Phenols (mg/L) |
---|---|---|---|---|---|
Soil/Compost (100 g/kg) | 5.2 | 836 | 230 | 292 | 8.0 |
7.0 | 101 | - | 98 | 4.8 | |
9.1 | 117 | - | 12 | 3.6 | |
Soil/Compost (200 g/kg) | 6.4 | 950 | 410 | 496 | 8.7 |
8.0 | 240 | - | 326 | 5.1 | |
8.0 | 100 | - | 19 | 3.5 | |
Soil/Biochar (50 g/kg) | 4.5 | 677 | 170 | 259 | 3.0 |
5.5 | 104 | - | 169 | 0.5 | |
5.0 | 26 | - | 14 | 0.4 | |
Soil/Compost/Biochar (100 g/kg, 50 g/kg) | 8.5 | 733 | 500 | 612 | 5.9 |
10.2 | 106 | - | 230 | 3.9 | |
12.5 | 93 | - | 70 | 2.9 | |
Soil/Compost/Biochar (200 g/kg, 50 g/kg) | 9.3 | 806 | 705 | 614 | 6.1 |
11.3 | 182 | - | 67 | 4.0 | |
11.5 | 84 | - | 57 | 2.8 |
Sample | Cr | Mn | Co | Ni | Cu | Zn | As | Sr | Pb |
---|---|---|---|---|---|---|---|---|---|
Soil | 0.45 (0.01) | 111.3 (1.3) | |||||||
Soil/Compost (100 g/kg) | 94.9 (0.7) | 122.4 (0.2) | 40.2 (1.0) | 62.7 (0.9) | 459.9 (1.6) | 439.4 (0.4) | 29.6 (0.3) | 580.2 (0.7) | 22.6 (0.1) |
Soil/Compost (200 g/kg) | 98.0 (0.5) | 245.3 (0.3) | 61.0 (1.3) | 183.1 (1.1) | 1311.0 (2.0) | 1730.2 (0.8) | 25.0 (0.2) | 828.3 (0.6) | 59.6 (0.2) |
Soil/Biochar (50 g/kg) | 26.4 (0.4) | 113.6 (0.1) | 98.3 (3.1) | 181.2 (1.7) | 67.0 (0.3) | 113.4 (0.1) | 17.3 (1.7) | 100.0 (0.2) | 13.6 (0.3) |
Soil/Compost/Biochar (100g/kg, 50 g/kg) | 188.1 (1.2) | 884.2 (0.8) | 93.0 (2.3) | 601.3 (3.3) | 6299.5 (12.9) | 11395.2 (4.9) | 55.5 (0.5) | 610.9 (0.6) | 439.2 (2.5) |
Soil/Compost/Biochar (200 g/kg, 50 g/kg) | 294.0 (1.2) | 1480.1 (1.0) | 140.7 (2.8) | 971.9 (3.7) | 8910.0 (11.8) | 17367.3 (5.2) | 37.0 (0.3) | 114.1 (0.8) | 820.9 (2.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vamvuka, D.; Esser, K.; Komnitsas, K. Investigating the Suitability of Grape Husks Biochar, Municipal Solid Wastes Compost and Mixtures of Them for Agricultural Applications to Mediterranean Soils. Resources 2020, 9, 33. https://doi.org/10.3390/resources9030033
Vamvuka D, Esser K, Komnitsas K. Investigating the Suitability of Grape Husks Biochar, Municipal Solid Wastes Compost and Mixtures of Them for Agricultural Applications to Mediterranean Soils. Resources. 2020; 9(3):33. https://doi.org/10.3390/resources9030033
Chicago/Turabian StyleVamvuka, Despina, Katerina Esser, and Kostas Komnitsas. 2020. "Investigating the Suitability of Grape Husks Biochar, Municipal Solid Wastes Compost and Mixtures of Them for Agricultural Applications to Mediterranean Soils" Resources 9, no. 3: 33. https://doi.org/10.3390/resources9030033
APA StyleVamvuka, D., Esser, K., & Komnitsas, K. (2020). Investigating the Suitability of Grape Husks Biochar, Municipal Solid Wastes Compost and Mixtures of Them for Agricultural Applications to Mediterranean Soils. Resources, 9(3), 33. https://doi.org/10.3390/resources9030033