Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems
Abstract
:1. Introduction
2. Possibilities of Heat Recovery from Sewage
- heat exchanger-integrated showers,
- horizontal heat exchangers,
- vertical, counter-current heat exchangers, in which there are additionally distinguished:
- spiral exchangers,
- tube-in-tube heat exchangers.
- heat exchangers in the form of heat pipes,
- heat exchangers in the form of a tank with a coil, in which there are additionally distinguished:
3. Selected Methods Used in the Analysis of Heat Recovery from Wastewater
3.1. Monte Carlo
3.2. Life Cycle Cost (LCC)
3.3. PESTEL
3.4. Computational Fluid Dynamics (CFD)
3.5. TRNSYS
3.6. Pinch Analysys
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EIA. International Energy Outlook 2019. U.S. Energy Information Administration. Available online: https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf (accessed on 1 April 2020).
- EIA. International Energy Outlook 2018. U.S. Energy Information Administration. Available online: https://www.eia.gov/pressroom/presentations/capuano_07242018.pdf (accessed on 5 December 2019).
- International Energy Agency. World Energy Outlook 2019. Flagship Report-November 2019. Available online: https://www.iea.org/topics/world-energy-outlook (accessed on 3 April 2020).
- EIA. International Energy Renewables 2019. U.S. Energy Information Administration. Available online: https://www.iea.org/reports/renewables-2019 (accessed on 2 April 2020).
- International Energy Agency. Tracking Clean Energy Progress 2016. In Energy Technology Perspectives 2016; International Energy Agency: Paris, France, 2016. [Google Scholar]
- International Energy Agency. Technology Roadmap: Energy Efficient Buildings, Heating and Cooling Equipment; International Energy Agency: Paris, France, 2011. [Google Scholar]
- WEF. Global Risks Report 2020. Available online: https://www.weforum.org/reports/the-global-risks-report-2020 (accessed on 3 April 2019).
- Stec, A.; Kordana, S. Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems. Resour. Conserv. Recycl. 2015, 105, 84–94. [Google Scholar] [CrossRef]
- Wanjiru, E.; Xia, X. Optimal energy-water management in urban residential buildings through grey water recycling. Sustain. Cities Soc. 2017, 32, 654–668. [Google Scholar] [CrossRef] [Green Version]
- Niewitecka, K. Possibilities of heat energy recovery from greywater systems. E3S Web Conf. 2018, 30, 3003. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gul, M.; Sharmin, T.; Nikolaidis, I.; Al-Hussein, M. A framework to monitor the integrated multi-source space heating systems to improve the design of the control system. Energy Build. 2014, 72, 398–410. [Google Scholar] [CrossRef]
- Energy Policy of Poland until 2040 (EPP 2040). Available online: http://seo.org.pl/en/zaktualizowany-projekt-polityki-energetycznej-polski-do-2040-r (accessed on 2 April 2019).
- Merkel, E.; McKenna, R.; Fehrenbach, D.; Fichtner, W. A model-based assessment of climate and energy targets for the German residential heat system. J. Clean. Prod. 2017, 142, 3151–3173. [Google Scholar] [CrossRef]
- Meggers, F.; Leibundgut, H. The potential of wastewater heat and exergy: Decentralized high-temperature recovery with a heat pump. Energy Build. 2011, 43, 879–886. [Google Scholar] [CrossRef]
- Eslami-Nejad, P.; Bernier, M. Impact of Grey Water heat recovery on the electrical demand of domestic hot water heaters. In Proceedings of the Eleventh International IBPSA Conference, Glasgow, UK, 27–30 July 2009; pp. 681–687. [Google Scholar]
- Boyjoo, Y.; Pareek, V.; Ang, M. A review of greywater characteristics and treatment processes. Water Sci. Technol. 2013, 67, 1403–1424. [Google Scholar] [CrossRef] [PubMed]
- Hage, H.; Ramadan, M.; Jaber, H.; Khaled, M.; Olabi, A.G. A short review on the techniques of waste heat recovery from domestic applications. Energy Sources 2019, 7, 1–16. [Google Scholar] [CrossRef]
- Mazhar, A.; Liu, S.; Shukla, A. A key review of non-industrial greywater heat harnessing. Energies 2018, 11, 386. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, F.; Simperler, L.; Ertl, T. Analysing wastewater temperature development in a sewer system as a basis for the evaluation of wastewater heat recovery potentials. Energy Build. 2016, 128, 639–648. [Google Scholar] [CrossRef]
- Juan, Y.K.; Chen, Y.; Lin, J.M. Greywater reuse system design and economic analysis for residential buildings in Taiwan. Water 2016, 8, 546. [Google Scholar] [CrossRef]
- Bertrand, A.; Mastrucci, A.; Schüler, N.; Aggoune, R.; Wang, L. Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation. Appl. Energy 2017, 186, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Słyś, D.; Kordana, S. Financial analysis of the implementation of a Drain Water Heat Recovery unit in residential housing. Energy Build. 2014, 71, 1–11. [Google Scholar] [CrossRef]
- Stec, A.; Kordana, S.; Słyś, D. Analysing the financial efficiency of use of water and energy saving systems in single-family homes. J. Clean. Prod. 2017, 151, 193–205. [Google Scholar] [CrossRef]
- Pochwat, K.; Kordana, S.; Starzec, M.; Słyś, D. Comparison of two-prototype near-horizontal Drain Water Heat Recovery units on the basis of effectiveness. Energy 2019, 173, 1196–1207. [Google Scholar] [CrossRef]
- Collins, M.R.; Decker, G.E.; Murray, J. Characteristic effectiveness curves for falling-film drain water heat recovery systems. HVAC R Res. 2013, 19, 649–662. [Google Scholar]
- Gabor, T.; Dan, V.; Tiuc, A.E.; Sur, I.M.; Badila, I.N. Modelling and simulation of heat transfer processes for heat exchangers used in wastewater treatment. Environ. Eng. Manag. J. 2016, 15, 1027–1033. [Google Scholar] [CrossRef]
- Ramadan, M.; Al Shaer, A.; Haddad, A.; Khaled, M. An experimental study on recovering heat from domestic drain water. AIP Conf. Proc. 2016, 1758, 030011. [Google Scholar] [CrossRef]
- Taemthong, W. Grey water recycling for reuse in toilet flushing: A case study in Thailand. Int. J. Environ. Sci. Dev. 2017, 8, 421–424. [Google Scholar] [CrossRef]
- Spriet, J.; McNabola, A. Decentralized drain water heat recovery from commercial kitchens in the hospitality sector. Energy Build. 2019, 194, 247–259. [Google Scholar] [CrossRef]
- Ziembowicz, S.; Kida, M.; Koszelnik, P. The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Separ. Purif. Technol. 2018, 2, 188. [Google Scholar] [CrossRef]
- Wong, L.; Mui, K.W.; Guan, Y. Shower water heat recovery in high-rise residential buildings of Hong Kong. Appl. Energy 2010, 87, 703–709. [Google Scholar] [CrossRef]
- Kordana, S. An assessment of the potential for shower water heat recovery. E3S Web Conf. 2018, 45, 00034. [Google Scholar] [CrossRef]
- Alnahhal, S.; Spremberg, E. Contribution to Exemplary In-House Wastewater Heat Recovery in Berlin, Germany. Procedia CIRP 2016, 40, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Manouchehri, R.; Collins, M.R. An experimental analysis of the impact of temperature on falling film drain water heat recovery system effectiveness. Energy Build. 2016, 130, 1–7. [Google Scholar] [CrossRef]
- Manouchehri, R.; Collins, M.R. An experimental analysis of the impact of unequal flow on falling film drain water heat recovery system performance. Energy Build. 2018, 165, 150–159. [Google Scholar] [CrossRef]
- Dudkiewicz, E.; Ludwińska, A.; Rajski, K. Implementation of greywater heat recovery system in hospitals. E3S Web Conf. 2019, 116, 00018. [Google Scholar] [CrossRef]
- McNabola, A.; Shields, K. Efficient drain water heat recovery in horizontal domestic shower drains. Energy Build. 2013, 59, 44–49. [Google Scholar] [CrossRef]
- Wallin, J.; Claesson, J. Investigating the efficiency of a vertical inline drain water heat recovery heat exchanger in a system boosted with a heat pump. Energy Build. 2014, 80, 7–16. [Google Scholar] [CrossRef]
- Prabu, S.S.; Asokan, M.A. A study of waste heat recovery from diesel engine exhaust using phase change material. Int. J. Chem. Tech. Res. 2015, 8, 711–717. [Google Scholar]
- Bartkowiak, S.; Fisk, R.; Funk, A.; Hair, J.; Skerlos, S.J. Residential drain water heat recovery systems: Modeling, analysis, and implementation. J. Green Build. 2010, 5, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Fishman, G.S. Monte Carlo: Concepts, Algorithms and Applications; Springer: New York, NY, USA, 1996; pp. 66–70. [Google Scholar]
- Kordana, S.; Pochwat, K.; Słyś, D.; Starzec, M. Opportunities and threats of implementing drain water heat recovery units in Poland. Resources 2019, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Winkler, D.; Zischg, J.; Rauch, W. Virtual reality in urban water management: Communicating urban flooding with particle-based CFD simulations. Water Sci. Technol. 2017, 77, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, E.; Noori, M.; Zahmatkesh, S. Modeling and CFD simulation of volatile organic compounds removal from wastewater by membrane gas stripping using an electro-spun nanofiber membrane. J. Water Process. Eng. 2018, 30. [Google Scholar] [CrossRef]
- Echi, S.; Bouabid, A. CFD simulation and optimization of industrial boiler. Energy 2019, 169, 105–114. [Google Scholar] [CrossRef]
- Akbarzadeh, P.; Abbasnejad, A.; Movahed, F.; Zolfaghari, S. A new approach to numerical investigation of GFX and power-pipe drain water heat recovery (DWHR) systems in buildings. Heat Transf. Res. 2018, 49, 1339–1352. [Google Scholar] [CrossRef]
- Reddick, C.; Sorin, M.; Bonhivers, J.C.; Laperle, D. Waste heat and renewable energy integration in buildings. Energy Build. 2020, 211, 1–15. [Google Scholar] [CrossRef]
- Kalogirou, S.; Papamarcou, C. Modelling of a Thermosyphon Solar Water Heating System and Simple Model Validation. Renew. Energy 2000, 21, 471–493. [Google Scholar] [CrossRef]
- Duffie, J.A.; William, A.B. Solar Engineering of Thermal Processes; John Wiley & Sons, Inc.: New York, NY, USA, 2013; pp. 505–539. [Google Scholar]
- Tanha, K.; Fung, A.S.; Kumar, R. Simulation and experimental investigation of two hybrid solar domestic water heaters with drain water heat recovery. Int. J. Energy Res. 2015, 39, 1879–1889. [Google Scholar] [CrossRef]
- Tanha, K.; Fung, A.S.; Kumar, R. Performance of two domestic solar water heaters with drain heat recovery units: Simulation and experimental investigation. Appl. Therm. Eng. 2015, 90, 444–459. [Google Scholar] [CrossRef]
- Su, W.; Ye, Y.; Zhang, C.; Balezentis, T.; Streimikiene, D. Sustainable energy development in the major power-generating countries of the European Union: The Pinch Analysis. J. Clean. Prod. 2020, 256. [Google Scholar] [CrossRef]
- Zaloum, C.; Lafrance, M.; Gusdorf, J. Drain Water Heat Recovery Characterization and Modeling—Final Draft, Sustainable Buildings and Communities; Natural Resources Canada: Ottawa, ON, Canada, 2007; pp. 1–44. [Google Scholar]
- Spriet, J.; McNabola, A. Decentralized Drain Water Heat Recovery: Interaction between Wastewater and Heating Flows on a Single Residence Scale. Proceedings 2018, 2, 583. [Google Scholar] [CrossRef] [Green Version]
- Torras, S.; Oliet, C.; Rigola, J.; Oliva, A. Drain water heat recovery storage-type unit for residential housing. Appl. Therm. Eng. 2016, 103, 670–683. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, A.; Aggoune, R.; Wang, L. In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs. Appl. Energy 2017, 192, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Kordana, S.; Słyś, D.; Dziopak, J. Rationalization of water and energy consumption in shower systems of single-family dwelling houses. J. Clean. Prod. 2014, 82, 58–69. [Google Scholar] [CrossRef]
- Spriet, J.; McNabola, A.; Neugebauer, G.; Stoeglehner, G.; Ertl, T.; Kretschmer, F. Spatial and temporal considerations in the performance of wastewater heat recovery systems. J. Clean. Prod. 2020, 247. [Google Scholar] [CrossRef]
- Morales-Ruiz, S.; Rigola, J.; Oliet, C.; Oliva, A. Analysis and design of a drain water heat recovery storage unit based on PCM plates. Appl. Energy 2016, 179, 1006–1019. [Google Scholar] [CrossRef]
- Hasan, H.A.; Sopian, K.; Fudholi, A. Photovoltaic thermal solar water collector designed with a jet collision system. Energy 2018, 161, 412–424. [Google Scholar] [CrossRef]
- Tewari, K.; Dev, R. Exergy, environmental and economic analysis of modified domestic solar water heater with glass-to-glass PV module. Energy 2019, 170, 1130–1150. [Google Scholar] [CrossRef]
- Sami, S.; Semmar, D.; Hamid, A.; Mecheri, R.; Yaiche, M. Viability of integrating solar water heating systems into high energy performance housing in Algeria. Energy 2018, 149, 354–363. [Google Scholar] [CrossRef]
- Launay, S.; Kadoch, B.; Le Métayer, O.; Parrado, C. Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs. Energy 2019, 171, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, H.; Liang, X. Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes. Energy 2018, 149, 173–189. [Google Scholar] [CrossRef]
- Fertahi, S.E.-D.; Bouhal, T.; Gargab, F.; Jamil, A.; Kousksou, T.; Benbassou, A. Design and thermal performance optimization of a forced collective solar hot water production system in Morocco for energy saving in residential buildings. Sol. Energy 2018, 160, 260–274. [Google Scholar] [CrossRef]
- Paduchowska, J.; Żabnieńska-Góra, A.; Polarczyk, I. Energy-saving analysis of grey water heat recovery systems for student dormitory. E3S Web Conf. 2019, 116, 00056. [Google Scholar] [CrossRef]
- Marinoski, A.K.; Rupp, R.; Ghisi, E. Environmental benefit analysis of strategies for potable water savings in residential buildings. J. Environ. Manag. 2018, 206, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Leidl, C.M.; Lubitz, W.D. Comparing domestic water heating technologies. Technol. Soc. 2009, 31, 244–256. [Google Scholar] [CrossRef]
- Manouchehri, R.; Banister, C.J.; Collins, M.R. Impact of small tilt angles on the performance of falling film drain water heat recovery systems. Energy Build. 2015, 102, 181–186. [Google Scholar] [CrossRef]
- Saridakis, S.; Papanikolaou, N.; Voglitsis, D.; Koutroulis, E.; Tatakis, E.; Christidis, G.; Karatzaferis, I. Reliability analysis for a waste heat recovery power electronic interface applied at all-electric aircrafts. In Proceedings of the 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), Aachen, Germany, 3–5 March 2015. [Google Scholar] [CrossRef]
- Shon, J.; Kim, H.; Lee, K. Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin-tube heat exchanger. Appl. Energy 2014, 113, 680–689. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN (accessed on 5 December 2019).
Location of Heat Recovery System | Proposed Devices | Temperature Range | Waste Water Flow Rate | Estimated Heat Recovery Efficiency |
---|---|---|---|---|
Heat exchangers installed directly under the shower drain or at the inlet to the sewage system | Vertical heat exchangers, horizontal heat exchangers, heat pumps | 40–50 °C [22,23,24,25,26,27] | 2–20 dm3/min [18,22,23,24,25,26,27] | <50% of the first energy content [20,23,28] |
Heat exchangers installed on the sewage network | Vertical heat exchangers, horizontal heat exchangers, heat pumps | 15–30 °C [18] | 10000 > dm3/min [18] | 40–50% of the first energy content [18] |
Heat exchangers installed at the outlet of sewage treatment plant | Heat pumps | 10–20 °C [18,19,26] | 10000 < dm3/min [18,19,26] | 10–30% of the first energy content [21,26] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowska, B.; Słyś, D.; Kordana-Obuch, S.; Pochwat, K. Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems. Resources 2020, 9, 72. https://doi.org/10.3390/resources9060072
Piotrowska B, Słyś D, Kordana-Obuch S, Pochwat K. Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems. Resources. 2020; 9(6):72. https://doi.org/10.3390/resources9060072
Chicago/Turabian StylePiotrowska, Beata, Daniel Słyś, Sabina Kordana-Obuch, and Kamil Pochwat. 2020. "Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems" Resources 9, no. 6: 72. https://doi.org/10.3390/resources9060072
APA StylePiotrowska, B., Słyś, D., Kordana-Obuch, S., & Pochwat, K. (2020). Critical Analysis of the Current State of Knowledge in the Field of Waste Heat Recovery in Sewage Systems. Resources, 9(6), 72. https://doi.org/10.3390/resources9060072